1
|
Tang S, Hu W, Zou H, Luo Q, Deng W, Cao S. The complement system: a potential target for the comorbidity of chronic pain and depression. Korean J Pain 2024; 37:91-106. [PMID: 38433474 PMCID: PMC10985490 DOI: 10.3344/kjp.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 03/05/2024] Open
Abstract
The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.
Collapse
Affiliation(s)
- Shanshan Tang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wen Hu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Helin Zou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingyang Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Cao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Gonzalez-Rivera JC, Orr AA, Engels SM, Jakubowski JM, Sherman MW, O'Connor KN, Matteson T, Woodcock BC, Contreras LM, Tamamis P. Computational evolution of an RNA-binding protein towards enhanced oxidized-RNA binding. Comput Struct Biotechnol J 2020; 18:137-152. [PMID: 31988703 PMCID: PMC6965710 DOI: 10.1016/j.csbj.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/02/2022] Open
Abstract
The oxidation of RNA has been implicated in the development of many diseases. Among the four ribonucleotides, guanosine is the most susceptible to oxidation, resulting in the formation of 8-oxo-7,8-dihydroguanosine (8-oxoG). Despite the limited knowledge about how cells regulate the detrimental effects of oxidized RNA, cellular factors involved in its regulation have begun to be identified. One of these factors is polynucleotide phosphorylase (PNPase), a multifunctional enzyme implicated in RNA turnover. In the present study, we have examined the interaction of PNPase with 8-oxoG in atomic detail to provide insights into the mechanism of 8-oxoG discrimination. We hypothesized that PNPase subunits cooperate to form a binding site using the dynamic SFF loop within the central channel of the PNPase homotrimer. We evolved this site using a novel approach that initially screened mutants from a library of beneficial mutations and assessed their interactions using multi-nanosecond Molecular Dynamics simulations. We found that evolving this single site resulted in a fold change increase in 8-oxoG affinity between 1.2 and 1.5 and/or selectivity between 1.5 and 1.9. In addition to the improvement in 8-oxoG binding, complementation of K12 Δpnp with plasmids expressing mutant PNPases caused increased cell tolerance to H2O2. This observation provides a clear link between molecular discrimination of RNA oxidation and cell survival. Moreover, this study provides a framework for the manipulation of modified-RNA protein readers, which has potential application in synthetic biology and epitranscriptomics.
Collapse
Affiliation(s)
- Juan C. Gonzalez-Rivera
- McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States
| | - Asuka A. Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, TX 77843, United States
| | - Sean M. Engels
- McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States
| | - Joseph M. Jakubowski
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, TX 77843, United States
| | - Mark W. Sherman
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24th Street, Stop A5000, Austin, TX 78712, United States
| | - Katherine N. O'Connor
- McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States
| | - Tomas Matteson
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24th Street, Stop A5000, Austin, TX 78712, United States
| | - Brendan C. Woodcock
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, TX 77843, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24th Street, Stop A5000, Austin, TX 78712, United States
- Corresponding authors at: McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States (L.M. Contreras).
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, TX 77843, United States
- Corresponding authors at: McKetta Department of Chemical Engineering, The University of Texas, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, United States (L.M. Contreras).
| |
Collapse
|
3
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
4
|
Orr AA, Yang J, Sule N, Chawla R, Hull KG, Zhu M, Romo D, Lele PP, Jayaraman A, Manson MD, Tamamis P. Molecular Mechanism for Attractant Signaling to DHMA by E. coli Tsr. Biophys J 2019; 118:492-504. [PMID: 31839263 DOI: 10.1016/j.bpj.2019.11.3382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
The attractant chemotaxis response of Escherichia coli to norepinephrine requires that it be converted to 3,4-dihydroxymandelic acid (DHMA) by the monoamine oxidase TynA and the aromatic aldehyde dehydrogenase FeaB. DHMA is sensed by the serine chemoreceptor Tsr, and the attractant response requires that at least one subunit of the periplasmic domain of the Tsr homodimer (pTsr) has an intact serine-binding site. DHMA that is generated in vivo by E. coli is expected to be a racemic mixture of the (R) and (S) enantiomers, so it has been unclear whether one or both chiral forms are active. Here, we used a combination of state-of-the-art tools in molecular docking and simulations, including an in-house simulation-based docking protocol, to investigate the binding properties of (R)-DHMA and (S)-DHMA to E. coli pTsr. Our studies computationally predicted that (R)-DHMA should promote a stronger attractant response than (S)-DHMA because of a consistently greater-magnitude piston-like pushdown of the pTsr α-helix 4 toward the membrane upon binding of (R)-DHMA than upon binding of (S)-DHMA. This displacement is caused primarily by interaction of DHMA with Tsr residue Thr156, which has been shown by genetic studies to be critical for the attractant response to L-serine and DHMA. These findings led us to separate the two chiral species and test their effectiveness as chemoattractants. Both the tethered cell and motility migration coefficient assays validated the prediction that (R)-DHMA is a stronger attractant than (S)-DHMA. Our study demonstrates that refined computational docking and simulation studies combined with experiments can be used to investigate situations in which subtle differences between ligands may lead to diverse chemotactic responses.
Collapse
Affiliation(s)
- Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Jingyun Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Nitesh Sule
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Daniel Romo
- Department of Chemistry & Biochemistry and CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Michael D Manson
- Department of Biology, Texas A&M University, College Station, Texas.
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas.
| |
Collapse
|
5
|
Park H, Jin UH, Orr AA, Echegaray SP, Davidson LA, Allred CD, Chapkin RS, Jayaraman A, Lee K, Tamamis P, Safe S. Isoflavones as Ah Receptor Agonists in Colon-Derived Cell Lines: Structure-Activity Relationships. Chem Res Toxicol 2019; 32:2353-2364. [PMID: 31621310 DOI: 10.1021/acs.chemrestox.9b00352] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many of the protective responses observed for flavonoids in the gastrointestinal track resemble aryl hydrocarbon receptor (AhR)-mediated effects. Therefore, we examined the structure-activity relationships of isoflavones and isomeric flavone and flavanones as AhR ligands on the basis of their induction of CYP1A1, CYP1B1, and UGT1A1 gene expression in colon cancer Caco2 cells and young adult mouse colonocyte (YAMC) cells. Caco2 cells were significantly more Ah-responsive than YAMC cells, and this was due, in part, to flavonoid-induced cytotoxicity in the latter cell lines. The structure-activity relationships for the flavonoids were complex and both response and cell context specific; however, there was significant variability in the AhR activities of the isomeric substituted isoflavones and flavones. For example, 4',5,7-trihydroxyisoflavone (genistein) was AhR-inactive whereas 4',5,7-trihydroxyflavone (apigenin) induced CYP1A1, CYP1B1, and UGT1A1 in Caco2 cells. In contrast, both 5,7-dihydroxy-4-methoxy substituted isoflavone (biochanin A) and flavone (acacetin) induced all three AhR-responsive genes; 4',5,7-trimethoxyisoflavone was a potent AhR agonist, and the isomeric flavone was AhR-inactive. These results coupled with simulation studies modeling flavonoid interaction within the AhR binding pocket demonstrate that the orientation of the substituted phenyl ring at C-2 (flavones) or C-3 (isoflavones) on the common 4-H-chromen-4-one ring strongly influences the activities of isoflavones and flavones as AhR agonists.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Veterinary Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843 , United States
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843 , United States
| | - Asuka A Orr
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77840 , United States
| | - Stephanie P Echegaray
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77840 , United States
| | - Laurie A Davidson
- Department of Nutrition and Food Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Clinton D Allred
- Department of Nutrition and Food Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Robert S Chapkin
- Department of Nutrition and Food Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77840 , United States
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77840 , United States
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
6
|
Verghese DA, Chun N, Paz K, Fribourg M, Woodruff TM, Flynn R, Hu Y, Xiong H, Zhang W, Yi Z, Du J, Blazar BR, Heeger PS. C5aR1 regulates T follicular helper differentiation and chronic graft-versus-host disease bronchiolitis obliterans. JCI Insight 2018; 3:124646. [PMID: 30568034 DOI: 10.1172/jci.insight.124646] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells are specialized providers of T cell help to B cells and can function as pathogenic mediators of murine antibody-dependent chronic graft-versus-host disease (GvHD). Using a parent→F1 model of lupus-like chronic GvHD, in which Tfh cell and germinal center (GC) B cell differentiation occurs over 14 days, we demonstrate that absence of CD4+ T cell-expressed C5a receptor 1 (C5ar1) or pharmacological C5aR1 blockade abrogated generation/expansion of Tfh cells, GC B cells, and autoantibodies. In a Tfh cell-dependent model of chronic GvHD manifested by bronchiolitis obliterans syndrome (BOS), C5aR1 antagonism initiated in mice with established disease ameliorated BOS and abolished the associated differentiation of Tfh and GC B cells. Guided by RNA-sequencing data, mechanistic studies performed using murine and human T cells showed that C5aR1 signaling amplifies IL-6-dependent expression of the transcription factor c-MAF and the cytokine IL-21 via phosphorylating phosphokinase B (AKT) and activating the mammalian target of rapamycin (mTOR). In addition to linking C5aR1-initiated signaling to Tfh cell differentiation, our findings suggest that C5aR1 may be a useful therapeutic target for prevention and/or treatment of individuals with Tfh cell-dependent diseases, including those chronic GvHD patients who have anti-host reactive antibodies.
Collapse
Affiliation(s)
- Divya A Verghese
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Chun
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Katelyn Paz
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miguel Fribourg
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Ryan Flynn
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Hu
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jing Du
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Precision Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Orr AA, Shaykhalishahi H, Mirecka EA, Jonnalagadda SVR, Hoyer W, Tamamis P. Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins. Comput Chem Eng 2018; 116:322-332. [PMID: 30405276 PMCID: PMC6217933 DOI: 10.1016/j.compchemeng.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-wrapins are engineered binding proteins stabilizing the β-hairpin conformations of amyloidogenic proteins islet amyloid polypeptide (IAPP), amyloid-β, and α-synuclein, thus inhibiting their amyloid propensity. Here, we use computational and experimental methods to investigate the molecular recognition of IAPP by β-wrapins. We show that the multi-targeted, IAPP, amyloid-β, and α-synuclein, binding properties of β-wrapins originate mainly from optimized interactions between β-wrapin residues and sets of residues in the three amyloidogenic proteins with similar physicochemical properties. Our results suggest that IAPP is a comparatively promiscuous β-wrapin target, probably due to the low number of charged residues in the IAPP β-hairpin motif. The sub-micromolar affinity of β-wrapin HI18, specifically selected against IAPP, is achieved in part by salt-bridge formation between HI18 residue Glu10 and the IAPP N-terminal residue Lys1, both located in the flexible N-termini of the interacting proteins. Our findings provide insights towards developing novel protein-based single- or multi-targeted therapeutics.
Collapse
Affiliation(s)
- Asuka A. Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Hamed Shaykhalishahi
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
| | - Ewa A. Mirecka
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
| | - Sai Vamshi R. Jonnalagadda
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
- Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, Jülich 52425, Germany
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
8
|
Chen X, Lai P, Wang Y, He C, Wu S, Huang X, Geng S, Luo C, Ling W, Zeng L, Li P, Jiang Z, Weng J, Du X. Emerging role of C5a/C5aR IL-17A axis in cGVHD. Am J Transl Res 2018; 10:2148-2157. [PMID: 30093951 PMCID: PMC6079133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) manifests with features characteristic of autoimmune disease with organs attacked by pathogenic Th17 cells. However, the mechanism of Th17 cells generation in the setting of cGVHD is still unclear. Here we defined C5a/C5aR-IL-17Aaxis as a novel signaling that required in the pathologies of cGVHD. We firstly found a positive link between complement activation and the Th17 cells in patients with cGVHD. C5a, a critical component of complements, promoted the generation of Th17 cells in vitro and inhibition of the receptor for C5a (C5aR) reduced the Th17-bias response. Of note, C5aR blockade by PMX53 could suppress the generation of IL-17A-expressing Th17 cells and retard the onset and progression of cGVHD in vivo. Overall, our results provide new mechanistic insights that activation of C5a-C5aR signaling was required for IL-17A-induced immune responses in cGVHD and define novel molecular targets for developing effective therapeutics for cGVHD.
Collapse
Affiliation(s)
- Xiaomei Chen
- The Second School of Clinical Medical, Southern Medical UniversityGuangzhou 510515, P. R. China
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Yulian Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou 510060, P. R. China
| | - Suijing Wu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Xin Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Suxia Geng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Wei Ling
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Lingji Zeng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou 510530, P. R. China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou 510530, P. R. China
| | - Jianyu Weng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| | - Xin Du
- The Second School of Clinical Medical, Southern Medical UniversityGuangzhou 510515, P. R. China
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
9
|
Orr AA, Gonzalez-Rivera JC, Wilson M, Bhikha PR, Wang D, Contreras LM, Tamamis P. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins. Methods 2018; 143:34-47. [DOI: 10.1016/j.ymeth.2018.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
|
10
|
Mohan R, Wilson M, Gorham RD, Harrison RES, Morikis VA, Kieslich CA, Orr AA, Coley AV, Tamamis P, Morikis D. Virtual Screening of Chemical Compounds for Discovery of Complement C3 Ligands. ACS OMEGA 2018; 3:6427-6438. [PMID: 30221234 PMCID: PMC6130793 DOI: 10.1021/acsomega.8b00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The complement system is our first line of defense against foreign pathogens, but when it is not properly regulated, complement is implicated in the pathology of several autoimmune and inflammatory disorders. Compstatin is a peptidic complement inhibitor that acts by blocking the cleavage of complement protein C3 to the proinflammatory fragment C3a and opsonin fragment C3b. In this study, we aim to identify druglike small-molecule complement inhibitors with physicochemical, geometric, and binding properties similar to those of compstatin. We employed two approaches using various high-throughput virtual screening methods, which incorporate molecular dynamics (MD) simulations, pharmacophore model design, energy calculations, and molecular docking and scoring. We have generated a library of 274 chemical compounds with computationally predicted binding affinities for the compstatin binding site of C3. We have tested subsets of these chemical compounds experimentally for complement inhibitory activity, using hemolytic assays, and for binding affinity, using microscale thermophoresis. As a result, although none of the compounds showed inhibitory activity, compound 29 was identified to exhibit weak competitive binding against a potent compstatin analogue, therefore validating our computational approaches. Additional docking and MD simulation studies suggest that compound 29 interacts with C3 residues, which have been shown to be important in binding of compstatin to the C3c fragment of C3. Compound 29 is amenable to physicochemical optimization to acquire inhibitory properties. Additionally, it is possible that some of the untested compounds will demonstrate binding and inhibition in future experimental studies.
Collapse
Affiliation(s)
- Rohith
R. Mohan
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Mark Wilson
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United
States
| | - Ronald D. Gorham
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Reed E. S. Harrison
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Vasilios A. Morikis
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Chris A. Kieslich
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United
States
| | - Alexis V. Coley
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United
States
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, United
States
| | - Dimitrios Morikis
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
11
|
Abstract
Docking algorithms have been widely used to elucidate ligand:receptor interactions that are important in biological function. Here, we introduce an in-house developed docking-refinement protocol that combines the following innovative features. (1) The use of multiple short molecular dynamics (MD) docking simulations, with residues within the binding pocket of the receptor unconstrained, so that the binding modes of the ligand in the binding pocket may be exhaustively examined. (2) The initial positioning of the ligand within the binding pocket based on complementary shape, and the use of both harmonic and quartic spherical potentials to constrain the ligand in the binding pocket during multiple short docking simulations. (3) The selection of the most probable binding modes generated by the short docking simulations using interaction energy calculations, as well as the subsequent application of all-atom MD simulations and physical-chemistry based free energy calculations to elucidate the most favorable binding mode of the ligand in complex with the receptor. In this chapter, we provide step-by-step instructions on how to computationally investigate the binding of small-molecule ligands to protein receptors by examining as control and test cases, respectively, the binding of L-serine and R-3,4-dihydroxymandelic acid (R-DHMA) to the Escherichia coli chemoreceptor Tsr. Similar computational strategies can be used for the molecular modeling of a series of ligand:protein receptor interactions.
Collapse
|
12
|
Rana S, Sahoo AR, Majhi BK. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling. MOLECULAR BIOSYSTEMS 2017; 12:1586-99. [PMID: 26978009 DOI: 10.1039/c6mb00031b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only provide valuable insights for understanding the C5aR pharmacology, but also emerge as a promising platform for the design and discovery of future potential drug candidates targeting the (h)C5a-C5aR signaling axes.
Collapse
Affiliation(s)
- Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751007, India.
| | - Amita Rani Sahoo
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751007, India.
| | - Bharat Kumar Majhi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Odisha 751007, India.
| |
Collapse
|
13
|
Attenuation of cGVHD by C5a/C5aR blockade is associated with increased frequency of Treg. Sci Rep 2017; 7:3603. [PMID: 28620195 PMCID: PMC5472632 DOI: 10.1038/s41598-017-03700-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/18/2017] [Indexed: 12/29/2022] Open
Abstract
C5aR signaling plays an important role in the regulation of T cell activation and alloimmune responses in chronic graft-versus-host disease (cGVHD). However, direct evidence of this modulation and the efficacy of C5aR blockade in the treatment of cGVHD have not been demonstrated. We observed higher expression of C5aR on both monocytes and T cells of patients with cGVHD compared with healthy controls and non-GVHD patients after allogeneic hematopoietic stem cell transplantation. Our data also demonstrated a significant negative correlation between C5aR expression and regulatory T cells (Treg) frequency in cGVHD patients, indicating a potential role of C5aR in the generation and regulation of Treg. In addition, an in vitro experiment revealed C5aR deficiency promoted the development of Treg whereas C5a activation abolished the differentiation of Treg. Importantly, we found C5aR blockade by PMX53 attenuated the pathology of cGVHD and improved the survival of cGVHD mice. PMX53 had a direct regulatory effect on Treg commitment and increased TGF-β1 expression. Thus, C5aR signaling may induce and intensify cGVHD by down-regulating Treg induction. The modulation of C5aR activation by PMX53 may provide a potential therapy for cGVHD.
Collapse
|
14
|
Orr AA, Wördehoff MM, Hoyer W, Tamamis P. Uncovering the Binding and Specificity of β-Wrapins for Amyloid-β and α-Synuclein. J Phys Chem B 2016; 120:12781-12794. [DOI: 10.1021/acs.jpcb.6b08485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Asuka A. Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Michael M. Wördehoff
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Institute
of Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
15
|
West EE, Spolski R, Kazemian M, Yu ZX, Kemper C, Leonard WJ. A TSLP-complement axis mediates neutrophil killing of methicillin-resistant Staphylococcus aureus. Sci Immunol 2016; 1:eaaf8471. [PMID: 28783679 PMCID: PMC8530006 DOI: 10.1126/sciimmunol.aaf8471] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/03/2016] [Indexed: 09/29/2023]
Abstract
Community-acquired Staphylococcus aureus infections often present as serious skin infections in otherwise healthy individuals and have become a worldwide epidemic problem fueled by the emergence of strains with antibiotic resistance, such as methicillin-resistant S. aureus (MRSA). The cytokine thymic stromal lymphopoietin (TSLP) is highly expressed in the skin and in other barrier surfaces and plays a deleterious role by promoting T helper cell type 2 (TH2) responses during allergic diseases; however, its role in host defense against bacterial infections has not been well elucidated. We describe a previously unrecognized non-TH2 role for TSLP in enhancing neutrophil killing of MRSA during an in vivo skin infection. Specifically, we demonstrate that TSLP acts directly on both mouse and human neutrophils to augment control of MRSA. Additionally, we show that TSLP also enhances killing of Streptococcus pyogenes, another clinically important cause of human skin infections. Unexpectedly, TSLP mechanistically mediates its antibacterial effect by directly engaging the complement C5 system to modulate production of reactive oxygen species by neutrophils. Thus, TSLP increases MRSA killing in a neutrophil- and complement-dependent manner, revealing a key connection between TSLP and the innate complement system, with potentially important therapeutic implications for control of MRSA infection.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Majid Kazemian
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Zu Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Claudia Kemper
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
- Division of Transplant Immunology and Mucosal Biology, King's College London, Great Maze Pond, London SE1 9RT, U.K
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
16
|
Cheng Y, Jin UH, Davidson LA, Chapkin RS, Jayaraman A, Tamamis P, Orr A, Allred C, Denison MS, Soshilov A, Weaver E, Safe S. Editor's Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling. Toxicol Sci 2016; 155:458-473. [PMID: 27837168 DOI: 10.1093/toxsci/kfw230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
1,4-Dihydroxy-2-naphthoic acid (1,4-DHNA) is a bacterial-derived metabolite that binds the aryl hydrocarbon receptor (AhR) and exhibits anti-inflammatory activity in the gut. The structure-dependent AhR activity of hydroxyl/carboxy-substituted naphthoic acids (NAs) was determined in young adult mouse colonic (YAMC) cells and human Caco2 colon cancer cells using CYP1A1/CYP1B1 mRNAs as Ah-responsive genes. Compounds used in this study include 1,4-, 3,5-, and 3,7-DHNA, 1,4-dimethoxy-2-naphthoic acid (1,4-DMNA), 1- and 4-hydroxy-2-naphthoic acid (1-HNA, 4-HNA), 1- and 2-naphthoic acid (1-NA, 2-NA), and 1- and 2-naphthol (1-NOH, 2-NOH). 1,4-DHNA was the most potent compound among hydroxyl/carboxy naphthalene derivatives, and the fold induction response for CYP1A1 and CYP1B1 was similar to that observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in YAMC and Caco2 cells. 1- and 4-HNA were less potent than 1,4-DHNA but induced maximal (TCDD-like) response for CYP1B1 (both cell lines) and CYP1A1 (Caco2 cells). With the exception of 1- and 2-NA, all compounds significantly induced Cyp1b1 in YAMC cells and these responses were not observed in AhR-deficient YAMC cells generated using CRISPR/Cas9 technology. In addition, we also observed that 1- and 2-NOH (and 1,4-DHNA) were weak AhR agonists, and 1- and 2-NOH also exhibited partial AhR antagonist activity. Structure-activity relationship studies for CYP1A1 but not CYP1B1 were similar in both cell lines, and CYP1A1 induction required one or both 1,4-dihydroxy substituents and activity was significantly enhanced by the 2-carboxyl group. We also used computational analysis to show that 1,4-DHNA and TCDD share similar interactions within the AhR binding pocket and differ primarily due to the negatively charged group of 1,4-DHNA.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Veterinary Physiology and Pharmacology
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology
| | | | | | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843
| | - Asuka Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843
| | | | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Anatoly Soshilov
- Department of Environmental Toxicology, University of California, Davis, California 95616
| | - Evelyn Weaver
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology
| |
Collapse
|
17
|
C5a and pain development: An old molecule, a new target. Pharmacol Res 2016; 112:58-67. [DOI: 10.1016/j.phrs.2016.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
|
18
|
Kieslich CA, Tamamis P, Guzman YA, Onel M, Floudas CA. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism. PLoS One 2016; 11:e0148974. [PMID: 26859389 PMCID: PMC4747591 DOI: 10.1371/journal.pone.0148974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 01/21/2023] Open
Abstract
HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/.
Collapse
Affiliation(s)
- Chris A Kieslich
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America.,Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America.,Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Yannis A Guzman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America.,Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States of America
| | - Melis Onel
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America.,Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| | - Christodoulos A Floudas
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States of America.,Texas A&M Energy Institute, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
19
|
Abrogation of immune complex glomerulonephritis by native carboxypeptidase and pharmacological antagonism of the C5a receptor. Cell Mol Immunol 2015; 13:651-7. [PMID: 26166765 PMCID: PMC5037280 DOI: 10.1038/cmi.2015.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Activation of complement generates C5a which leads to signaling through C5aR1. This is tightly controlled, including by the plasma proteins factor H (FH) and carboxypeptidase N. Here we studied a chronic serum sickness (CSS) model of glomerulonephritis (GN) in which there is an active humoral immune response, formation of glomerular immune complexes (ICs), and resulting glomerular inflammation. The antibody response, glomerular IC deposition, the degree of GN, and consequent renal functional insufficiency in CSS were all worse in FH−/− mice compared to wild-type FH+/+ animals. This was ameliorated in the former by giving a C5aR1 antagonist for the final 3 weeks of the 5-week protocol. In contrast, blocking CP-mediated inactivation of C5a increased these disease measures. Thus, complement regulation by both plasma FH and CP to limit the quantity of active C5a is important in conditions where the humoral immune response is directed to a continuously present foreign antigen. Signaling through C5aR1 enhances the humoral immune response as well as the inflammatory response to ICs that have formed in glomeruli. Both effects are relevant even after disease has begun. Thus, pharmacological targeting of C5a in IC-mediated GN has potential clinical relevance.
Collapse
|
20
|
van Heemst J, Jansen DTSL, Polydorides S, Moustakas AK, Bax M, Feitsma AL, Bontrop-Elferink DG, Baarse M, van der Woude D, Wolbink GJ, Rispens T, Koning F, de Vries RRP, Papadopoulos GK, Archontis G, Huizinga TW, Toes RE. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 2015; 6:6681. [PMID: 25942574 DOI: 10.1038/ncomms7681] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
The HLA locus is the strongest risk factor for anti-citrullinated protein antibody (ACPA)(+) rheumatoid arthritis (RA). Despite considerable efforts in the last 35 years, this association is poorly understood. Here we identify (citrullinated) vinculin, present in the joints of ACPA(+) RA patients, as an autoantigen targeted by ACPA and CD4(+) T cells. These T cells recognize an epitope with the core sequence DERAA, which is also found in many microbes and in protective HLA-DRB1*13 molecules, presented by predisposing HLA-DQ molecules. Moreover, these T cells crossreact with vinculin-derived and microbial-derived DERAA epitopes. Intriguingly, DERAA-directed T cells are not detected in HLA-DRB1*13(+) donors, indicating that the DERAA epitope from HLA-DRB1*13 mediates (thymic) tolerance in these donors and explaining the protective effects associated with HLA-DRB1*13. Together our data indicate the involvement of pathogen-induced DERAA-directed T cells in the HLA-RA association and provide a molecular basis for the contribution of protective/predisposing HLA alleles.
Collapse
Affiliation(s)
- Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diahann T S L Jansen
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Antonis K Moustakas
- Faculty of Agricultural Technology, Technological Educational Institute of Ioanian Islands, Argostoli, Cephallonia 28100, Greece
| | - Marieke Bax
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anouk L Feitsma
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diënne G Bontrop-Elferink
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Martine Baarse
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Gert-Jan Wolbink
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René R P de Vries
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - George K Papadopoulos
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Epirus Institute of Technology, Arta 47100, Greece
| | | | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René E Toes
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|