1
|
Ozdemi̇r C, Isik B, Koca G, Inan MA. Effects of mid‑gestational sevoflurane and magnesium sulfate on maternal oxidative stress, inflammation and fetal brain histopathology. Exp Ther Med 2024; 28:286. [PMID: 38827470 PMCID: PMC11140313 DOI: 10.3892/etm.2024.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/08/2024] [Indexed: 06/04/2024] Open
Abstract
Models of inflammation, oxidative stress, hyperoxia and hypoxia have demonstrated that magnesium sulfate (MgSO4), a commonly used drug in obstetrics, has neuroprotective potential. In the present study, the effects of MgSO4 treatment on inflammation, oxidative stress and fetal brain histopathology were evaluated in an experimental rat model following sevoflurane (Sv) exposure during the mid-gestational period. Rats were randomly divided into groups: C (control; no injections or anesthesia), Sv (exposure to 2.5% Sv for 2 h), MgSO4 (administered 270 mg/kg MgSO4 intraperitoneally) and Sv + MgSO4 (Sv administered 30 min after MgSO4 injection). Inflammatory and oxidative stress markers were measured in the serum and neurotoxicity was investigated histopathologically in fetal brain tissue. Short-term mid-gestational exposure to a 1.1 minimum alveolar concentration of Sv did not significantly increase the levels of any of the measured biochemical markers, except for TNF-α. Histopathological evaluations demonstrated no findings suggestive of pathological apoptosis, neuroinflammation or oxidative stress-induced cell damage. MgSO4 injection prior to anesthesia caused no significant differences in biochemical or histopathological marker levels compared to the C and Sv groups. The present study indicated that short-term exposure to Sv could potentially be considered a harmless external stimulus to the fetal brain.
Collapse
Affiliation(s)
- Cagri Ozdemi̇r
- Department of Anesthesiology and Reanimation, Mamak State Hospital, 06270 Ankara, Turkey
| | - Berrin Isik
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Gulce Koca
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| | - Mehmet Arda Inan
- Department of Medical Pathology, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
2
|
Torshin IY, Gromova OA, Tikhonova OV, Chuchalin AG. [Molecular mechanisms of the effect of standardized placental hydrolysate peptides on mitochondria functioning]. TERAPEVT ARKH 2023; 95:1133-1140. [PMID: 38785053 DOI: 10.26442/00403660.2023.12.202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Human placenta hydrolysates (HPH), the study of which was initiated by the scientific school of Vladimir P. Filatov, are currently being investigated using modern proteomic technologies. HPH is a promising tool for maintaining the function of mitochondria and regenerating tissues and organs with a high content of mitochondria (liver, heart muscle, skeletal muscles, etc.). The molecular mechanisms of action of HPH are practically not studied. AIM Identification of mitochondrial support mitochondrial function-supporting peptides in HPH (Laennec, produced by Japan Bioproducts). MATERIALS AND METHODS Data on the chemical structure of the peptides were collected through a mass spectrometric experiment. Then, to establish the amino acid sequences of the peptides, de novo peptide sequencing algorithms based on the mathematical theory of topological and metric analysis of chemographs were applied. Bioinformatic analysis of the peptide composition of HPH was carried out using the integral protein annotation method. RESULTS The biological functions of 41 peptides in the composition of HPH have been identified and described. Among the target proteins, the activity of which is regulated by the identified peptides and significantly affects the function of mitochondria, are caspases (CASP1, CASP3, CASP4) and other proteins regulating apoptosis (BCL2, CANPL1, PPARA), MAP kinases (MAPK1, MAPK3, MAPK4, MAPK8, MAPK9 , MAPK10, MAPK14), AKT1/GSK3B/MTOR cascade kinases, and a number of other target proteins (ADGRG6 receptor, inhibitor of NF-êB kinase IKKE, pyruvate dehydrogenase 2/3/4, SIRT1 sirtuin deacetylase, ULK1 kinase). CONCLUSION HPH peptides have been identified that promote inhibition of mitochondrial pore formation, apoptosis, and excessive mitochondrial autophagy under conditions of oxidative/toxic stress, chronic inflammation, and/or hyperinsulinemia.
Collapse
Affiliation(s)
| | | | - O V Tikhonova
- Orekhovich Research Institute of Biomedical Chemistry
| | - A G Chuchalin
- Pirogov Russian National Research Medical University
| |
Collapse
|
3
|
Villalobos D, Reese M, Wright MC, Wong M, Syed A, Park J, Hall A, Browndyke JN, Martucci KT, Devinney MJ, Acker L, Moretti EW, Talbot L, Colin B, Ohlendorf B, Waligorska T, Shaw LM, Whitson HE, Cohen HJ, Mathew JP, Berger M. Perioperative changes in neurocognitive and Alzheimer's disease-related cerebrospinal fluid biomarkers in older patients randomised to isoflurane or propofol for anaesthetic maintenance. Br J Anaesth 2023; 131:328-337. [PMID: 37271721 PMCID: PMC10375507 DOI: 10.1016/j.bja.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Animal studies have shown that isoflurane and propofol have differential effects on Alzheimer's disease (AD) pathology and memory, although it is unclear whether this occurs in humans. METHODS This was a nested randomised controlled trial within a prospective cohort study; patients age ≥60 yr undergoing noncardiac/non-neurological surgery were randomised to isoflurane or propofol for anaesthetic maintenance. Cerebrospinal fluid (CSF) was collected via lumbar puncture before, 24 h, and 6 weeks after surgery. Cognitive testing was performed before and 6 weeks after surgery. Nonparametric methods and linear regression were used to evaluate CSF biomarkers and cognitive function, respectively. RESULTS There were 107 subjects (54 randomised to isoflurane and 53 to propofol) who completed the 6-week follow-up and were included in the analysis. There was no significant effect of anaesthetic treatment group, time, or group-by-time interaction for CSF amyloid-beta (Aβ), tau, or phospho-tau181p levels, or on the tau/Aβ or p-tau181p/Aβ ratios (all P>0.05 after Bonferroni correction). In multivariable-adjusted intention-to-treat analyses, there were no significant differences between the isoflurane and propofol groups in 6-week postoperative change in overall cognition (mean difference [95% confidence interval]: 0.01 [-0.12 to 0.13]; P=0.89) or individual cognitive domains (P>0.05 for each). Results remained consistent across as-treated and per-protocol analyses. CONCLUSIONS Intraoperative anaesthetic maintenance with isoflurane vs propofol had no significant effect on postoperative cognition or CSF Alzheimer's disease-related biomarkers within 6 weeks after noncardiac, non-neurological surgery in older adults. CLINICAL TRIAL REGISTRATION NCT01993836.
Collapse
Affiliation(s)
| | - Melody Reese
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Centre, Durham, NC, USA
| | - Mary Cooter Wright
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Megan Wong
- Duke University School of Medicine, Durham, NC, USA
| | - Ayesha Syed
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA; Trinity College, Duke University, Durham, NC, USA
| | - John Park
- Duke University School of Medicine, Durham, NC, USA; Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Ashley Hall
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Jeffrey N Browndyke
- Department of Psychiatry and Behavioural Medicine, Division of Behavioral Medicine & Neurosciences, Duke University Medical Center, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke Brain Imaging and Analysis Center, Durham, NC, USA; Duke Institute for Brain Sciences, Durham, NC, USA
| | - Katherine T Martucci
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke Brain Imaging and Analysis Center, Durham, NC, USA; Duke Institute for Brain Sciences, Durham, NC, USA
| | - Michael J Devinney
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Leah Acker
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Eugene W Moretti
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Leonard Talbot
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Brian Colin
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Brian Ohlendorf
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Teresa Waligorska
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather E Whitson
- Center for the Study of Aging and Human Development, Duke University Medical Centre, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Harvey J Cohen
- Center for the Study of Aging and Human Development, Duke University Medical Centre, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA
| | - Miles Berger
- Duke University School of Medicine, Durham, NC, USA; Department of Anaesthesiology, Duke University Medical Centre, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Centre, Durham, NC, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Durham, NC, USA.
| |
Collapse
|
4
|
Lu P, Liang F, Dong Y, Xie Z, Zhang Y. Sevoflurane Induces a Cyclophilin D-Dependent Decrease of Neural Progenitor Cells Migration. Int J Mol Sci 2023; 24:ijms24076746. [PMID: 37047719 PMCID: PMC10095407 DOI: 10.3390/ijms24076746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) levels and mitochondrial function. Neural progenitor cells (NPCs) migration is associated with cognitive function in developing brains. However, it is unclear whether sevoflurane can regulate NPCs migration via changes in CypD. To address this question, we treated NPCs harvested from wild-type (WT) and CypD knockout (KO) mice and young WT and CypD KO mice with sevoflurane. We used immunofluorescence staining, wound healing assay, transwell assay, mass spectrometry, and Western blot to assess the effects of sevoflurane on CypD, reactive oxygen species (ROS), doublecortin levels, and NPCs migration. We showed that sevoflurane increased levels of CypD and ROS, decreased levels of doublecortin, and reduced migration of NPCs harvested from WT mice in vitro and in WT young mice. KO of CypD attenuated these effects, suggesting that a sevoflurane-induced decrease in NPCs migration is dependent on CypD. Our findings have established a system for future studies aimed at exploring the impacts of sevoflurane anesthesia on the impairment of NPCs migration.
Collapse
Affiliation(s)
- Pan Lu
- Department of Anesthesia, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Xu Y, Ma Q, Du H, Yang C, Lin G. Postoperative Delirium in Neurosurgical Patients: Recent Insights into the Pathogenesis. Brain Sci 2022; 12:brainsci12101371. [PMID: 36291305 PMCID: PMC9599232 DOI: 10.3390/brainsci12101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative delirium (POD) is a complication characterized by disturbances in attention, awareness, and cognitive function that occur shortly after surgery or emergence from anesthesia. Since it occurs prevalently in neurosurgical patients and poses great threats to the well-being of patients, much emphasis is placed on POD in neurosurgical units. However, there are intricate theories about its pathogenesis and limited pharmacological interventions for POD. In this study, we review the recent insights into its pathogenesis, mainly based on studies within five years, and the five dominant pathological theories that account for the development of POD, with the intention of furthering our understanding and boosting its clinical management.
Collapse
Affiliation(s)
- Yinuo Xu
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haiming Du
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- North America Medical Education Foundation, Union City, CA 94587, USA
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| | - Guozhong Lin
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
- Center for Precision Neurosurgery and Oncology, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (C.Y.); (G.L.); Tel.: +86-135-1108-7060 (C.Y.); +86-135-5240-0103 (G.L.)
| |
Collapse
|
6
|
Watanabe M, Nakamura K, Kato M, Okada T, Iesaki T. Chronic magnesium deficiency causes reversible mitochondrial permeability transition pore opening and impairs hypoxia tolerance in the rat heart. J Pharmacol Sci 2022; 148:238-247. [PMID: 35063139 DOI: 10.1016/j.jphs.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic magnesium (Mg) deficiency induces and exacerbates various cardiovascular diseases. We previously investigated the mechanisms underlying decline in cardiac function caused by chronic Mg deficiency and the effectiveness of Mg supplementation on this decline using the Langendorff-perfused isolated mouse heart model. Herein, we used the Langendorff-perfused isolated rat heart model to demonstrate the chronic Mg-deficient rats (Mg-deficient group) had lower the heart rate (HR) and left ventricular pressure (LVDP) than rats with normal Mg levels (normal group). Furthermore, decline in cardiac function due to hypoxia/reoxygenation injury was significantly greater in the Mg-deficient group than in the normal group. Experiments on mitochondrial permeability transition pore (mPTP) using isolated mitochondria revealed that mitochondrial membrane was fragile in the Mg-deficient group, implying that cardiac function decline through hypoxia/reoxygenation injury is associated with mitochondrial function. Mg supplementation for chronic Mg-deficient rats not only improved hypomagnesemia but also almost completely restored cardiac and mitochondrial functions. Therefore, proactive Mg supplementation in pathological conditions induced by Mg deficiency or for those at risk of developing hypomagnesemia may suppress the development and exacerbation of certain disease states.
Collapse
Affiliation(s)
- Makino Watanabe
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Megumi Kato
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; Department of Internal Medicine, Division of Cardiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takafumi Iesaki
- Department of Internal Medicine, Division of Cardiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiological Technology, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Gong X, Xu L, Fang X, Zhao X, Du Y, Wu H, Qian Y, Ma Z, Xia T, Gu X. Protective effects of grape seed procyanidin on isoflurane-induced cognitive impairment in mice. PHARMACEUTICAL BIOLOGY 2020; 58:200-207. [PMID: 32114864 PMCID: PMC7067175 DOI: 10.1080/13880209.2020.1730913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
Context: Oxidative imbalance-induced cognitive impairment is among the most urgent clinical concerns. Isoflurane has been demonstrated to impair cognitive function via an increase in oxidative stress. GSP has strong antioxidant capacities, suggesting potential cognitive benefits.Objective: This study investigates whether GSP pre-treatment can alleviate isoflurane-induced cognitive dysfunction in mice.Materials and methods: C57BL/6J mice were pre-treated with either GSP 25-100 mg/kg/d for seven days or GSP 100-400 mg/kg as a single dose before the 6 h isoflurane anaesthesia. Cognitive functioning was examined using the fear conditioning tests. The levels of SOD, p-NR2B and p-CREB in the hippocampus were also analysed.Results: Pre-treatment with either a dose of GSP 50 mg/kg/d for seven days or a single dose of GSP 200 mg/kg significantly increased the % freezing time in contextual tests on the 1st (72.18 ± 12.39% vs. 37.60 ± 8.93%; 78.27 ± 8.46% vs. 52.72 ± 2.64%), 3rd (93.80 ± 7.62% vs. 52.94 ± 14.10%; 87.65 ± 10.86% vs. 52.89 ± 1.73%) and 7th (91.36 ± 5.31% vs. 64.09 ± 14.46%; 93.78 ± 3.92% vs. 79.17 ± 1.79%) day after anaesthesia. In the hippocampus of mice exposed to isoflurane, GSP 200 mg/kg increased the total SOD activity on the 1st and 3rd day and reversed the decreased activity of the NR2B/CREB pathway.Discussion and conclusions: These findings suggest that GSP improves isoflurane-induced cognitive dysfunction by protecting against perturbing antioxidant enzyme activities and NR2B/CREB pathway. Therefore, GSP may possess a potential prophylactic role in isoflurane-induced and other oxidative stress-related cognitive decline.
Collapse
Affiliation(s)
- Xiangdan Gong
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xin Zhao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Ying Du
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Hao Wu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
8
|
Nie Y, Li S, Yan T, Ma Y, Ni C, Wang H, Zheng H. Propofol Attenuates Isoflurane-Induced Neurotoxicity and Cognitive Impairment in Fetal and Offspring Mice. Anesth Analg 2020; 131:1616-1625. [PMID: 33079886 DOI: 10.1213/ane.0000000000004955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Anesthesia in pregnant rodents causes neurotoxicity in fetal and offspring rodents. However, the underlying mechanisms and targeted treatments remain largely to be determined. Isoflurane and propofol are among commonly used anesthetics. Thus, we set out to investigate whether propofol can mitigate the isoflurane-induced neurotoxicity in mice. METHODS Pregnant C57BL/6 mice at gestational day 15 (G15) were randomly assigned to 4 groups: control, isoflurane, propofol, and isoflurane plus propofol. Levels of interleukin (IL)-6 and poly-ADP ribose polymerase (PARP) fragment were measured in the brains of G15 embryos, and levels of postsynaptic density (PSD)-95 and synaptophysin were determined in the hippocampal tissues of postnatal day 31 (P31) offspring using Western blotting and immunohistochemical staining. Learning and memory functions in P31 offspring were determined using a Morris water maze test. RESULTS Isoflurane anesthesia in pregnant mice at G15 significantly increased brain IL-6 (222.6% ± 36.45% vs 100.5% ± 3.43%, P < .0001) and PARP fragment (384.2% ± 50.87% vs 99.59% ± 3.25%, P < .0001) levels in fetal mice and reduced brain PSD-95 (30.76% ± 2.03% vs 100.8% ± 2.25%, P < .0001) and synaptophysin levels in cornu ammonis (CA) 1 region (57.08% ± 4.90% vs 100.6% ± 2.20%, P < .0001) and dentate gyrus (DG; 56.47% ± 3.76% vs 99.76% ± 1.09%, P < .0001) in P31 offspring. Isoflurane anesthesia also impaired cognitive function in offspring at P31. Propofol significantly mitigated isoflurane-induced increases in brain IL-6 (117.5% ± 10.37% vs 222.6% ± 36.45%, P < .0001) and PARP fragment (205.1% ± 35.99% vs 384.2% ± 50.87%, P < .0001) levels in fetal mice, as well as reductions in PSD-95 (49.79% ± 3.43% vs 30.76% ± 2.03%, P < .0001) and synaptophysin levels in CA1 region (85.57% ± 2.97% vs 57.08% ± 4.90%, P < .0001) and DG (85.05% ± 1.87% vs 56.47% ± 3.76%, P < .0001) in hippocampus of P31 offspring. Finally, propofol attenuated isoflurane-induced cognitive impairment in offspring. CONCLUSIONS These findings suggest that gestational isoflurane exposure in mice induces neuroinflammation and apoptosis in embryos and causes cognitive impairment in offspring. Propofol can attenuate these isoflurane-induced detrimental effects.
Collapse
Affiliation(s)
- Yangyang Nie
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuai Li
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yan
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- From the Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Liu PF, Gao T, Li TZ, Yang YT, Xu YX, Xu ZP, Mi WD. Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome. Neurosci Lett 2020; 740:135461. [PMID: 33115643 DOI: 10.1016/j.neulet.2020.135461] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Elderly patients receive propofol at regular intervals for sedation during gastrointestinal endoscopy. However, the link between cognition and intermittent propofol exposure remains unclear. Thus, we used aged rats to investigate the effect of propofol on cognition. METHODS The study included two parts. In the first part, aged (18-20 months old) male Sprague-Dawley rats underwent intermittent intraperitoneal injection of propofol (200 mg/kg) or intralipid, every 9 days or once a day. In the second part, some aged rats received intraperitoneal injection of Bay 11-7082 (1 mg/kg), a specific inhibitor of NF-κB, 30 min before propofol injection. Memory tests were performed to evaluate cognition 24 h after the entire treatment. The hippocampal neuronal damage was assessed by TUNEL staining. The hippocampal levels of p-NF-κB p65, NLRP3, caspase-1 p20, and cleaved caspase-3 were detected by western blotting. The hippocampal and serum levels of IL-1β, IL-6, and TNF-α were evaluated using ELISA. RESULTS There were no differences in the behavioral tests, hippocampal neuronal damage, and neuroinflammation between groups given intralipid and propofol treatment every 9 days. However, repeated propofol treatment once a day promoted activation of NF-κB and the NLRP3 inflammasome, inducing cognitive impairment and neuroinflammation. Interestingly, pretreatment with Bay-11-7082 not only inhibited NF-κB/NLRP3 inflammasome activation, but also attenuated neuronal damage and cognitive dysfunction in aged rats exposed to daily propofol treatment. CONCLUSIONS Intermittent propofol treatment every 9 days may be safe for aged rats. However, propofol treatment once a day could impair the cognition of aged rats, partly through the activation of the NF-κB pathway and NLRP3 inflammasome, which may be a potential targets for the treatment of cognitive impairment in elderly patients.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Yi-Tian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China
| | - Yong-Xing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, 9th AnXiangBeiLi Road, Beijing, 100101, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| | - Wei-Dong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
10
|
Sun Y, Kamat A, Singh BB. Isoproterenol-Dependent Activation of TRPM7 Protects Against Neurotoxin-Induced Loss of Neuroblastoma Cells. Front Physiol 2020; 11:305. [PMID: 32390858 PMCID: PMC7193110 DOI: 10.3389/fphys.2020.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal function and their survival depend on the activation of ion channels. Loss of ion channel function is known to induce neurodegenerative diseases such as Parkinson’s that exhibit loss of dopaminergic neurons; however, mechanisms that could limit neuronal loss are not yet fully identified. Our data suggest that neurotoxin-mediated loss of neuroblastoma SH-SY5Y cells is inhibited by the addition of β-adrenergic receptor (β-AR) agonist isoproterenol. The addition of isoproterenol to SHSY-5Y cells showed increased Mg2+ influx and cell survival in the presence of neurotoxin especially at higher concentration of isoproterenol. Importantly, isoproterenol potentiated transient receptor potential melastatin-7 (TRPM7) channel activation that leads to an increase in intracellular Mg2+ levels. The addition of 2APB, which is a known TRPM7 channel blocker, significantly decreased the TRPM7 function and inhibited isoproterenol-mediated protection against neurotoxins. Moreover, neurotoxins inhibited TRPM7 expression and function, but the restoration of TRPM7 expression increased neuroblastoma cell survival. In contrast, TRPM7 silencing increased cell loss, decreased Mg2+ homeostasis, and inhibited mitochondrial function. Moreover, isoproterenol treatment prevented neurotoxin-mediated loss of TRPM7 expression and inhibited Bax expression that induces cell survival. These effects were dependent on the neurotoxin-induced increase in oxidative stress, which inhibits TRPM7 expression and function. Together, our results suggest a positive role for β-AR in activating TRPM7 channels that regulate Mg2+ homeostasis and are essential for the survival of SH-SY5Y cells from neurotoxin.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amrita Kamat
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Zhang Y, Lu P, Liang F, Liufu N, Dong Y, Zheng JC, Xie Z. Cyclophilin D Contributes to Anesthesia Neurotoxicity in the Developing Brain. Front Cell Dev Biol 2020; 7:396. [PMID: 32117955 PMCID: PMC7026027 DOI: 10.3389/fcell.2019.00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
Anesthetic sevoflurane induces mitochondrial dysfunction, impairment of neurogenesis, and cognitive impairment in young mice, but the underlying mechanism remains to be determined. Cyclophilin D (CypD) is a modulatory factor for the mitochondrial permeability transition pore (mPTP). We, therefore, set out to evaluate the role of CypD in these sevoflurane-induced changes in vitro and in young mice. Wild-type (WT) and CypD knockout (KO) young (postnatal day 6, 7, and 8) mice received 3% sevoflurane 2 h daily and the neural progenitor cells (NPCs) harvested from the WT or CypD KO mice received 4.1% sevoflurane. We used immunohistochemistry and immunocytochemistry imaging, flow cytometry, Western blot, RT-PCR, co-immunoprecipitation, and Morris Water Maze to assess the interaction of sevoflurane and CypD on mitochondria function, neurogenesis, and cognition in vitro and in WT or CypD KO mice. We demonstrated that the sevoflurane anesthesia induced accumulation of CypD, mitochondrial dysfunction, impairment of neurogenesis, and cognitive impairment in WT mice or NPCs harvested from WT mice, but not in CypD KO mice or NPCs harvested from CypD KO mice. Furthermore, the sevoflurane anesthesia reduced the binding of CypD with Adenine nucleotide translocator, the other component of mPTP. These data suggest that the sevoflurane anesthesia might induce a CypD-dependent mitochondria dysfunction, impairment of neurogenesis, and cognitive impairment in young mice and NPCs.
Collapse
Affiliation(s)
- Yiying Zhang
- Center for Neuroimmunology and Regenerative Therapy, Shanghai Tenth People's Hospital, Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai, China.,Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Pan Lu
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ning Liufu
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jialin Charles Zheng
- Center for Neuroimmunology and Regenerative Therapy, Shanghai Tenth People's Hospital, Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neurosciences, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
12
|
Kelleci Çelik F, Charehsaz M, Aydin A. Toxicological evaluation of the interaction between circadian rhythm activator; KL001 and general anesthetic; isoflurane. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1698808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Feyza Kelleci Çelik
- Department of Pharmaceutical Toxicology, Sağlık Bilimleri University Faculty of Pharmacy, İstanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Yeditepe University Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
13
|
Magnesium-Induced Cell Survival Is Dependent on TRPM7 Expression and Function. Mol Neurobiol 2019; 57:528-538. [PMID: 31392516 PMCID: PMC6968994 DOI: 10.1007/s12035-019-01713-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
Mg2+ homeostasis is essential for cell survival and the loss of this regulation has been associated with many neurodegenerative diseases, including loss of dopaminergic neurons. Although the neurotoxin-mediated loss of dopaminergic neurons in Parkinson disease models is extensively studied, the ion channel(s) that regulate Mg2+ homeostasis and thus could prevent neuronal cell death is not yet identified. Here, we show that TRPM7 (transient receptor potential melastatin 7) is involved in regulating Mg2+ homeostasis in dopaminergic cells. Importantly, transient loss of TRPM7 decreased intracellular Mg2+ levels and decreased dopaminergic cells/neurons survival. We provide further evidence that both increases in extracellular Mg2+ or transiently increasing TRPM7 levels protected dopaminergic SH-SY5Y cells against neurotoxin-mediated cell death. Neurotoxin treatment significantly decreased TRPM7 levels in both SH-SY5Y cells and the substantia nigra pars compacta region of mice, along with a decrease in Mg2+ influx. Moreover, Mg2+ supplementation showed a concentration-dependent decrease in caspase-3 activity, an increase in cell survival, restored mitochondrial membrane potential, and increase TRPM7 levels in neurotoxin-treated cells. In contrast, transient silencing of TRPM7 inhibited the positive effect of Mg2+ supplementation in protecting against neurotoxins. Whereas, TRPM7 overexpression not only maintained Mg2+ homeostasis but also inhibited caspase 3 activity that induced cell survival. Overall, these results suggest a significant role of TRPM7 channels in Mg2+ homeostasis and the survival of neurotoxin-induced loss of dopaminergic cells.
Collapse
|
14
|
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci 2019; 20:ijms20143439. [PMID: 31336935 PMCID: PMC6678825 DOI: 10.3390/ijms20143439] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.
Collapse
|
15
|
Zhang J, Gao J, Guo G, Li S, Zhan G, Xie Z, Yang C, Luo A. Anesthesia and surgery induce delirium-like behavior in susceptible mice: the role of oxidative stress. Am J Transl Res 2018; 10:2435-2444. [PMID: 30210682 PMCID: PMC6129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Anesthesia and surgery (A + S) are risk factors for patients to develop postoperative delirium (POD). However, the pathogenesis of POD remains largely to be determined. We employed battery of behavioral tests including open-filed test (OFT), elevated plus maze test (EPMT) and buried food test (BFT) to investigate the role of oxidative stress in the development of POD and to explore the therapeutic target for POD in mice after A + S (simple laparotomy under 1.4% isoflurane anesthesia). We initially found that 6 hours after A + S, mice failed to alter the behavioral changes in OFT and the adenosine triphosphate (ATP) level in hippocampus. After hierarchical cluster analysis, however, there was a significant change in the behavior tests between POD unsusceptible (non-POD) and susceptible (POD-like) mice. Interestingly, cyclosporine A, an inhibitor of mitochondrial permeability transition pore (mPTP) opening, exerted pharmacologically beneficial effects on symptoms, decreased reactive oxygen species (ROS) and ATP, and increased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) levels in the hippocampus of POD-like mice. These findings suggest that abnormally activated oxidative stress might be involved in the underlying mechanisms of POD. Novel therapeutic agents targeting inhibition of oxidative stress would provide an available strategy for POD treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, US
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
16
|
Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of Toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. Eur J Anaesthesiol 2018; 33:670-80. [PMID: 26981881 DOI: 10.1097/eja.0000000000000449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Propofol, midazolam and ketamine are widely used in today's anaesthesia practice. Both neuroprotective and neurotoxic effects have been attributed to all three agents. OBJECTIVE To establish whether propofol, midazolam and ketamine in the same neuronal injury model exert neuroprotective effects on injured neurones in vitro and in vivo by modulation of the Toll-like receptor 4-nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4-NF-κB) pathway. DESIGN AND SETTING Cell-based laboratory (n = 6 repetitions per experiment) and animal (n = 6 per group) studies using a neuronal cell line (SH-SY5Y cells) and adult Sprague-Dawley rats. INTERVENTIONS Cells were exposed to oxygen-glucose deprivation before or after treatment using escalating, clinically relevant doses of propofol, midazolam and ketamine. In animals, retinal ischaemia (60 min) was induced followed by reperfusion and randomised treatment with saline or propofol. MAIN OUTCOME MEASURES Neuronal cell death was determined using flow-cytometry (mitochondrial membrane potential) and lactate dehydrogenase (LDH) release. Nuclear factor NF-κB and hypoxia-inducible factor 1 α-activity were analysed by DNA-binding ELISA, expression of NF-κB-dependent genes and TLR-4 by luciferase-assay and flow-cytometry, respectively. In animals, retinal ganglion cell density, caspase-3 activation and gene expression (TLR-4, NF-κB) were used to determine in vivo effects of propofol. Results were compared using ANOVA (Analysis of Variance) and t test. A P value less than 0.05 was considered statistically significant. RESULTS Post-treatment with clinically relevant concentrations of propofol (1 to 10 μg ml) preserved the mitochondrial membrane potential in oxygen-glucose deprivation-injured cells by 54% and reduced LDH release by 21%. Propofol diminished TLR-4 surface expression and preserved the DNA-binding activity of the protective hypoxia-inducible factor 1 α transcription factor. DNA-binding and transcriptional NF-κB-activity were inhibited by propofol. Neuronal protection and inhibition of TLR-4-NF-κB signalling were not consistently seen with midazolam or ketamine. In vivo, propofol treatment preserved rat retinal ganglion cell densities (cells mm, saline 1504 ± 251 vs propofol 2088 ± 144, P = 0.0001), which was accompanied by reduced neuronal caspase-3, TLR-4 and NF-κB expression. CONCLUSION Propofol, but neither midazolam nor ketamine, provides neuroprotection to injured neuronal cells via inhibition of TLR-4-NF-κB-dependent signalling.
Collapse
|
17
|
Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice. Neuroreport 2018; 28:386-390. [PMID: 28240723 DOI: 10.1097/wnr.0000000000000760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.
Collapse
|
18
|
Berger M, Nadler JW, Friedman A, McDonagh DL, Bennett ER, Cooter M, Qi W, Laskowitz DT, Ponnusamy V, Newman MF, Shaw LM, Warner DS, Mathew JP, James ML. The Effect of Propofol Versus Isoflurane Anesthesia on Human Cerebrospinal Fluid Markers of Alzheimer's Disease: Results of a Randomized Trial. J Alzheimers Dis 2017; 52:1299-310. [PMID: 27079717 DOI: 10.3233/jad-151190] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Preclinical studies have found differential effects of isoflurane and propofol on the Alzheimer's disease (AD)-associated markers tau, phosphorylated tau (p-tau) and amyloid-β (Aβ). OBJECTIVE We asked whether isoflurane and propofol have differential effects on the tau/Aβ ratio (the primary outcome), and individual AD biomarkers. We also examined whether genetic/intraoperative factors influenced perioperative changes in AD biomarkers. METHODS Patients undergoing neurosurgical/otolaryngology procedures requiring lumbar cerebrospinal fluid (CSF) drain placement were prospectively randomized to receive isoflurane (n = 21) or propofol (n = 18) for anesthetic maintenance. We measured perioperative CSF sample AD markers, performed genotyping assays, and examined intraoperative data from the electronic anesthesia record. A repeated measures ANOVA was used to examine changes in AD markers by anesthetic type over time. RESULTS The CSF tau/Aβ ratio did not differ between isoflurane- versus propofol-treated patients (p = 1.000). CSF tau/Aβ ratio and tau levels increased 10 and 24 h after drain placement (p = 2.002×10-6 and p = 1.985×10-6, respectively), mean CSF p-tau levels decreased (p = 0.005), and Aβ levels did not change (p = 0.152). There was no interaction between anesthetic treatment and time for any of these biomarkers. None of the examined genetic polymorphisms, including ApoE4, were associated with tau increase (n = 9 polymorphisms, p > 0.05 for all associations). CONCLUSION Neurosurgery/otolaryngology procedures are associated with an increase in the CSF tau/Aβ ratio, and this increase was not influenced by anesthetic type. The increased CSF tau/Aβ ratio was largely driven by increases in tau levels. Future work should determine the functional/prognostic significance of these perioperative CSF tau elevations.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jacob W Nadler
- Division Chief, Neurosurgical Anesthesiology Medical Director, Postanesthesia Care Unit; Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Allan Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - David L McDonagh
- Department of Anesthesiology & Pain Management, Neurological Surgery, Neurology and Neurotherapeutics, University of Texas, Southwestern, Dallas, TX, USA
| | - Ellen R Bennett
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wenjing Qi
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - Mark F Newman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Private Diagnostic Clinic, Duke University Medical Center, Durham, NC, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Warner
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael L James
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
19
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
20
|
Li C, Hou L, Chen D, Lin F, Chang T, Li M, Zhang L, Niu X, Wang H, Fu S, Zheng J. Hydrogen-rich saline attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. Am J Transl Res 2017; 9:1162-1172. [PMID: 28386342 PMCID: PMC5376007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The inhaled general anesthetic isoflurane has been shown to induce caspase-3 activation in vitro and in vivo. The underlying mechanisms and functional consequences of this activity remain unclear. Isoflurane can induce caspase-3 activation by causing accumulation of reactive oxygen species (ROS), mitochondrial dysfunction, and reduction in adenosine triphosphate (ATP) levels. This study aimed to investigate the protective effect of hydrogen, a novel antioxidant, against isoflurane-induced caspase-3 activation and cognitive impairment. METHODS H4 human neuroglioma cells overexpressing human amyloid precursor protein were treated with saline or hydrogen-rich saline (HS, 300 μM), with or without 2% isoflurane, for 6 h or 3 h. Western blot analysis, fluorescence assays, and a mitochondrial swelling assay were used to evaluate caspase-3 activation, levels of ROS and ATP, and mitochondrial function. The effect of the interaction of isoflurane (1.4% for 2 h) and HS (5 mL/kg) on cognitive function in mice was also evaluated using a fear conditioning test. RESULTS We found that HS attenuated isoflurane-induced caspase-3 activation. Moreover, HS treatment mitigated isoflurane-induced ROS accumulation, opening of mitochondrial permeability transition pores, reduction in mitochondrial membrane potential, and reduction in cellular ATP levels. Finally, HS significantly alleviated isoflurane-induced cognitive impairment in mice. CONCLUSIONS Our results suggest that HS attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. These findings warrant further research into the underlying mechanisms of this activity, and indicate that HS has the potential to attenuate anesthesia neurotoxicity.
Collapse
Affiliation(s)
- Cheng Li
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Lengchen Hou
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Dan Chen
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Fuqing Lin
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Tao Chang
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Mengzhu Li
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Lingling Zhang
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Xiaoyin Niu
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Huiying Wang
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Shukun Fu
- Department of Anesthesiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| | - Junhua Zheng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai, 200072, China
| |
Collapse
|
21
|
Bi J, Zhang H, Lu J, Lei W. Nobiletin ameliorates isoflurane-induced cognitive impairment via antioxidant, anti-inflammatory and anti-apoptotic effects in aging rats. Mol Med Rep 2016; 14:5408-5414. [PMID: 27840933 DOI: 10.3892/mmr.2016.5919] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/22/2016] [Indexed: 11/05/2022] Open
Abstract
A recent study reported that nobiletin is an active ingredient in Fructus Aurantii immaturus and Pericarpium Citri Reticulatae, which may be capable of preventing ischemic stroke. Therefore, the present study aimed to determine the neuroprotective effects of nobiletin, and to evaluate whether it could ameliorate isoflurane‑induced cognitive impairment via antioxidant, anti‑inflammatory and anti‑apoptotic effects in aging rats. Male Sprague‑Dawley rats (age, 18 months) were used to analyze the neuroprotective effects of nobiletin. Morris water maze test was used to determine cognitive competence. Enzyme‑linked immunosorbent assay and western blot analysis were also used to quantify nuclear factor‑κB, tumor necrosis factor (TNF)‑α, IL‑1β, IL‑6, glutathione, (GSH), GSH‑peroxidase, superoxide dismutase and malondialdehyde concentration and relevant protein expression levels Cognitive competence was increased in isoflurane-treated rats following treatment with nobiletin. In addition, as expected, nobiletin exerted antioxidant, anti-inflammatory and anti‑apoptotic effects on isoflurane‑induced cognitive impairment in aging rats. Treatment with nobiletin induced the activation of phosphorylated (p)‑Akt, p‑cAMP response element binding protein (CREB) and brain‑derived neurotrophic factor (BDNF) protein expression and reduced the levels of B‑cell lymphoma 2‑associated X protein (Bax) in isoflurane‑induced rats. In conclusion, the present study demonstrated that nobiletin may ameliorate isoflurane-induced cognitive impairment through antioxidant, anti‑inflammatory and anti‑apoptotic effects via modulation of Akt, Bax, p‑CREB and BDNF in aging rats. These findings provide support for the molecular mechanisms underlying the effects of nobiletin treatment on isoflurane-induced damage.
Collapse
Affiliation(s)
- Junying Bi
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiyan Zhang
- Gynaecology Ward‑1, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Jing Lu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Weifu Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
22
|
Bilotta F, Qeva E, Matot I. Anesthesia and cognitive disorders: a systematic review of the clinical evidence. Expert Rev Neurother 2016; 16:1311-1320. [DOI: 10.1080/14737175.2016.1203256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, ‘Sapienza’ University of Rome, Rome, Italy
| | - Ega Qeva
- Department of Anesthesiology, Critical Care and Pain Medicine, ‘Sapienza’ University of Rome, Rome, Italy
| | - Idit Matot
- Department of Anesthesiology, Intensive Care and Pain Medicine, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
23
|
The Fas Ligand/Fas Death Receptor Pathways Contribute to Propofol-Induced Apoptosis and Neuroinflammation in the Brain of Neonatal Rats. Neurotox Res 2016; 30:434-52. [PMID: 27189477 DOI: 10.1007/s12640-016-9629-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/25/2016] [Accepted: 05/03/2016] [Indexed: 01/11/2023]
Abstract
A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1β cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.
Collapse
|
24
|
Yang Y, Chen X, Min H, Song S, Zhang J, Fan S, Yi L, Wang H, Gu X, Ma Z, Gao Q. Persistent mitoKATP Activation Is Involved in the Isoflurane-induced Cytotoxicity. Mol Neurobiol 2016; 54:1101-1110. [DOI: 10.1007/s12035-016-9710-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/11/2016] [Indexed: 01/27/2023]
|
25
|
da Luz VF, Otsuki DA, Gonzalez MMC, Negri EM, Caldini EG, Damaceno-Rodrigues NR, Malbouisson LMS, Viana BG, Vane MF, Carmona MJC. Myocardial protection induced by fentanyl in pigs exposed to high-dose adrenaline. Clin Exp Pharmacol Physiol 2015; 42:1098-107. [DOI: 10.1111/1440-1681.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/30/2015] [Accepted: 07/09/2015] [Indexed: 01/02/2023]
Affiliation(s)
| | - Denise Aya Otsuki
- University of Sao Paulo Medical School; Department of Anaesthesiology; São Paulo Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tian KY, Liu XJ, Xu JD, Deng LJ, Wang G. Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells. ACTA ACUST UNITED AC 2015; 48:401-7. [PMID: 25760023 PMCID: PMC4445662 DOI: 10.1590/1414-431x20144107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/11/2014] [Indexed: 01/10/2023]
Abstract
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Collapse
Affiliation(s)
- K Y Tian
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - X J Liu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - J D Xu
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - L J Deng
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - G Wang
- Department of Anesthesiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
27
|
Cardioprotective effect of propofol against oxygen glucose deprivation and reperfusion injury in H9c2 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:184938. [PMID: 25821553 PMCID: PMC4364303 DOI: 10.1155/2015/184938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear. METHODS In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to induce in vitro cardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20 μM) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism. RESULTS Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly. CONCLUSIONS These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.
Collapse
|
28
|
Shao H, Zhang Y, Dong Y, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer's disease transgenic mice. J Alzheimers Dis 2015; 41:499-513. [PMID: 24643139 DOI: 10.3233/jad-132792] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is a need to seek new treatment(s) for Alzheimer's disease (AD). A recent study showed that AD patients may have decreased levels of functional GABA receptors. Propofol, a commonly used anesthetic, is a GABA receptor agonist. We therefore set out to perform a proof of concept study to determine whether chronic treatment with propofol (50 mg/kg/week) can improve cognitive function in both aged wild-type (WT) and AD transgenic (Tg) mice. Propofol was administrated to the WT and AD Tg mice once a week for 8 or 12 weeks, respectively. Morris water maze was used to assess the cognitive function of the mice following the propofol treatment. Activation of caspase-3, caspase-9, and caspase-8 was investigated using western blot analysis at the end of the propofol treatment. In the mechanistic studies, effects of propofol, amyloid-β protein (Aβ), and GABA receptor antagonist flumazenil on caspase-3 activation and opening of the mitochondrial permeability transition pore were assessed in H4 human neuroglioma and mouse neuroblastoma cells by western blot analysis and flow cytometry. Here we showed that the propofol treatment improved cognitive function and attenuated brain caspase-3 and caspase-9 activation in both aged WT and AD Tg mice. Propofol attenuated Aβ-induced caspase-3 activation and opening of the mitochondrial permeability transition pore in the cells, and flumazenil inhibited the propofol's effects. These results suggested that propofol might improve cognitive function via attenuating the Aβ-induced mitochondria dysfunction and caspase activation, which explored the potential that anesthetic propofol could improve cognitive function in elderly and AD patients.
Collapse
Affiliation(s)
- Haijun Shao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weiming Xia
- Department of Veterans Affairs, Medical Research and Development Service and Geriatric Research, Education and Clinical Center, Bedford, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
29
|
Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology 2014; 120:665-72. [PMID: 24401770 DOI: 10.1097/aln.0000000000000125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mechanical ventilation is crucial for patients with respiratory failure. The mechanical takeover of diaphragm function leads to diaphragm dysfunction and atrophy (ventilator-induced diaphragmatic dysfunction), with an increase in oxidative stress as a major contributor. In most patients, a sedative regimen has to be initiated to allow tube tolerance and ventilator synchrony. Clinical data imply a correlation between cumulative propofol dosage and diaphragm dysfunction, whereas laboratory investigations have revealed that propofol has some antioxidant properties. The authors hypothesized that propofol reduces markers of oxidative stress, atrophy, and contractile dysfunction in the diaphragm. METHODS Male Wistar rats (n = 8 per group) were subjected to either 24 h of mechanical ventilation or were undergone breathing spontaneously for 24 h under propofol sedation to test for drug effects. Another acutely sacrificed group served as controls. After sacrifice, diaphragm tissue was removed, and contractile properties, cross-sectional areas, oxidative stress, and proteolysis were examined. The gastrocnemius served as internal control. RESULTS Propofol did not protect against diaphragm atrophy, oxidative stress, and protease activation. The decrease in tetanic force compared with controls was similar in the spontaneous breathing group (31%) and in the ventilated group (34%), and both groups showed the same amount of muscle atrophy. The gastrocnemius muscle fibers did not show atrophy. CONCLUSIONS Propofol does not protect against ventilator-induced diaphragmatic dysfunction or oxidative injury. Notably, spontaneous breathing under propofol sedation resulted in the same amount of diaphragm atrophy and dysfunction although diaphragm activation per se protects against ventilator-induced diaphragmatic dysfunction. This makes a drug effect of propofol likely.
Collapse
|
30
|
Zhang Y, Shao H, Dong Y, Swain CA, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol attenuates β-amyloid protein levels in brain tissues of aged mice. Transl Neurodegener 2014; 3:8. [PMID: 24725331 PMCID: PMC3989795 DOI: 10.1186/2047-9158-3-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. At the present time, however, AD still lacks effective treatments. Our recent studies showed that chronic treatment with anesthetic propofol attenuated brain caspase-3 activation and improved cognitive function in aged mice. Accumulation of β-amyloid protein (Aβ) is a major component of the neuropathogenesis of AD dementia and cognitive impairment. We therefore set out to determine the effects of chronic treatment with propofol on Aβ levels in brain tissues of aged mice. Propofol (50 mg/kg) was administrated to aged (18 month-old) wild-type mice once a week for 8 weeks. The brain tissues of mice were harvested one day after the final propofol treatment. The harvested brain tissues were then subjected to enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Here we report that the propofol treatment reduced Aβ (Aβ40 and Aβ42) levels in the brain tissues of the aged mice. Moreover, the propofol treatment decreased the levels of β-site amyloid precursor protein cleaving enzyme (the enzyme for Aβ generation), and increased the levels of neprilysin (the enzyme for Aβ degradation) in the brain tissues of the aged mice. These results suggested that the chronic treatment with propofol might reduce brain Aβ levels potentially via decreasing brain levels of β-site amyloid precursor protein cleaving enzyme, thus decreasing Aβ generation; and via increasing brain neprilysin levels, thus increasing Aβ degradation. These preliminary findings from our pilot studies have established a system and postulated a new hypothesis for future research.
Collapse
Affiliation(s)
- Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Haijun Shao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, P.R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Celeste A Swain
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, P.R. China
| | - Weiming Xia
- Department of Veterans Affairs, Medical Research and Development Service and Geriatric Research, Education and Clinical Center, Bedford, MA 01730, UK
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Room 4310, Charlestown, MA 02129-2060, USA
| |
Collapse
|
31
|
BAI TAO, DONG DAOSONG, PEI LING. Resveratrol mitigates isoflurane-induced neuroapoptosis by inhibiting the activation of the Akt-regulated mitochondrial apoptotic signaling pathway. Int J Mol Med 2013; 32:819-26. [DOI: 10.3892/ijmm.2013.1464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022] Open
|