1
|
Diez de Castro E, Fernandez-Molina JM. Environmental Management of Equine Asthma. Animals (Basel) 2024; 14:446. [PMID: 38338089 PMCID: PMC10854533 DOI: 10.3390/ani14030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Environmental practices related to the inhalation of airborne dust have been identified as the main cause of equine asthma (EA) and reasonably, they are truly relevant in its treatment and control, especially for horses with its severe form. Vast research regarding environmental recommendations has been conducted in recent years. However, no recent exhaustive reviews exist that gather all this new evidence. The aim of this review is to report and compare the most pertinent information concerning the environmental management of EA. The main findings highlight the importance of the type of forage used for feeding but also its method of production and possible contamination during manufacture and/or storage. Procedures to reduce this, such as soaking and steaming hay, improve its hygienic quality, although they also decrease forage's nutritional value, making dietetic supplementation necessary. Regarding stabling, despite some conflicting results, avoiding straw as bedding and improving barn ventilation continue to be the common recommendations if turning to pasture is not feasible. Finally, owners' compliance has been identified as the most critical point in correct environmental control. Educating owners about the genuine benefits of these measures should be a cornerstone of EA management.
Collapse
Affiliation(s)
- Elisa Diez de Castro
- Veterinary Teaching Hospital, University of Cordoba, 14014 Córdoba, Spain
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Córdoba, Spain
| | | |
Collapse
|
2
|
Durham AE. Association between forage mycotoxins and liver disease in horses. J Vet Intern Med 2022; 36:1502-1507. [PMID: 35792718 PMCID: PMC9308415 DOI: 10.1111/jvim.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Outbreaks of liver disease in horses are common but the etiology of most remains unknown. Forage mycotoxins have been suspected to be a cause. Objectives To examine the association between outbreaks of liver disease and the presence of mycotoxins in forage stored on the same premises. Animals Premises were identified where ≥4 horses were contemporaneously affected by liver disease, and a control group was formed from premises where ≥4 horses had been examined and found to have no evidence of liver disease. Methods Forage was collected from 29 case and 12 control premises. The forage was analyzed for mycotoxin content using a liquid chromatography/mass spectrometry method, targeting 54 mycotoxins. The presence and distribution of mycotoxins between case and control samples was compared. Results Mycotoxins were found in 23/29 (79%) case samples and 10/12 (83%) control samples (P > .99; relative risk, 0.93; 95% confidence interval [CI], 0.64‐1.75). Median (interquartile range [IQR]) total mycotoxin concentration was similar in case and control samples (85.8 μg/kg [1.6‐268] vs. 315 μg/kg [6.3‐860]; P = .16). Ten mycotoxins were found exclusively in case premises comprising fumonisin B1, 15‐acetyldeoxynivalenol, deoxynivalenol, zearalenone, aflatoxins B1 and G1, methylergonovine, nivalenol, verruculogen, and wortmannin. The median (IQR) concentration of fumonisin B1 was significantly higher in case versus control samples (0 μg/kg [0‐81.7] vs. 0 μg/kg [0‐0]; P = .04). Conclusions and Clinical Importance Several mycotoxins with known hepatotoxic potential were found, alone or in combination, exclusively at case premises, consistent with the hypothesis that forage‐associated mycotoxicosis may be a cause of outbreaks of liver disease in horses in the United Kingdom.
Collapse
|
3
|
Yiannikouris A, Apajalahti J, Siikanen O, Dillon GP, Moran CA. Saccharomyces cerevisiae Cell Wall-Based Adsorbent Reduces Aflatoxin B1 Absorption in Rats. Toxins (Basel) 2021; 13:209. [PMID: 33805637 PMCID: PMC7999883 DOI: 10.3390/toxins13030209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the gastrointestinal tract (GI) and reducing their bioavailability. The parietal cell wall components of Saccharomyces cerevisiae have been found to interact in vitro with mycotoxins, such as, but not limited to, aflatoxin B1 (AFB1), and to improve animal performance when added to contaminated diets in vivo. The present study aimed to examine the pharmacokinetics of the absorption of radiolabeled AFB1 in rats in the presence of a yeast cell wall-based adsorbent (YCW) compared with that in the presence of the clay-based binder hydrated sodium calcium aluminosilicate (HSCAS). The results of the initial pharmacokinetic analysis showed that the absorption process across the GI tract was relatively slow, occurring over a matter of hours rather than minutes. The inclusion of mycotoxin binders increased the recovery of radiolabeled AFB1 in the small intestine, cecum, and colon at 5 and 10 h, revealing that they prevented AFB1 absorption compared with a control diet. Additionally, the accumulation of radiolabeled AFB1 was more significant in the blood plasma, kidney, and liver of animals fed the control diet, again showing the ability of the binders to reduce the assimilation of AFB1 into the body. The results showed the potential of YCW in reducing the absorption of AFB1 in vivo, and in protecting against the damaging effects of AFB1 contamination.
Collapse
Affiliation(s)
- Alexandros Yiannikouris
- Chemistry and Toxicology Division, Center for Animal Nutrigenomic and Applied Animal Nutrition, Alltech Inc., 3031, Nicholasville, KY 40356, USA
| | - Juha Apajalahti
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (O.S.)
| | - Osmo Siikanen
- Alimetrics Ltd., Koskelontie 19B, 02920 Espoo, Finland; (J.A.); (O.S.)
| | | | | |
Collapse
|
4
|
Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with toxic effect on animals. Toxicon 2020; 182:34-53. [PMID: 32423889 DOI: 10.1016/j.toxicon.2020.04.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are low-molecular weight compounds produced mainly by fungi, with Fusarium and Aspergillus origin. Secondary, metabolites, are mostly found on plants. However, the contamination of the feed and forage has been also reported. Because of their pharmacological activity, mycotoxins can be used as chemical warfare agents, drugs or growth promotants. Additionally, mycotoxins are found as one of the most dangerous genotoxic factors which cause the damage of DNA and lead to disease development. This review includes the knowledge of mycotoxins as both, an invisible danger of forage and as food additives. Special emphasis shall be given on mycotoxins with proven cancerogenic activity; including aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone. Factors such as species, mechanisms/modes of action, metabolism, and defense mechanisms were taken into account. The main concern was focused on zearalenone characterization, because of its estrogenic activity, caused by structural similarity to estrogens, naturally occurring in cells. By binding to estrogenic receptors, toxins are, accumulated in organisms and long-term exposure may cause the disturbances, especially in the reproductive system. The next part of this paper contains the description of main strategies of toxins determination. Finally, in the review, several potential methods for the dioxins neutralization were discussed.
Collapse
|
5
|
Hennig-Pauka I, Koch FJ, Schaumberger S, Woechtl B, Novak J, Sulyok M, Nagl V. Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porcine Health Manag 2018; 4:18. [PMID: 30221009 PMCID: PMC6134784 DOI: 10.1186/s40813-018-0095-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023] Open
Abstract
Background The mycotoxin zearalenone (ZEN) causes functional and morphological alterations in reproductive organs of pigs. In the field, diagnosis of ZEN-induced disorders is often challenging, as relevant feed lots are no longer available, or feed analysis results are not conclusive. Here, we report a field case of hyperestrogenism in newborn piglets. Surprisingly, more than 50 fungal metabolites were detected in hay pellets fed to gestating sows, including ZEN and its modified form zearalenone-14-sulfate (ZEN-14-S). Despite the broad contamination range in this unconventional feed component, a definite diagnosis of mycotoxicosis could not be achieved. In this context, current limitations regarding the confirmation of suspected cases of ZEN-induced disorders are discussed, covering both feed analysis and the biomarker approach. Case presentation A piglet producer with 200 sows experienced a sudden increase in suckling piglet losses up to 30% by lower vitality and crushing. Predominant clinical signs were splay legs and signs of hyperestrogenism such as swollen and reddened vulvae in newborn piglets. The first differential diagnosis was ZEN mycotoxicosis although feed batches had not been changed for months with the exception of ground hay pellets, which had been included in the diet five months before. Analysis of hay pellets resulted in a sum value of ZEN and its modified forms of more than 1000 μg/kg, with ZEN-14-S alone accounting for 530 μg/kg. Considering the inclusion rate of 7% in the diet for gestating sows, the severe impact of the additional ZEN load due to the contaminated hay pellets seemed unrealistic but could not be completely excluded either. One month after hay pellets had been removed from the diet no further clinical signs were observed. Conclusions Enrichment materials and other fibre sources can contain significant amounts of mycotoxins and should be therefore included in feed analysis. Adequate methods for broad spectrum mycotoxin determination, including modified mycotoxins, are important. As highlighted by this field case, there is a need to establish reliable biomarkers for ZEN exposure in pigs. Currently, available biomarkers do not allow a solid prediction of the ZEN intake of pigs under field conditions, which limits their application to experimental studies.
Collapse
Affiliation(s)
- Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Buescheler Straße 9, 49456 Bakum, Germany
| | - Franz-Josef Koch
- Tierarztpraxis im Holbeinring, Holbeinring 16, 35369 Gießen, Germany
| | | | - Bettina Woechtl
- 4University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Johannes Novak
- 5Functional Botanical Substances, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Michael Sulyok
- 6Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
6
|
Takagi M, Uno S, Kokushi E, Sato F, Wijayagunawardane M, Fink-Gremmels J. Measurement of urinary concentrations of the mycotoxins zearalenone and sterigmatocystin as biomarkers of exposure in mares. Reprod Domest Anim 2017; 53:68-73. [PMID: 28921680 DOI: 10.1111/rda.13054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 07/21/2017] [Indexed: 01/11/2023]
Abstract
Mycotoxins may affect animal health, including reproduction. Little is known about the clinical relevance of exposure of horses to contaminated feed. This study aimed at (i) monitoring the levels of the mycotoxins zearalenone (ZEN), with its metabolites α- and β-zearalenol (α- and β-ZOL), and sterigmatocystin (STC) in urine samples from thoroughbred mares in Japan and (ii) relating these findings to the potential effects on reproductive efficacy of breeding mares. Sixty-three urine samples of breeding mares from 59 breeding farms were used. Urine samples and reproductive records were collected from each mare when it was presented to the stallion station. Urinary concentrations of ZEN, α- and β-ZOL, and STC were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). ZEN, α- and β-ZOL were measurable in the urine of all examined mares, indicating the prevalence of ZEN in equine feeds. In seven of the 63 samples, STC was also detected at levels ranging from 1.3 to 18.0 pg/mg creatinine. No significant correlation between the concentrations of mycotoxins and pregnancy status was observed. In conclusion, measurement of mycotoxins in urine samples is a useful non-invasive method for monitoring the systemic exposure of mares to multiple mycotoxins.
Collapse
Affiliation(s)
- M Takagi
- Laboratory of Theriogenology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - S Uno
- The Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - E Kokushi
- The Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - F Sato
- Equine Breeding Science, Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | | | - J Fink-Gremmels
- Faculty of Veterinary Medicine, Division of Veterinary Pharmacology, Pharmacotherapy and Clinical Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan, The Netherlands
| |
Collapse
|
7
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Dänicke S, Eriksen GS, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 2017; 15:e04851. [PMID: 32625539 PMCID: PMC7009830 DOI: 10.2903/j.efsa.2017.4851] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEN), a mycotoxin primarily produced by Fusarium fungi, occurs predominantly in cereal grains. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to ZEN and its modified forms in feed. Modified forms of ZEN occurring in feed include phase I metabolites α‐zearalenol (α‐ZEL), β‐zearalenol (β‐ZEL), α‐zearalanol (α‐ZAL), β‐zearalanol (β‐ZAL), zearalanone (ZAN) and phase II conjugates. ZEN has oestrogenic activity and the oestrogenic activity of the modified forms of ZEN differs considerably. For ZEN, the EFSA Panel on Contaminants in the Food Chain (CONTAM) established no observed adverse effect levels (NOAELs) for pig (piglets and gilts), poultry (chicken and fattening turkeys), sheep and fish (extrapolated from carp) and lowest observed effect level (LOAEL) for dogs. No reference points could be established for cattle, ducks, goats, horses, rabbits, mink and cats. For modified forms, no reference points could be established for any animal species and relative potency factors previously established from rodents by the CONTAM Panel in 2016 were used. The dietary exposure was estimated on 17,706 analytical results with high proportions of left‐censored data (ZEN about 60%, ZAN about 70%, others close to 100%). Samples for ZEN were collected between 2001 and 2015 in 25 different European countries, whereas samples for the modified forms were collected mostly between 2013 and 2015 from three Member States. Based on exposure estimates, the risk of adverse health effects of feed containing ZEN was considered extremely low for poultry and low for sheep, dog, pig and fish. The same conclusions also apply to the sum of ZEN and its modified forms.
Collapse
|
8
|
Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy AA, Kaushik NK, Choi EH. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget 2017; 8:33933-33952. [PMID: 28430618 PMCID: PMC5464924 DOI: 10.18632/oncotarget.15422] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/08/2017] [Indexed: 01/19/2023] Open
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungus which causes food contamination, resulting in mycotoxicosis in animals and humans. In particular, trichothecenes mycotoxin produced by genus fusarium is agriculturally more important worldwide due to the potential health hazards they pose. It is mainly metabolized and eliminated after ingestion, yielding more than 20 metabolites with the hydroxy trichothecenes-2 toxin being the major metabolite. Trichothecene is hazardously intoxicating due to their additional potential to be topically absorbed, and their metabolites affect the gastrointestinal tract, skin, kidney, liver, and immune and hematopoietic progenitor cellular systems. Sensitivity to this type of toxin varying from dairy cattle to pigs, with the most sensitive endpoints being neural, reproductive, immunological and hematological effects. The mechanism of action mainly consists of the inhibition of protein synthesis and oxidative damage to cells followed by the disruption of nucleic acid synthesis and ensuing apoptosis. In this review, the possible hazards, historical significance, toxicokinetics, and the genotoxic and cytotoxic effects along with regulatory guidelines and recommendations pertaining to the trichothecene mycotoxin are discussed. Furthermore, various techniques utilized for toxin determination, pathophysiology, prophylaxis and treatment using herbal antioxidant compounds and regulatory guidelines and recommendations are reviewed. The prospects of the trichothecene as potential hazardous agents, decontamination strategies and future perspectives along with plausible therapeutic uses are comprehensively described.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Bhawana Negi
- Department of Molecular Biology and Genetic Engineering, G B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Neha Kaushik
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Anupriya Adhikari
- Department of Chemistry, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar, India
| | | | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins (Basel) 2015; 7:3057-111. [PMID: 26274974 PMCID: PMC4549740 DOI: 10.3390/toxins7083057] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023] Open
Abstract
Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.
Collapse
Affiliation(s)
- Antonio Gallo
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Gianluca Giuberti
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Jens C Frisvad
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| | - Terenzio Bertuzzi
- Institute of Feed & Food Science and Nutrition, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| | - Kristian F Nielsen
- Department of Systems Biology, Technical University of Denmark, Building 221, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
|
11
|
Granson HJ, Carr AP, Parker D, Davies JL. Cystic endometrial hyperplasia and chronic endometritis in a chinchilla. J Am Vet Med Assoc 2011; 239:233-6. [PMID: 21756180 DOI: 10.2460/javma.239.2.233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION A 4-year-old nulliparous sexually intact female chinchilla (Chinchilla lanigera) was evaluated because of a 2-month history of blood being sporadically observed in its cage. CLINICAL FINDINGS Results of physical examination of the chinchilla were unremarkable except for the presence of blood-stained fur around the perineum. There were no external lesions to account for the bleeding. Findings on urinalysis, bacteriologic culture of urine, and whole-body radiography were unremarkable. The chinchilla's littermate had been evaluated because of similar clinical signs 2 years earlier, and these signs resolved following ovariohysterectomy. TREATMENT AND OUTCOME Ovariohysterectomy was performed, and gross changes were not observed in the reproductive tract. However, microscopic examination revealed multifocal cystic dilation of the endometrial glands, foci of microhemorrhage, and chronic suppurative inflammation consistent with a final diagnosis of cystic endometrial hyperplasia and chronic endometritis. Clinical signs did not recur. CLINICAL RELEVANCE Cystic endometrial hyperplasia has been documented in a variety of animals, but to the authors' knowledge, this was the first reported case in a chinchilla. Cystic endometrial hyperplasia and chronic endometritis should be considered as a differential diagnosis in an adult sexually intact female chinchilla with a history of suspected hemorrhagic vaginal discharge, suspected hematuria, or hemorrhage from an unknown source.
Collapse
Affiliation(s)
- Hilary J Granson
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| | | | | | | |
Collapse
|
12
|
Mycotoxins in horse feed: Incidence of deoxynivalenol in oat samples from stud farms. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2011. [DOI: 10.2298/zmspn1120033u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Reports concerning mycotoxins in horse feed are very rare and are typically
restricted to fumonisins. As a non-ruminant monogastric species, horses may
be more sensitive to adverse effects of mycotoxins, but the most severe
effect of fumonisin B1 (FB1) in equines is that it causes fatal
leucoencephalomalacia. In recent years, the European Food Safety Authority
(EFSA) has evaluated several mycotoxins as ?undesirable substances in animal
feed? with the aim of establishing guidance values for the feed industry. In
its evaluation of deoxynivalenol (DON), EFSA concluded that this toxin
exhibited toxic effects in all species, but that horses were more tolerant
towards this toxin than pigs. According to the available data, a systematic
survey on mycotoxins in horse feed in Serbia has not been published.
Therefore, the aim of this study was to investigate the incidence of
mycotoxins in horse feed in Vojvodina. Samples of oats for horse consumption,
collected in 2010, were analyzed by enzyme immunoassays (ELISA) for
deoxynivalenol contamination. Twelve samples of oats were taken from twelve
horse studs, with sport, school and hobby horses.
Collapse
|
13
|
Caloni F, Cortinovis C. Toxicological effects of aflatoxins in horses. Vet J 2010; 188:270-3. [PMID: 20619706 DOI: 10.1016/j.tvjl.2010.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/18/2010] [Accepted: 06/02/2010] [Indexed: 11/25/2022]
Abstract
Aflatoxins are a group of mycotoxins principally produced by Aspergillus flavus and A. parasiticus, which are both natural contaminants of food and feedstuff. Aflatoxin B(1) is the most prevalent member of this group that is normally detected and is the most powerful hepatocarcinogen known. Few naturally occurring episodes of aflatoxicosis in horses have been reported in the literature. Indeed, the published information about aflatoxin exposure, metabolism and the effects on horses is limited and controversial, possibly indicating a lack of awareness rather than the rarity of the occurrence. The target organ in horses, as in other animal species, is the liver and horses suffering from aflatoxicosis show signs of inappetence, depression, fever, tremor, ataxia and cough. Necropsy findings include a yellow-brown liver with centrilobular necrosis, icterus, haemorrhage, tracheal exudates and brown urine. A possible link between aflatoxin exposure and chronic obstructive pulmonary disease has been hypothesised.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Veterinary Sciences and Technologies for Food Safety, Faculty of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | | |
Collapse
|
14
|
Abstract
Ruminants are much less sensitive to ochratoxin A (OTA) than non-ruminants. The ruminal microbes, with protozoa being a central group, degrade the mycotoxin extensively, with disappearance half lives of 0.6–3.8 h. However, in some studies OTA was detected systemically when using sensitive analytical methods, probably due to some rumen bypass at proportions of estimated 2–6.5% of dosage (maximum 10%). High concentrate proportions and high feeding levels are dietary factors promoting the likeliness of systemic occurrence due to factors like shifts in microbial population and higher contamination potential. Among risk scenarios for ruminants, chronic intoxication represents the most relevant.
Collapse
|
15
|
Mobashar M, Hummel J, Blank R, Südekum KH. Ochratoxin A in ruminants−A review on its degradation by gut microbes and effects on animals. Toxins (Basel) 2010; 2:809-39. [PMID: 22069612 PMCID: PMC3153210 DOI: 10.3390/toxins2040809] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 11/17/2022] Open
Abstract
Ruminants are much less sensitive to ochratoxin A (OTA) than non-ruminants. The ruminal microbes, with protozoa being a central group, degrade the mycotoxin extensively, with disappearance half lives of 0.6-3.8 h. However, in some studies OTA was detected systemically when using sensitive analytical methods, probably due to some rumen bypass at proportions of estimated 2-6.5% of dosage (maximum 10%). High concentrate proportions and high feeding levels are dietary factors promoting the likeliness of systemic occurrence due to factors like shifts in microbial population and higher contamination potential. Among risk scenarios for ruminants, chronic intoxication represents the most relevant.
Collapse
Affiliation(s)
- Muhammad Mobashar
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.M.); (J.H.)
| | - Jürgen Hummel
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.M.); (J.H.)
| | - Ralf Blank
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, 24098 Kiel, Germany; (R.B.)
| | - Karl-Heinz Südekum
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; (M.M.); (J.H.)
| |
Collapse
|
16
|
Sacchi C, González H, Broggi L, Pacin A, Resnik S, Cano G, Taglieri D. Fungal contamination and mycotoxin natural occurrence in oats for race horses feeding in Argentina. Anim Feed Sci Technol 2009. [DOI: 10.1016/j.anifeedsci.2009.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|