1
|
Dass M, Ghai M. Development of a multiplex PCR assay and quantification of microbial markers by ddPCR for identification of saliva and vaginal fluid. Forensic Sci Int 2024; 362:112147. [PMID: 39067179 DOI: 10.1016/j.forsciint.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
2
|
Gronsfeld V, Brutinel F, Egyptien S, Porsmoguer C, Hamaide A, Taminiau B, Daube G, Van de Weerdt ML, Deleuze S, Noel S. Evaluation of the vaginal and urinary microbiota of healthy cycling bitches. BMC Vet Res 2024; 20:315. [PMID: 39010076 PMCID: PMC11247753 DOI: 10.1186/s12917-024-04104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND While the urogenital microbiota has recently been characterized in healthy male and female dogs, the influence of sex hormones on the urogenital microbiome of bitches is still unknown. A deeper understanding of the cyclic changes in urinary and vaginal microbiota would allow us to compare the bacterial populations in healthy dogs and assess the impact of the microbiome on various urogenital diseases. Therefore, the aim of this study was to characterize and compare the urogenital microbiota during different phases of the estrous cycle in healthy female dogs. DNA extraction, 16 S rDNA library preparation, sequencing and informatic analysis were performed to determine the vaginal and urinary microbiota in 10 healthy beagle dogs at each phase of the estrous cycle. RESULTS There were no significant differences in alpha and beta diversity of the urinary microbiota across the different cycle phases. Similarly, alpha diversity, richness and evenness of vaginal bacterial populations were not significantly different across the cycle phases. However, there were significant differences in vaginal beta diversity between the different cycle phases, except for between anestrus and diestrus. CONCLUSION This study strongly suggests that estrogen influences the abundance of the vaginal microbiota in healthy female dogs, but does not appear to affect the urinary microbiome. Furthermore, our data facilitate a deeper understanding of the native urinary and vaginal microbiota in healthy female dogs.
Collapse
Affiliation(s)
- Virginie Gronsfeld
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | - Flore Brutinel
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sophie Egyptien
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Charles Porsmoguer
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Hamaide
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Stefan Deleuze
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Stéphanie Noel
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Del Prete R, Nesta D, Triggiano F, Lorusso M, Garzone S, Vitulano L, Denicolò S, Indraccolo F, Mastria M, Ronga L, Inchingolo F, Aityan SK, Nguyen KCD, Tran TC, Gargiulo Isacco C, Santacroce L. Human Papillomavirus Carcinogenicity and the Need of New Perspectives: Thoughts from a Retrospective Analysis on Human Papillomavirus Outcomes Conducted at the Hospital University of Bari, Apulia, Italy, between 2011 and 2022. Diagnostics (Basel) 2024; 14:968. [PMID: 38732382 PMCID: PMC11083870 DOI: 10.3390/diagnostics14090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.
Collapse
Affiliation(s)
- Raffaele Del Prete
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Daniela Nesta
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Triggiano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Mara Lorusso
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Stefania Garzone
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Lorenzo Vitulano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sofia Denicolò
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesca Indraccolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Michele Mastria
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Ronga
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sergey K. Aityan
- College of Engineering, Northeastern University, 5000 MacArthur Blvd., Oakland, CA 94613, USA;
| | - Kieu C. D. Nguyen
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Toai Cong Tran
- Department of Basic Medical Sciences and Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700100, Vietnam;
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| |
Collapse
|
4
|
Zhang J, Yu D, Wang T, Gao N, Shi L, Wang Y, Huo Y, Ji Z, Li J, Zhang X, Zhang L, Yan J. Body fluids should be identified before estimating the time since deposition (TsD) in microbiome-based stain analyses for forensics. Microbiol Spectr 2024; 12:e0248023. [PMID: 38470485 PMCID: PMC10986545 DOI: 10.1128/spectrum.02480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Identification and the time since deposition (TsD) estimation of body fluid stains from a crime scene could provide valuable information for solving the cases and are always difficult for forensics. Microbial characteristics were considered as a promising biomarker to address the issues. However, changes in the microbiota may damage the specific characteristics of body fluids. Correspondingly, incorrect body fluid identification may result in inaccurate TsD estimation. The mutual influence is not well understood and limited the codetection. In the current study, saliva, semen, vaginal secretion, and menstrual blood samples were exposed to indoor conditions and collected at eight time points (from fresh to 30 days). High-throughput sequencing based on the 16S rRNA gene was performed to characterize the microbial communities. The results showed that a longer TsD could decrease the discrimination of different body fluid stains. However, the accuracies of identification still reached a quite high value even without knowing the TsD. Correspondingly, the mean absolute error (MAE) of TsD estimation significantly increased without distinguishing the types of body fluids. The predictive TsD of menstrual blood reached a quite low MAE (1.54 ± 0.39 d). In comparison, those of saliva (6.57 ± 1.17 d), semen (6.48 ± 1.33 d), and vaginal secretion (5.35 ± 1.11 d) needed to be further improved. The great effect of individual differences on these stains limited the TsD estimation accuracy. Overall, microbial characteristics allow for codetection of body fluid identification and TsD estimation, and body fluids should be identified before estimating TsD in microbiome-based stain analyses.IMPORTANCEEmerged evidences suggest microbial characteristics could be considered a promising tool for identification and time since deposition (TsD) estimation of body fluid stains. However, the two issues should be studied together due to a potential mutual influence. The current study provides the first evidence to understand the mutual influence and determines an optimal process for codetection of identification and TsD estimation for unknown stains for forensics. In addition, we involved aged stains into our study for identification of body fluid stains, rather than only using fresh stains like previous studies. This increased the predictive accuracy. We have preliminary verified that individual differences in microbiotas limited the predictive accuracy of TsD estimation for saliva, semen, and vaginal secretion. Microbial characteristics could provide an accurate TsD estimation for menstrual blood. Our study benefits the comprehensive understanding of microbiome-based stain analyses as an essential addition to previous studies.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Linyu Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Yaya Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Zhimin Ji
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Junli Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, China
| |
Collapse
|
5
|
Liu Z, Liu J, Geng J, Wu E, Zhu J, Cong B, Wu R, Sun H. Metatranscriptomic characterization of six types of forensic samples and its potential application to body fluid/tissue identification: A pilot study. Forensic Sci Int Genet 2024; 68:102978. [PMID: 37995518 DOI: 10.1016/j.fsigen.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Microorganisms are potential markers for identifying body fluids (venous and menstrual blood, semen, saliva, and vaginal secretion) and skin tissue in forensic genetics. Existing published studies have mainly focused on investigating microbial DNA by 16 S rRNA gene sequencing or metagenome shotgun sequencing. We rarely find microbial RNA level investigations on common forensic body fluid/tissue. Therefore, the use of metatranscriptomics to characterize common forensic body fluids/tissue has not been explored in detail, and the potential application of metatranscriptomics in forensic science remains unknown. Here, we performed 30 metatranscriptome analyses on six types of common forensic sample from healthy volunteers by massively parallel sequencing. After quality control and host RNA filtering, a total of 345,300 unigenes were assembled from clean reads. Four kingdoms, 137 phyla, 267 classes, 488 orders, 985 families, 2052 genera, and 4690 species were annotated across all samples. Alpha- and beta-diversity and differential analysis were also performed. As a result, the saliva and skin groups demonstrated high alpha diversity (Simpson index), while the venous blood group exhibited the lowest diversity despite a high Chao1 index. Specifically, we discussed potential microorganism contamination and the "core microbiome," which may be of special interest to forensic researchers. In addition, we implemented and evaluated artificial neural network (ANN), random forest (RF), and support vector machine (SVM) models for forensic body fluid/tissue identification (BFID) using genus- and species-level metatranscriptome profiles. The ANN and RF prediction models discriminated six forensic body fluids/tissue, demonstrating that the microbial RNA-based method could be applied to BFID. Unlike metagenomic research, metatranscriptomic analysis can provide information about active microbial communities; thus, it may have greater potential to become a powerful tool in forensic science for microbial-based individual identification. This study represents the first attempt to explore the application potential of metatranscriptome profiles in forensic science. Our findings help deepen our understanding of the microorganism community structure at the RNA level and are beneficial for other forensic applications of metatranscriptomics.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaojiao Geng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianzhang Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, China.
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Fowler SW, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. NPJ Biofilms Microbiomes 2023; 9:87. [PMID: 37985659 PMCID: PMC10661851 DOI: 10.1038/s41522-023-00454-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Vaginal microbial composition is associated with differential risk of urogenital infection. Although Lactobacillus spp. are thought to confer protection against infection, the lack of in vivo models resembling the human vaginal microbiota remains a prominent barrier to mechanistic discovery. Using 16S rRNA amplicon sequencing of C57BL/6J female mice, we found that vaginal microbial composition varies within and between colonies across three vivaria. Noting vaginal microbial plasticity in conventional mice, we assessed the vaginal microbiome of humanized microbiota mice (HMbmice). Like the community structure in conventional mice, HMbmice vaginal microbiota clustered into community state types but, uniquely, HMbmice communities were frequently dominated by Lactobacillus or Enterobacteriaceae. Compared to conventional mice, HMbmice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia. Although Escherichia and Lactobacillus both correlated with the absence of uterine GBS, vaginal pre-inoculation with exogenous HMbmouse-derived E. coli, but not Ligilactobacillus murinus, reduced vaginal GBS burden. Overall, HMbmice serve as a useful model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens.
Collapse
Affiliation(s)
- Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Korinna Ruiz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Pouresmaeili F, Alidoost S, Azimirad M, Azizmohammad Looha M, Emami Meibodi A, Abedin-Do A, Shamshiri H, Mohammadi M, Azari I, Fazeli Z, Yadegar A, Hosseinpour TS. Characterization of vaginal Lactobacillus species as a predictor of fertility among Iranian women with unexplained recurrent miscarriage and fertile women without miscarriage history using machine learning modeling. Mol Biol Rep 2023; 50:8785-8797. [PMID: 37644372 DOI: 10.1007/s11033-023-08745-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Lactobacillus spp. are the predominant bacteria of the vaginal tract, the alteration of which has been previously linked to miscarriage. Here, we investigated differences between selected vaginal Lactobacillus species of women with a history of recurrent miscarriages and fertile women without a history of miscarriage in Iran. METHODS AND RESULTS Vaginal swabs were taken from 29 fertile and 24 infertile women and quantitative real-time PCR (qPCR) assay was used to determine a selection of vaginal Lactobacillus species in both groups. The logistic regression (LR) model, Naive Bayes (NB) model, support vector machine model (SVM), and neural network model (NN) were developed to predict disease outcome by selected variables. LR analysis was used to construct a nomogram indicating predictions of the risk of miscarriage. The most abundant species among the patients were L. rhamnosus, L. ruminis, and L. acidophilus, while L. gasseri, L. vaginalis, L. fermentum, and L. iners were more abundant in healthy subjects. The distribution of L. ruminis, L. iners, and L. rhamnosus was higher in patients, while L. acidophilus, L. gasseri, and L. fermentum were highly distributed among healthy subjects. Higher AUC in predicting the disease outcome was observed for L. gasseri, L. rhamnosus, L. fermentum, and L. plantarum. CONCLUSION Our findings provide experimental evidence of vaginal Lactobacillus imbalance in infertile women and a suitable predictor for miscarriage based on the AUC algorithms. Further studies with larger sample size and using high-throughput technologies are needed to boost our understanding of the role of lactobacilli in miscarriage.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Alidoost
- Department of Molecular Genetics, National Institute of Genetics Engineering and Biotechnology (VIGEB), Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Abedin-Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hourieh Shamshiri
- Department of Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahan Mohammadi
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Azari
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
8
|
Yu D, Zhang J, Gao N, Huo Y, Li W, Wang T, Zhang X, Simayijiang H, Yan J. Rapid and visual detection of specific bacteria for saliva and vaginal fluid identification with the lateral flow dipstick strategy. Int J Legal Med 2023; 137:1853-1863. [PMID: 37358650 DOI: 10.1007/s00414-023-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Identification of body fluids is critical for crime scene reconstruction, and a source of investigation source of investigative leads. In recent years, microbial DNA analysis using sequencing and quantitative real-time polymerase chain reaction have been used to identify body fluids. However, these techniques are time-consuming, expensive, and require complex workflows. In this study, a new method for simultaneous detection of Streptococcus salivarius and Lactobacillus crispatus using polymerase chain reaction (PCR) in combination with a lateral flow dipstick (LFD) was developed to identify saliva and vaginal fluid in forensic samples. LFD results can be observed with the naked eye within 3 min with a sensitivity of 0.001 ng/µL DNA. The PCR-LFD assay was successfully used to detect S. salivarius and L. crispatus in saliva and vaginal fluid respectively, and showed negative results in blood, semen, nasal fluid, and skin. Moreover, saliva and vaginal fluid were detectable even at an extremely high mixing ratio of sample DNA (1:999). Saliva and vaginal fluid were identified in various mock forensic samples. These results indicate that saliva and vaginal fluid can be effectively detected by identifying S. salivarius and L. crispatus, respectively. Furthermore, we have shown that DNA samples used to identify saliva and vaginal fluid can also provide a complete short tandem repeat (STR) profile when used as source material for forensic STR profiling. In summary, our results suggest that PCR-LFD is a promising assay for rapid, simple, reliable, and efficient identification of body fluids.
Collapse
Affiliation(s)
- Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Niu Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Yumei Huo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Wanting Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, People's Republic of China.
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, 030600, Shanxi, People's Republic of China.
| |
Collapse
|
9
|
Bhattacharya A, Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comparative pangenomic analysis of predominant human vaginal lactobacilli strains towards population-specific adaptation: understanding the role in sustaining a balanced and healthy vaginal microenvironment. BMC Genomics 2023; 24:565. [PMID: 37740204 PMCID: PMC10517566 DOI: 10.1186/s12864-023-09665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
The vaginal microenvironment of healthy women has a predominance of Lactobacillus crispatus, L. iners, L. gasseri, and L. jensenii. The genomic repertoire of the strains of each of the species associated with the key attributes thereby regulating a healthy vaginal environment needs a substantial understanding.We studied all available human strains of the four lactobacilli across different countries, isolated from vaginal and urinal sources through phylogenetic and pangenomic approaches. The findings showed that L. iners has the highest retention of core genes, and L. crispatus has more gene gain in the evolutionary stratum. Interestingly, L. gasseri and L. jensenii demonstrated major population-specific gene-cluster gain/loss associated with bacteriocin synthesis, iron chelating, adherence, zinc and ATP binding proteins, and hydrolase activity. Gene ontology enrichment analysis revealed that L. crispatus strains showed greater enrichment of functions related to plasma membrane integrity, biosurfactant, hydrogen peroxide synthesis, and iron sequestration as an ancestral derived core function, while bacteriocin and organic acid biosynthesis are strain-specific accessory enriched functions. L. jensenii showed greater enrichment of functions related to adherence, aggregation, and exopolysaccharide synthesis. Notably, the key functionalities are heterogeneously enriched in some specific strains of L. iners and L. gasseri.This study shed light on the genomic features and their variability that provides advantageous attributes to predominant vaginal Lactobacillus species maintaining vaginal homeostasis. These findings evoke the need to consider region-specific candidate strains of Lactobacillus to formulate prophylactic measures against vaginal dysbiosis for women's health.
Collapse
Affiliation(s)
- Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Sushmita Das
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur Rohman Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
10
|
Ma H, Zhao W, Song T, Baijiu Z, Zhang Z. Comparative Analysis of the Pre-Parturition and Post-Parturition Genital Tract Microbiota in Plateau Bangor Sewa Sheep. Vet Sci 2023; 10:523. [PMID: 37624310 PMCID: PMC10459245 DOI: 10.3390/vetsci10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
(1) Background: Bangor Sewa sheep are an economically significant livestock species on the plateau. The roles of microbiota in reproduction are complex and critical for animal health. But little is known currently about the microbiome of plateau Bangor Sewa sheep. The purpose of this study was to discover the changes in the genital tract microbiota of pre- and post-partum Bangor Sewa sheep. (2) Methods: Samples from the birth canal were obtained for 16S rRNA sequencing, three days before and after delivery, respectively. (3) Results: The results showed that there was a noticeable difference in three phyla and 74 genera between the pre- and post-parturition groups in the microbiota of Bangor Sewa sheep. The changes included a decrease in the abundance of genera related to health (unclassified_Cellulomonadaceae, Cellulomonas, Fibrobacti, Flavobacterium, Eubacterium_ventriosum_group, Acetitomaculum, Aeromicrobium, Dietzia, Romboutsia, Ruminococcus, etc.) and an increased abundance of negatively related genera (Nocardioides, unclassified_Clostridia, Sphingobacteriaceae, unclassified_Ruminococcaceae, Prevotellaceae_UCG_004, Micromonospora, Streptococcus, Facklamia, Bosea, etc.) spp. (4) Conclusions: Microbes can serve as indicators of the physical state of Bangor Sewa sheep. These findings laid the foundation for deciphering the effects of microbial changes during birth on the reproductive health of plateau Bangor Sewa sheep.
Collapse
Affiliation(s)
- Hongcai Ma
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Tianzeng Song
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa 850009, China; (H.M.); (T.S.)
| | - Zhaxi Baijiu
- Cultural Service Center of Maqian Township, Nagqu 852599, China;
| | - Zhenzhen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| |
Collapse
|
11
|
Dass M, Singh Y, Ghai M. A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Curr Microbiol 2023; 80:299. [PMID: 37491404 PMCID: PMC10368579 DOI: 10.1007/s00284-023-03413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Yashna Singh
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
12
|
Umbach AK, Fernando C, Hill JE, Neufeld JD. Evaluating cpn60 for high-resolution profiling of the mammalian skin microbiome and detection of phylosymbiosis. ISME COMMUNICATIONS 2023; 3:69. [PMID: 37419988 PMCID: PMC10328941 DOI: 10.1038/s43705-023-00276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Despite being the most widely used phylogenetic marker for amplicon-based profiling of microbial communities, limited phylogenetic resolution of the 16S rRNA gene limits its use for studies of host-microbe co-evolution. In contrast, the cpn60 gene is a universal phylogenetic marker with greater sequence variation capable of species-level resolution. This research compared mammalian skin microbial profiles generated from cpn60 and 16S rRNA gene sequencing approaches, testing for patterns of phylosymbiosis that suggest co-evolutionary host-microbe associations. An ~560 bp fragment of the cpn60 gene was amplified with universal primers and subjected to high-throughput sequencing. Taxonomic classification of cpn60 sequences was completed using a naïve-Bayesian QIIME2 classifier created for this project, trained with an NCBI-supplemented curated cpn60 database (cpnDB_nr). The cpn60 dataset was then compared to published 16S rRNA gene amplicon data. Beta diversity comparisons of microbial community profiles generated with cpn60 and 16S rRNA gene amplicons were not significantly different, based on Procrustes analysis of Bray-Curtis and UniFrac distances. Despite similar relationships among skin microbial profiles, improved phylogenetic resolution provided by the cpn60 gene sequencing permitted observations of phylosymbiosis between microbial community profiles and their mammalian hosts that were not previously observed with 16S rRNA gene profiles. Subsequent investigation of Staphylococcaceae taxa using the cpn60 gene showed increased phylogenetic resolution compared the 16S rRNA gene profiles, revealing potential co-evolutionary host-microbe associations. Overall, our results demonstrate that 16S rRNA and cpn60 marker genes generate comparable microbial community composition patterns while cpn60 better facilitates analyses, such as phylosymbiosis, that require increased phylogenetic resolution.
Collapse
Affiliation(s)
- Alexander K Umbach
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
13
|
Wohlfahrt D, Tan-Torres AL, Green R, Brim K, Bradley N, Brand A, Abshier E, Nogales F, Babcock K, Brooks J, Seashols-Williams S, Singh B. A bacterial signature-based method for the identification of seven forensically relevant human body fluids. Forensic Sci Int Genet 2023; 65:102865. [PMID: 37004371 DOI: 10.1016/j.fsigen.2023.102865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Detection and identification of body fluids plays a crucial role in criminal investigation, as it provides information on the source of the DNA as well as corroborative evidence regarding the crime committed, scene, and/or association with persons of interest. Historically, forensic serological methods have been chemical, immunological, catalytic, spectroscopic, and/or microscopic in nature. However, most of these methods are presumptive, with few robust confirmatory exceptions. In recent years several new molecular methods (mRNA, miRNA, DNA methylation, etc.) have been proposed; although promising, these methods require high quality human DNA or RNA. Additional steps are required in RNA based methods. Additionally, RNA based methods cannot be used for old cases where only DNA extracts remain to sample from. In this study, a novel non-human DNA (microbiome) based method was developed for the identification of the majority of forensically relevant human biological samples. Eight hundred and twelve (n = 812) biological samples (semen, vaginal fluid, menstrual blood, saliva, feces, urine, and blood) were collected and preserved using methods commonly used in forensic laboratories for evidence collection. Variable region four (V4) of 16 S ribosomal DNA (16 S rDNA) was amplified using a dual-indexing strategy and then sequenced on the MiSeq FGx sequencing platform using the MiSeq Reagent Kit v2 (500 cycles) and following the manufacturer's protocol. Machine learning prediction models were used to assess the classification accuracy of the newly developed method. As there was no significant difference in bacterial communities between vaginal fluid, menstrual blood, and female urine, these were combined as female intimate samples. Except in urine, the bacterial structures associated with male and female body fluid samples were not significantly different from one another. The newly developed method accurately identified human body fluid samples with an overall accuracy of more than 88%. This newly developed bacterial signature-based method is fast (no additional steps are needed as the same DNA can be used for both body fluid identification and STR typing), efficient (consume less sample as a single test can identify all major body fluids), sensitive (needs only 5 pg of bacterial DNA), accurate, and can be easily added into a forensic high throughput sequencing (HTS) panel.
Collapse
|
14
|
Grobeisen-Duque O, Mora-Vargas CD, Aguilera-Arreola MG, Helguera-Repetto AC. Cycle Biodynamics of Women's Microbiome in the Urinary and Reproductive Systems. J Clin Med 2023; 12:4003. [PMID: 37373695 DOI: 10.3390/jcm12124003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The genitourinary microbiome plays a crucial role in the establishment and maintenance of urinary and reproductive health in women throughout their lives. Particularly during the reproductive stage, resident microorganisms contribute to implantation and protect against perinatal complications, including preterm birth, stillbirth, and low birth weight, while also serving as the first line of defense against pathogens that can cause infections, such as urinary tract infections and bacterial vaginosis. This review aimed to elucidate the relationship between a healthy microbiome environment and women's overall health. We examine the variability and dynamics of the microbiome during different developmental stages, ranging from the prepubertal to the postmenopausal stage. Furthermore, we explore the significance of a healthy microbiota in successful implantation and pregnancy development and investigate potential differences between women experiencing infertility. In addition, we analyze the local and systemic inflammatory responses associated with the establishment of a dysbiotic state and compare it to a condition where a healthy microbiome was established. Lastly, we present the most recent evidence regarding preventive measures, such as dietary interventions and the use of probiotics to promote and maintain a healthy microbiome, thereby ensuring comprehensive women's health. By highlighting the importance of the genitourinary microbiome in reproductive health, this review aimed to enhance this microbiome's visibility and significance in the field.
Collapse
Affiliation(s)
- Orly Grobeisen-Duque
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico, Ciudad de Mexico 52786, Mexico
| | - Carlos Daniel Mora-Vargas
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
- Escuela Nacional de Ciencias Biologicas del Instituto Politecnico Nacional, Ciudad de Mexico 11350, Mexico
| | | | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de Mexico 11000, Mexico
| |
Collapse
|
15
|
Rosário A, Sousa A, Varandas T, Marinho-Dias J, Medeiros R, Martins G, Monteiro P, Sousa H. Impact of cervicovaginal microbiome on the risk of cervical abnormalities development. J Med Virol 2023; 95:e28762. [PMID: 37212334 DOI: 10.1002/jmv.28762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
The vaginal microbiome has emerged as potentially influencing the natural history of Human Papillomavirus (HPV) infections and their clinical impact. We aimed to characterize the vaginal microbiome in samples from 807 high-risk HPVs (Hr-HPV) positive women with a mean age of 41.45 ± 10.79 years who participated in the Regional Cervical Cancer Screening Program from the Northern Region of Portugal. Microbiome analysis was performed with commercial kits for the detection of 21 microorganisms. The most frequent microorganisms were Ureaplasma parvum (52.5%), Gardnerella vaginalis (GV) (34.5%), Atopobium vaginae (AV) (32.6%), Lacto (30.7%), and Mycoplasma hominis (MH) (23.5%). The distribution according to age reveals that MH, Mega1, GV, BVab2, AV, and Mob were more prevalent in women older than 41 years of age (p < 0.050), while Lacto is significantly decreased in this group (23.5% vs. 39.4%, p < 0.001; RR = 0.47). The risk analysis showed that Hr-HPV-16/-18 and Hr-HPV-9val genotypes are associated with an increased risk of developing cervical abnormalities, while Lacto (p < 0.001; odd ratio [OR] = 0.33), GV (p = 0.0111; OR = 0.41), AV (p = 0.033; OR = 0.53) and Mob (p = 0.022; OR = 0.29) are associated with protection. Similar results were found for the risk of development atypical squamous cells cannot exclude HSIL/high-grade squamous intraepithelial lesion. Overall, the multivariate analysis confirmed that lactobacillus and bacteria associated with bacterial vaginosis (GV, AV, and Mob) are associated with protection against the development of cervical abnormalities. This study provides important data to be included in the future management of risk stratification for Hr-HPV-positive women.
Collapse
Affiliation(s)
- Andreia Rosário
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Ana Sousa
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Health Sciences, Escola Superior de Saúde do Instituto Politécnico de Bragança, Bragança, Portugal
| | - Tatiana Varandas
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Joana Marinho-Dias
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal
| | - Gabriela Martins
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Paula Monteiro
- Department of Pathology and Laboratory Medicine, Anatomic Pathology Service, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology & Viral Pathology Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Clinical Pathology Service, Department of Pathology and Laboratory Medicine, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Early Phase Clinical Trial Unit, Clinical Research Unit, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Instituto Superior de Saúde - ISAVE, Amares, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Porto, Portugal
- Serviço de Patologia Clínica, Centro Hospitalar Entre Douro e Vouga EPE, Santa Maria da Feira, Portugal
| |
Collapse
|
16
|
Mady EA, Doghish AS, El-Dakroury WA, Elkhawaga SY, Ismail A, El-Mahdy HA, Elsakka EGE, El-Husseiny HM. Impact of the mother's gut microbiota on infant microbiome and brain development. Neurosci Biobehav Rev 2023; 150:105195. [PMID: 37100161 DOI: 10.1016/j.neubiorev.2023.105195] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.
Collapse
Affiliation(s)
- Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya,13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
17
|
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep 2023; 25:67-75. [PMID: 37234911 PMCID: PMC10209668 DOI: 10.1007/s11908-023-00798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Purpose of review Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health. Recent findings L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species. Summary The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Kayla A. Carter
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of
Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Lee CY, Dillard LR, Papin JA, Arnold KB. New perspectives into the vaginal microbiome with systems biology. Trends Microbiol 2023; 31:356-368. [PMID: 36272885 DOI: 10.1016/j.tim.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 10/28/2022]
Abstract
The vaginal microbiome (VMB) is critical to female reproductive health; however, the mechanisms associated with optimal and non-optimal states remain poorly understood due to the complex community structure and dynamic nature. Quantitative systems biology techniques applied to the VMB have improved understanding of community composition and function using primarily statistical methods. In contrast, fewer mechanistic models that use a priori knowledge of VMB features to develop predictive models have been implemented despite their use for microbiomes at other sites, including the gastrointestinal tract. Here, we explore systems biology approaches that have been applied in the VMB, highlighting successful techniques and discussing new directions that hold promise for improving understanding of health and disease.
Collapse
Affiliation(s)
- Christina Y Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lillian R Dillard
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Alterations of Vaginal Microbiota and Chlamydia trachomatis as Crucial Co-Causative Factors in Cervical Cancer Genesis Procured by HPV. Microorganisms 2023; 11:microorganisms11030662. [PMID: 36985236 PMCID: PMC10053692 DOI: 10.3390/microorganisms11030662] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Chlamydia trachomatis and human papillomavirus (HPV) are the most common pathogens found in sexually transmitted infections (STIs), and both are known to increase the risk of cervical cancer (CC) and infertility. HPV is extremely common worldwide, and scientists use it to distinguish between low-risk and high-risk genotypes. In addition, HPV transmission can occur via simple contact in the genital area. From 50 to 80% of sexually active individuals become infected with both C. trachomatis and HPV viruses during their lifetime, and up to 50% become infected with an HPV oncogenic genotype. The natural history of this coinfection is strongly conditioned by the balance between the host microbiome and immune condition and the infecting agent. Though the infection often regresses, it tends to persist throughout adult life asymptomatically and silently. The partnership between HPV and C. trachomatis is basically due to their similarities: common transmission routes, reciprocal advantages, and the same risk factors. C. trachomatis is a Gram-negative bacteria, similar to HPV, and an intracellular bacterium, which shows a unique biphasic development that helps the latter continue its steady progression into the host throughout the entire life. Indeed, depending on the individual’s immune condition, the C. trachomatis infection tends to migrate toward the upper genital tract and spread to the uterus, and the fallopian tubes open up a pathway to HPV invasion. In addition, most HPV and C. trachomatis infections related to the female genital tract are facilitated by the decay of the first line of defense in the vaginal environment, which is constituted by a healthy vaginal microbiome that is characterized by a net equilibrium of all its components. Thus, the aim of this paper was to highlight the complexity and fragility of the vaginal microenvironment and accentuate the fundamental role of all elements and systems involved, including the Lactobacillus strains (Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus crispatus) and the immune–endocrine system, in preserving it from oncogenic mutation. Therefore, age, diet, and genetic predisposition together with an unspecific, persistent low-grade inflammatory state were found to be implicated in a high frequency and severity grade of disease, potentially resulting in pre-cancerous and cancerous cervical lesions.
Collapse
|
20
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527909. [PMID: 36798217 PMCID: PMC9934685 DOI: 10.1101/2023.02.09.527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.
Collapse
|
21
|
The Vaginal Microbiome in Health and Disease-What Role Do Common Intimate Hygiene Practices Play? Microorganisms 2023; 11:microorganisms11020298. [PMID: 36838262 PMCID: PMC9959050 DOI: 10.3390/microorganisms11020298] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The vaginal microbiome is a dynamic, sensitive microenvironment. The hallmark of a 'healthy' vaginal microbiome is currently believed to be one dominated by Lactobacillus spp., which acidifies the vaginal environment and help to protect against invading pathogens. However, a 'normal' microbiome is often difficult, if not impossible, to characterise given that it varies in response to numerous variables, including pregnancy, the menstrual cycle, contraceptive use, diet, ethnicity, and stress. A Lactobacillus-depleted microbiome has been linked to a variety of adverse vaginal health outcomes, including preterm birth (PTB), bacterial vaginosis (BV), and increased risk of sexually transmitted infections. The latter two of these have also been associated with feminine intimate hygiene practices, many of which are practised without any evidence of health benefits. The most extensively studied practice is vaginal douching, which is known to cause vaginal dysbiosis, predisposing women to BV, pelvic inflammatory disease, and PTB. However, little is known of the impact that intimate hygiene practices and associated products have on the vaginal microbiome. This review aims to outline the major factors influencing the vaginal microbiome and common vaginal infections, as well as to summarise current research surrounding the impact of hygiene products and practices on the vaginal microbiome.
Collapse
|
22
|
Chávez-Torres M, Gómez-Palacio-Schjetnan M, Reyes-Terán G, Briceño O, Ávila-Ríos S, Romero-Mora KA, Pinto-Cardoso S. The vaginal microbiota of women living with HIV on suppressive antiretroviral therapy and its relation to high-risk human papillomavirus infection. BMC Microbiol 2023; 23:21. [PMID: 36658503 PMCID: PMC9850673 DOI: 10.1186/s12866-023-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Few studies have investigated the vaginal microbiota (VM) in women living with HIV (WLWH) in the context of high-risk human papillomavirus (HR-HPV) infection, even though WLWH are at an increased risk of HPV-related malignancies, including cervical cancer. To explore the impact of HIV and HPV infection on the VM in WLWH, we determined the prevalence of HR-HPV infection and cervical cytologic abnormalities in a cohort of 44 WLWH and 39 seronegative-women (SNW), characterized the vaginal microbiota by 16S sequencing, assessed genital inflammation and systemic immune activation by multiplex bead assay and flow cytometry, respectively. Finally, we explored relationships between bacterial richness and diversity, the top 20 bacterial genera, genital inflammation and systemic immune activation. RESULTS We found that HR-HPV prevalence was similar between WLWH and SNW. High-grade squamous intraepithelial lesions (HSIL) were only detected in WLWH negative for HR-HPV infection. In regression analyses, no risk factors were identified. Women co-infected with HIV and HR-HPV had the highest level of systemic immune activation, and these levels were significantly different compared with SNW without HR-HPV infection. Lactobacillus iners was the dominant Lactobacillus species in WLWH and SNW alike. CONCLUSION We found no evidence of differences in vaginal microbial richness and diversity, microbial community structure, and genital inflammation by HIV, HPV, or HIV and HPV status.
Collapse
Affiliation(s)
- Monserrat Chávez-Torres
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Maria Gómez-Palacio-Schjetnan
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Gustavo Reyes-Terán
- grid.415745.60000 0004 1791 0836Comisión Coordinadora de Institutos Nacionales de Salud Y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, México
| | - Olivia Briceño
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Santiago Ávila-Ríos
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Karla Alejandra Romero-Mora
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| | - Sandra Pinto-Cardoso
- grid.419179.30000 0000 8515 3604Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Colonia Sección XVI, Tlalpan, 14080 Ciudad de México, México
| |
Collapse
|
23
|
Vemuri R, Herath MP. Beyond the Gut, Emerging Microbiome Areas of Research: A Focus on Early-Life Microbial Colonization. Microorganisms 2023; 11:microorganisms11020239. [PMID: 36838204 PMCID: PMC9962807 DOI: 10.3390/microorganisms11020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Undoubtedly, the human body harbors trillions of microbes of different kinds performing various physiological activities, such as priming the immune system, influencing host metabolism, and improving health by providing important metabolites such as short-chain fatty acids. Although the gut is considered the "microbial organ" of our body as it hosts the most microbes, there are microbes present in various other important anatomical locations differing in numbers and type. Research has shown the presence of microbes in utero, sparking a debate on the "sterile womb" concept, and there is much scope for more work in this area. It is important to understand the early-life microbiome colonization, which has a role in the developmental origins of health and disease in later life. Moreover, seminal studies have indicated the presence of microbes beyond the gut, for example, in the adipose tissue and the liver. However, it is still unclear what is the exact source of these microbes and their exact roles in health and disease. In this review, we appraise and discuss emerging microbiome areas of research and their roles in metabolic health. Further, we review the importance of the genital microbiome in early-life microbial interactions.
Collapse
Affiliation(s)
- Ravichandra Vemuri
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Correspondence: (R.V.); (M.P.H.)
| | - Manoja P. Herath
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
- Correspondence: (R.V.); (M.P.H.)
| |
Collapse
|
24
|
Najmanová L, Vídeňská P, Cahová M. Healthy microbiome – a mere idea or a sound concept? Physiol Res 2022. [DOI: 10.33549/physiolres.934967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: “What is the healthy microbiome?” or “Is it possible to define it unequivocally?”. In this review, we describe the main hindrances complicating the definition of “healthy microbiome” in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
Collapse
Affiliation(s)
| | | | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| |
Collapse
|
25
|
Zhou Z, Hou Y, Qing W, Shi Y, Zhang Y, Chen R, Ou J, Zhou H, Chen M. The association of HPV infection and vaginal microbiota of reproductive women in China: A multicenter cohort study protocol. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
NAJMANOVÁ L, VÍDEŇSKÁ P, CAHOVÁ M. Healthy microbiome - a mere idea or a sound concept? Physiol Res 2022; 71:719-738. [PMID: 36426891 PMCID: PMC9814986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hundreds of studies in last decades have aimed to compare the microbiome of patients suffering from diverse diseases with that of healthy controls. The microbiome-related component was additionally identified in pathophysiology of many diseases formerly considered to depend only on the host physiology. This, however, opens important questions like: "What is the healthy microbiome?" or "Is it possible to define it unequivocally?". In this review, we describe the main hindrances complicating the definition of "healthy microbiome" in terms of microbiota composition. We discuss the human microbiome from the perspective of classical ecology and we advocate for the shift from the stress on microbiota composition to the functions that microbiome ensures for the host. Finally, we propose to leave the concept of ideal healthy microbiome and replace it by focus on microbiome advantageous for the host, which always depends on the specific context like the age, genetics, dietary habits, body site or physiological state.
Collapse
Affiliation(s)
- Lucie NAJMANOVÁ
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Petra VÍDEŇSKÁ
- RECETOX, Faculty of Science Masaryk University, Brno, Czech Republic
| | - Monika CAHOVÁ
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
27
|
Chopra C, Bhushan I, Mehta M, Koushal T, Gupta A, Sharma S, Kumar M, Khodor SA, Sharma S. Vaginal microbiome: considerations for reproductive health. Future Microbiol 2022; 17:1501-1513. [DOI: 10.2217/fmb-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The microbial communities are an indispensable part of the human defense system and coexist with humans as symbionts, contributing to the metabolic functions and immune defense against pathogens. An ecologically stable vaginal microbiota is dominated by Lactobacillus species, which plays an important role in the prevention of genital infections by controlling the vaginal pH, reducing glycogen to lactic acid, and stimulating bacteriocins and hydrogen peroxide. In contrast, an abnormal vaginal microbial composition is associated with an increased risk of bacterial vaginosis, trichomoniasis, sexually transmitted diseases, preterm labor and other birth defects. This microbial diversity is affected by race, ethnicity, pregnancy, hormonal changes, sexual activities, hygiene practices and other conditions. In the present review, we discuss the changes in the microbial community of the vaginal region at different stages of a female's life cycle and its influence on her reproductive health and pathological conditions.
Collapse
Affiliation(s)
- Chitrakshi Chopra
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Indu Bhushan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Malvika Mehta
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Tanvi Koushal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Amita Gupta
- Department of Gynecology, Government Medical College, Jammu, (J&K), 180001, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara, 144411, India
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
28
|
Berus SM, Adamczyk-Popławska M, Goździk K, Przedpełska G, Szymborski TR, Stepanenko Y, Kamińska A. SERS-PLSR Analysis of Vaginal Microflora: Towards the Spectral Library of Microorganisms. Int J Mol Sci 2022; 23:ijms232012576. [PMID: 36293436 PMCID: PMC9604117 DOI: 10.3390/ijms232012576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
The accurate identification of microorganisms belonging to vaginal microflora is crucial for establishing which microorganisms are responsible for microbial shifting from beneficial symbiotic to pathogenic bacteria and understanding pathogenesis leading to vaginosis and vaginal infections. In this study, we involved the surface-enhanced Raman spectroscopy (SERS) technique to compile the spectral signatures of the most significant microorganisms being part of the natural vaginal microbiota and some vaginal pathogens. Obtained data will supply our still developing spectral SERS database of microorganisms. The SERS results were assisted by Partial Least Squares Regression (PLSR), which visually discloses some dependencies between spectral images and hence their biochemical compositions of the outer structure. In our work, we focused on the most common and typical of the reproductive system microorganisms (Lactobacillus spp. and Bifidobacterium spp.) and vaginal pathogens: bacteria (e.g., Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae), fungi (e.g., Candida albicans, Candida glabrata), and protozoa (Trichomonas vaginalis). The obtained results proved that each microorganism has its unique spectral fingerprint that differentiates it from the rest. Moreover, the discrimination was obtained at a high level of explained information by subsequent factors, e.g., in the inter-species distinction of Candida spp. the first three factors explain 98% of the variance in block Y with 95% of data within the X matrix, while in differentiation between Lactobacillus spp. and Bifidobacterium spp. (natural flora) and pathogen (e.g., Candida glabrata) the information is explained at the level of 45% of the Y matrix with 94% of original data. PLSR gave us insight into discriminating variables based on which the marker bands representing specific compounds in the outer structure of microorganisms were found: for Lactobacillus spp. 1400 cm−1, for fungi 905 and 1209 cm−1, and for protozoa 805, 890, 1062, 1185, 1300, 1555, and 1610 cm−1. Then, they can be used as significant marker bands in the analysis of clinical subjects, e.g., vaginal swabs.
Collapse
Affiliation(s)
- Sylwia Magdalena Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| | - Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Goździk
- Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Grażyna Przedpełska
- Department of Dermatology and Venerology, Infant Jesus Clinical Hospital, Koszykowa 82a, 02-008 Warsaw, Poland
| | - Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yuriy Stepanenko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (S.M.B.); (A.K.)
| |
Collapse
|
29
|
Dai W, Gui L, Du H, Li S, Wu R. The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. Front Immunol 2022; 13:918190. [PMID: 36311788 PMCID: PMC9596771 DOI: 10.3389/fimmu.2022.918190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
Human papillomavirus (HPV) clearance is important in eliminating cervical cancer which contributes to high morbidity and mortality in women. Nevertheless, it remains largely unknown about key players in clearing pre-existing HPV infections. HPV antigens can be detected by the most important cervical antigen-presenting cells (Langerhans cells, LCs), of which the activities can be affected by cervicovaginal microbiota. In this review, we first introduce persistent HPV infections and then describe HPV-suppressed LCs activities, including but not limited to antigen uptake and presentation. Given specific transcriptional profiling of LCs in cervical epithelium, we also discuss the impact of cervicovaginal microbiota on LCs activation as well as the promise of exploring key microbial players in activating LCs and HPV-specific cellular immunity.
Collapse
Affiliation(s)
- Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Liming Gui
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shuaicheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu,
| |
Collapse
|
30
|
Yarahmadi N, Halimi S, Moradi P, Zamanian MH, Rezaei A, Vaziri S, Akya A, Alvandi A, Yazdani S, Ghadimi D, Moradi J. Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Curr Microbiol 2022; 79:318. [DOI: 10.1007/s00284-022-03010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
|
31
|
Molina MA, Andralojc KM, Huynen MA, Leenders WPJ, Melchers WJG. In-depth insights into cervicovaginal microbial communities and hrHPV infections using high-resolution microbiome profiling. NPJ Biofilms Microbiomes 2022; 8:75. [PMID: 36171433 PMCID: PMC9519886 DOI: 10.1038/s41522-022-00336-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The cervicovaginal microbiome (CVM) correlates with women's cervical health, and variations in its composition are associated with high-risk human papillomavirus (hrHPV) infection outcomes. Cervicovaginal microbes have been grouped into five community state types (CSTs) based on microbial community composition and abundance. However, studying the impact of CSTs in health and disease is challenging because the current sequencing technologies have limited confident discrimination between closely related and yet functionally different bacterial species. Circular probe-based RNA sequencing (ciRNAseq) achieves high-resolution microbiome profiling and therefore provides in-depth and unambiguous knowledge about the composition of the CVM. Based on ciRNAseq profiling of a large cohort of cervical smears (n = 541), we here define subgroups of CSTs I, III, and IV based on intra-CST differences with respect to abundances of Lactobacillus acidophilus (CSTs I-A vs. I-B and CSTs III-A vs. III-B), Lactobacillus iners (CSTs I-A vs. I-B and CSTs III-A vs. III-B), and Megasphaera genomosp type 1 (CSTs IV-A vs. IV-B). Our results further support the existence of subgroups of CST IV-C that are dominant for non-Lactobacillus species and have intermediate microbial diversity. We also show that CST V is associated with uninfected conditions, and CST IV-A associates with hrHPV-induced cervical disease. In conclusion, we characterized new subdivisions of cervicovaginal CSTs, which may further advance our understanding of women's cervical health and hrHPV-related progression to disease.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
- Predica Diagnostics, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Li Y, Yang F, Chen L, Duan S, Jin W, Liu Q, Xu H, Zhang W, Li Y, Wang J, He Z, Zhao Y. Intestinal microbial diversity in female rhesus ( Macaca mulatta) at different physiological periods. Front Microbiol 2022; 13:959315. [PMID: 36225360 PMCID: PMC9548999 DOI: 10.3389/fmicb.2022.959315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the relationship between the changes in the physiological period and the fecal microbial population of female rhesus monkeys by measuring microbial composition of fecal samples and the serum hormones. Blood and fecal samples were collected from six female adult rhesus monkeys during the menstrual period (MP), ovulation period (OP), and Luteal period (LP). Serum estradiol (E2) and progesterone (P) levels were determined by the chemiluminescence method and the stool samples were subjected to high-throughput 16S rRNA sequencing. The highest level of E2 and P secretions were during the MP, and LP, respectively. Stool samples produced valid sequences and the number of operational taxonomic unit/OTU was: 810056/3756 (MP), 845242/4159 (OP), 881560/3970 (LP). At the phylum level, the three groups of Firmicutes and Bacteroides accounted for > 95%. The dominant flora at the LP was Bacteroides (53.85%), the dominant flora at the MP and OP was Firmicutes, 64.08 and 56.53%, respectively. At the genus level, the dominant genus at the LP was Prevotella, the dominant genera at the MP were Prevotella, Oncococcus, Streptococcus, and Kurtella. The dominant genera at OP were Prevotella and Nocococcus. At the phylum level, P levels were negatively correlated to Firmicutes, Actinomycetes Actinobacteria, and Fibrobacteres, but positively correlated to Bacteroidetes. Likewise, E2 was positively correlated to Proteobacteria but negatively correlated to Euryarchaeota. At the genus level, P hormone showed a significant correlation with 16 bacterial species, and E2 was significantly correlated to seven bacterial species. Function prediction analysis revealed a high similarity between the MP and OP with six differentially functional genes (DFGs) between them and 11 DFGs between OP and LP (P < 0.05). Fecal microbiota types of female rhesus monkeys varied with different stages of the menstrual cycle, possibly related to changes in hormone levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
33
|
Wikström T, Abrahamsson S, Bengtsson‐Palme J, Ek J, Kuusela P, Rekabdar E, Lindgren P, Wennerholm U, Jacobsson B, Valentin L, Hagberg H. Microbial and human transcriptome in vaginal fluid at midgestation: Association with spontaneous preterm delivery. Clin Transl Med 2022; 12:e1023. [PMID: 36103557 PMCID: PMC9473488 DOI: 10.1002/ctm2.1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intrauterine infection and inflammation caused by microbial transfer from the vagina are believed to be important factors causing spontaneous preterm delivery (PTD). Multiple studies have examined the relationship between the cervicovaginal microbiome and spontaneous PTD with divergent results. Most studies have applied a DNA-based assessment, providing information on the microbial composition but not transcriptional activity. A transcriptomic approach was applied to investigate differences in the active vaginal microbiome and human transcriptome at midgestation between women delivering spontaneously preterm versus those delivering at term. METHODS Vaginal swabs were collected in women with a singleton pregnancy at 18 + 0 to 20 + 6 gestational weeks. For each case of spontaneous PTD (delivery <37 + 0 weeks) two term controls were randomized (39 + 0 to 40 + 6 weeks). Vaginal specimens were subject to sequencing of both human and microbial RNA. Microbial reads were taxonomically classified using Kraken2 and RefSeq as a reference. Statistical analyses were performed using DESeq2. GSEA and HUMAnN3 were used for pathway analyses. RESULTS We found 17 human genes to be differentially expressed (false discovery rate, FDR < 0.05) in the preterm group (n = 48) compared to the term group (n = 96). Gene expression of kallikrein-2 (KLK2), KLK3 and four isoforms of metallothioneins 1 (MT1s) was higher in the preterm group (FDR < 0.05). We found 11 individual bacterial species to be differentially expressed (FDR < 0.05), most with a low occurrence. No statistically significant differences in bacterial load, diversity or microbial community state types were found between the groups. CONCLUSIONS In our mainly white population, primarily bacterial species of low occurrence were differentially expressed at midgestation in women who delivered preterm versus at term. However, the expression of specific human transcripts including KLK2, KLK3 and several isoforms of MT1s was higher in preterm cases. This is of interest, because these genes may be involved in critical inflammatory pathways associated with spontaneous PTD.
Collapse
Affiliation(s)
- Tove Wikström
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Sanna Abrahamsson
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Bengtsson‐Palme
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
- Division of Systems and Synthetic BiologyDepartment ofBiology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Joakim Ek
- Institute of Neuroscience and PhysiologyDepartment of Physiology Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Elham Rekabdar
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Lindgren
- Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
- Centre for Fetal MedicineKarolinska University HospitalStockholmSweden
| | - Ulla‐Britt Wennerholm
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Bo Jacobsson
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Lil Valentin
- Department of Obstetrics and GynecologySkåne University HospitalMalmöSweden
- Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
34
|
Yang Z, Zhang Y, Stubbe-Espejel A, Zhao Y, Liu M, Li J, Zhao Y, Tong G, Liu N, Qi L, Hutchins A, Lin S, Li Y. Vaginal microbiota and personal risk factors associated with HPV status conversion—A new approach to reduce the risk of cervical cancer? PLoS One 2022; 17:e0270521. [PMID: 35944043 PMCID: PMC9362946 DOI: 10.1371/journal.pone.0270521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vaginal microbiota (VMB) is associated with changes in Human papilloma virus (HPV) status, which consequently influences the risk of cervical cancer. This association was often confounded by personal risk factors. This pilot research aimed to explore the relationship between vaginal microbiota, personal risk factors and their interactions with HPV status conversion to identify the vaginal microbiota that was associated with HPV clearance under heterogeneous personal risk factors. A total of 38 women participated by self-collecting a cervicovaginal mucus (CVM) sample that was sent for metagenomics sequencing. Most of the participants also filled in personal risk factors questionnaire through an eHealth platform and authorized the use of their previous HPV genotyping results stored in this eHealth platform. Based on the two HPV results, the participants were grouped into three cohorts, namely HPV negative, HPV persistent infection, and HPV status conversion. The relative abundance of VMB and personal factors were compared among these three cohorts. A correlation investigation was performed between VMB and the significant personal factors to characterize a robustness of the panel for HPV status change using R programming. At baseline, 12 participants were HPV-negative, and 22 were HPV-positive. Within one year, 18 women remained HPV-positive, 12 were HPV-negative and 4 participants showed HPV clearance. The factors in the eHealth questionnaire were systematically evaluated which identified several factors significantly associated with persistent HPV infection, including age, salary, history of reproductive tract infection, and the total number of sexual partners. Concurrent vaginal microbiome samples suggest that a candidate biomarker panel consisting of Lactobacillus gasseri, Streptococcus agalactiae, and Timona prevotella bacteria, which may be associated with HPV clearance. This pilot study indicates a stable HPV status-related vaginal microbe environment. To establish a robust biomarker panel for clinical use, larger cohorts will be recruited into follow-up studies.
Collapse
Affiliation(s)
| | - Ye Zhang
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | | | - Yumei Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Mengping Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianjun Li
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Yanping Zhao
- BGI-Shenzhen, Shenzhen Key Laboratory of Unknown Pathogen, Shenzhen, China
| | - Guoqing Tong
- Shouguang Hospital of Traditional Chinese Medicine, Reproduction Medicine Center Shanghai, China
| | - Na Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Le Qi
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Andrew Hutchins
- Department of Biology, Southern University of Science and Technology, Xueyuan Lu, Shenzhen, China
| | - Songqing Lin
- Department of Traditional Chinese Medicine, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Yantao Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
35
|
Guo C, Dai W, Zhou Q, Gui L, Cai H, Wu D, Hou J, Li C, Li S, Du H, Wu R. Cervicovaginal microbiota significantly changed for HPV-positive women with high-grade squamous intraepithelial lesion. Front Cell Infect Microbiol 2022; 12:973875. [PMID: 35992171 PMCID: PMC9386141 DOI: 10.3389/fcimb.2022.973875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Lower female genital tract is colonized by a variety of microbes (cervicovaginal microbiota, CVM) which associate with the risk of genital infection. This study characterized CVM for 149 Chinese women with different status of human papillomavirus (HPV) infection and squamous intraepithelial lesion (SIL): no HPV infection (HPV-), HPV infection without significant SIL (HPV+NoSIL), HPV infection with low-grade SIL (HPV+LSIL) and HPV infection with high-grade SIL (HPV+HSIL). Analysis results showed CVM has dramatically changed in HPV+HSIL group when compared to HPV+LSIL group, but it exhibited no significant differences between HPV- and HPV+NoSIL groups as well as between HPV+NoSIL and HPV+LSIL groups. In consistence, random forest analysis found more notable differences in HPV+HSIL vs HPV+LSIL comparison than in other comparisons. In addition, depletion of Lactobacillus in CVM was more to be frequently identified in SIL-positive women as compared to SIL-negative individuals. Our findings suggested that significant CVM differences occurred when SIL developed to HSIL which was caused by persistent HPV infection.
Collapse
Affiliation(s)
- Chunlei Guo
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liming Gui
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Han Cai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jun Hou
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu, ; Hui Du,
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center (PKU-HKUST) Medical Center, Shenzhen, China
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
- *Correspondence: Ruifang Wu, ; Hui Du,
| |
Collapse
|
36
|
Age-Stratified Analysis of Vaginal Microbiota Dysbiosis and the Relationship with HPV Viral Load in HPV-Positive Women. J Immunol Res 2022; 2022:1372926. [PMID: 35935589 PMCID: PMC9348945 DOI: 10.1155/2022/1372926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study evaluated the distribution of vaginal microbiota dysbiosis and the association with HPV viral load test in high-risk HPV-positive women before and after 50 years old. Methods For this cross-sectional study, 388 HPV-positive women prior to referral to colposcopy in Peking University Peoples' Hospital were included and classified as younger than 50 years (n = 307) and aged 50 years or older (n = 81), midvagina bacterial community composition was characterized by FlashDetect™ MAX vaginal microbe detection kit, and BMRT-HPV reported type-specific viral loads/10,000 cells. Results The community state type (CST) IV was the most common CST occurring in 148 women (38.1%). The proportion of CST IV in those aged 50 years or older was significantly higher than those younger than 50 years (women) (66.7% vs. 30.6%); the difference was statistically significant (<0.001). CST distribution has no statistical difference in different grades of cervical lesion, regardless of the age (p = 0.238 and 0.263). However, the women with high-grade cervical lesion presented a more complicated trend and the abundance of vaginal microbiota dysbiosis than low-grade lesion. HPV16/18 viral load was found to be significantly higher in CST III and CST IV than CST I/II/V (p < 0.05)in women younger than 50 years. Conclusions In women younger than 50 years, higher HPV16/18 load was more closely associated with CST IV; however, it had no significant correlation in women aged 50 years or older.
Collapse
|
37
|
Hill JE, Peña-Sánchez JN, Fernando C, Freitas AC, Withana Gamage N, Fowler S. Composition and Stability of the Vaginal Microbiota of Pregnant Women With Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:905-911. [PMID: 34919692 PMCID: PMC9165555 DOI: 10.1093/ibd/izab314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is common in women of childbearing years, and active IBD during pregnancy is associated with increased rates of preterm delivery and low-birth-weight newborns. Changes in the vaginal microbiome have been associated with preterm delivery. We aimed to determine the taxonomic composition of the vaginal microbiota at 3 time points during pregnancy in a population of women with IBD. METHODS Participants were recruited from the patient registry of the Preconception and Pregnancy IBD Clinic at Royal University Hospital in Saskatoon, Canada. Self-collected vaginal swabs were obtained from patients at each trimester. Microbiota profiles were created by cpn60 amplicon sequencing. RESULTS We characterized the vaginal microbiota of 32 pregnant participants with IBD (33 pregnancies) during each trimester. A total of 32 of 33 pregnancies resulted in a live birth with 43.8% (n = 14 of 32, 2 missing) by caesarean section; 2 of 32 were preterm. Microbiota compositions corresponded to previously described community state types, with most participants having microbiota dominated by Lactobacillus crispatus. In 25 of 29 participants in which samples were available for more than 1 time point, there was no change in the community state type over time. Prevalence of Mollicutes (Mycoplasma and/or Ureaplasma) was significantly higher in pregnant participants with IBD than in a previously profiled cohort of 172 pregnant women without IBD who delivered at term. CONCLUSIONS The vaginal microbiome of participants with IBD was stable throughout pregnancy. Prevalence of Mollicutes, which has been associated with preterm delivery, warrants further study in this patient group.
Collapse
Affiliation(s)
- Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juan-Nicolás Peña-Sánchez
- Department of Community Health and Epidemiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Aline C Freitas
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Niradha Withana Gamage
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada
| | - Sharyle Fowler
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
38
|
Wani AK, Roy P, Kumar V, Mir TUG. Metagenomics and artificial intelligence in the context of human health. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105267. [PMID: 35278679 DOI: 10.1016/j.meegid.2022.105267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Human microbiome is ubiquitous, dynamic, and site-specific consortia of microbial communities. The pathogenic nature of microorganisms within human tissues has led to an increase in microbial studies. Characterization of genera, like Streptococcus, Cutibacterium, Staphylococcus, Bifidobacterium, Lactococcus and Lactobacillus through culture-dependent and culture-independent techniques has been reported. However, due to the unique environment within human tissues, it is difficult to culture these microorganisms making their molecular studies strenuous. MGs offer a gateway to explore and characterize hidden microbial communities through a culture-independent mode by direct DNA isolation. By function and sequence-based MGs, Scientists can explore the mechanistic details of numerous microbes and their interaction with the niche. Since the data generated from MGs studies is highly complex and multi-dimensional, it requires accurate analytical tools to evaluate and interpret the data. Artificial intelligence (AI) provides the luxury to automatically learn the data dimensionality and ease its complexity that makes the disease diagnosis and disease response easy, accurate and timely. This review provides insight into the human microbiota and its exploration and expansion through MG studies. The review elucidates the significance of MGs in studying the changing microbiota during disease conditions besides highlighting the role of AI in computational analysis of MG data.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Priyanka Roy
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Vijay Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India.
| | - Tahir Ul Gani Mir
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
39
|
Lewis C, Seashols-Williams SJ. Design and optimization of a 16S microbial qPCR multiplex for the presumptive identification of feces, saliva, vaginal and menstrual secretions. J Forensic Sci 2022; 67:1660-1667. [PMID: 35352345 PMCID: PMC9310585 DOI: 10.1111/1556-4029.15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Molecular methods for body fluid identification have been extensively researched in the forensic community over the last decade, mostly focusing on RNA‐based methods. Microbial DNA analysis has long been used for forensic applications, such as postmortem interval estimations, but only recently has it been applied to body fluid identification. High‐throughput sequencing of the 16S ribosomal RNA gene by previous research groups revealed that microbial signatures and abundances vary across human body fluids at the genus and/or species taxonomic level. Since quantitative PCR is still the current technique used in forensic DNA analysis, the purpose of this study was to design a qPCR multiplex targeting the 16S gene of Bacteroides uniformis, Streptococcus salivarius, and Lactobacillus crispatus that can distinguish between feces, saliva, and vaginal/menstrual secretions, respectively. Primers and probes were designed at the species level because these bacteria are highly abundant within their respective fluid. The validated 16S triplex was evaluated in DNA extracts from thirty donors of each body fluid. A classification regression tree model resulted in 96.5% classification accuracy of the population data, which demonstrates the ability of this 16S triplex to presumptively identify these fluids with high confidence at the quantification step of the forensic workflow using minimal input volume of DNA extracted from evidentiary samples.
Collapse
Affiliation(s)
- Carolyn Lewis
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | |
Collapse
|
40
|
Shukla I, Hill JE. cpn60 barcode sequences accurately identify newly defined genera within the Lactobacillaceae. Can J Microbiol 2022; 68:457-464. [PMID: 35230911 DOI: 10.1139/cjm-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cpn60 barcode sequence is established as an informative target for microbial species identification. Applications of cpn60 barcode sequencing are supported by the availability of "universal" PCR primers for its amplification and a curated reference database of cpn60 sequences, cpnDB. A recent reclassification of lactobacilli involving the definition of 23 new genera provided an opportunity to update cpnDB and to determine if the cpn60 barcode could be used for accurate identification of species consistent with the new framework. Analysis of 275 cpn60 sequences representing 258/269 of the validly named species in Lactobacillus, Paralactobacillus and the 23 newer genera showed that cpn60-based sequence relationships were generally consistent with the whole-genome-based phylogeny. Aligning or mapping full length barcode sequences or a 150 bp subsequence resulted in accurate and unambiguous species identification in almost all cases. Taken together, our results show that the combination of available reference sequence data, "universal" barcode amplification primers, and the inherent sequence diversity within the cpn60 barcode make it a useful target for the detection and identification of lactobacilli as defined by the latest taxonomic framework.
Collapse
Affiliation(s)
- Ishika Shukla
- University of Saskatchewan, 7235, Veterinary Microbiology, Saskatoon, Saskatchewan, Canada;
| | - Janet E Hill
- University of Saskatchewan, 7235, Veterinary Microbiology, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
41
|
Soyer Caliskan C, Yurtcu N, Celik S, Sezer O, Kilic SS, Cetin A. Derangements of vaginal and cervical canal microbiota determined with real-time PCR in women with recurrent miscarriages. J OBSTET GYNAECOL 2022; 42:2105-2114. [PMID: 35166152 DOI: 10.1080/01443615.2022.2033183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Balanced vaginal microbiota and, as a continuum, cervical canal microbiota help prevent reproductive disorders, including recurrent miscarriage (RM). In a significant proportion of couples with RM, routine diagnostic workup cannot find any manageable cause, leading to a requirement for new diagnostic tools. In the present study, we determined the quantitative composition of the microbiota of the vagina and cervical canal, assessed by real-time polymerase chain reaction, in women with RM. It also evaluated their derangements related to the pathogenesis of RM, and thus the suitability of this test as a diagnostic tool for managing RM. Vaginal and cervical canal specimens of 25 women with RM and 25 healthy volunteers were collected. The test results revealed information about the total vaginal bacterial biomass by measuring the abundance of Lactobacillus spp.; other bacteria; and pathogens, including Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma (urealyticum + parvum), and Candida spp. Overall, the findings of this study implied the abundance of Lactobacillus spp. decreased in women with RM with an increase in the abundance of other microorganisms in accordance with the reduction in the abundance of Lactobacillus spp. due to aerobic vaginitis and bacterial vaginosis. Vaginal and cervical canal microbiota need to be considered during the diagnostic workup of women with RM.IMPACT STATEMENTWhat is already known on this subject? Recurrent miscarriage (RM) is a well-known reproductive disorder. Its diagnostic workup is not successful in determining the underlying problem in many cases. Hence, novel diagnostic tools based on real-time polymerase chain reaction (PCR) are needed for evaluating reproductive microbiota, which are considerably reliable, to satisfy the expectations of women with RM.What do the results of this study add? Overall, the decrease in the abundance of Lactobacillus spp. was found to be related to RM, and the patterns of the presence of other microorganisms were in accordance with the reduction in the abundance of Lactobacillus spp. These findings suggested an important role of vaginal and cervical canal microbiota in the pathogenesis of RM.What are the implications of these findings for clinical practice and/or further research? Additional research is warranted to elucidate the functional impact of altered components of the microbiota of vaginal and cervical canals on the physiology of the local cervical canal and its participation in the microbiota of the endometrial cavity, especially regarding unsuccessful pregnancies as a result of the disturbed physiology of the local endometrial microenvironment. However, possible applications of real-time PCR-based tests for the screening of subclinical infections in clinical practice require the performance of further investigations in patients with RM.
Collapse
Affiliation(s)
- Canan Soyer Caliskan
- Department of Obstetrics and Gynecology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Nazan Yurtcu
- Department of Medical Genetics, Samsun Training and Research Hospital, Samsun, Turkey
| | - Samettin Celik
- Department of Obstetrics and Gynecology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Training and Research Hospital, Samsun, Turkey
| | - Suleyman Sirri Kilic
- Department of Infectious Diseases and Clinical Microbiology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ali Cetin
- Department of Obstetrics and Gynecology, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
42
|
Breedveld AC, Schuster HJ, van Houdt R, Painter RC, Mebius RE, van der Veer C, Bruisten SM, Savelkoul PHM, van Egmond M. Enhanced IgA coating of bacteria in women with Lactobacillus crispatus-dominated vaginal microbiota. MICROBIOME 2022; 10:15. [PMID: 35074009 PMCID: PMC8787895 DOI: 10.1186/s40168-021-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunoglobulin A (IgA) plays an important role in maintaining a healthy intestinal microbiome, but little is known about the interaction between local immunoglobulins and the vaginal microbiome. We assessed immunoglobulins (unbound and bound to bacteria), their association with vaginal microbiota composition and the changes over time in 25 healthy women of reproductive age. RESULTS In both Lactobacillus crispatus-dominated and non-L. crispatus-dominated microbiota, IgA and IgG (unbound and bound to bacteria) were higher during menses (T = 1) compared to day 7‑11 (T = 2) and day 17‑25 (T = 3) after menses onset. The majority of vaginal bacteria are coated with IgA and/or IgG. Women with L. crispatus-dominated microbiota have increased IgA coating of vaginal bacteria compared to women with other microbiota compositions, but contained less IgA per bacterium. Presence of a dominantly IgA-coated population at T = 2 and/or T = 3 was also strongly associated with L. crispatus-dominated microbiota. In women with non-L. crispatus-dominated microbiota, more bacteria were uncoated. Unbound IgA, unbound IgG, and bound IgG levels were not associated with microbiota composition. CONCLUSIONS In conclusion, L. crispatus-dominated vaginal microbiota have higher levels of bacterial IgA coating compared to non-L. crispatus-dominated vaginal microbiota. Similar to its regulating function in the intestinal tract, we hypothesize that IgA is involved in maintaining L. crispatus-dominated microbiota in the female genital tract. This may play a role in L. crispatus-associated health benefits. Video abstract.
Collapse
Affiliation(s)
- Annelot C. Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Heleen J. Schuster
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
| | - Robin van Houdt
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rebecca C. Painter
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Charlotte van der Veer
- Department of Infectious Diseases, Amsterdam Infection and Immunity Institute, Public Health Service of Amsterdam (GGD), Nieuwe Achtergracht 100, Amsterdam, 1018 WT The Netherlands
| | - Sylvia M. Bruisten
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Amsterdam Infection and Immunity Institute, Public Health Service of Amsterdam (GGD), Nieuwe Achtergracht 100, Amsterdam, 1018 WT The Netherlands
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Gladysheva IV, Cherkasov SV, Khlopko YA, Plotnikov AO. Genome Characterization and Probiotic Potential of Corynebacterium amycolatum Human Vaginal Isolates. Microorganisms 2022; 10:microorganisms10020249. [PMID: 35208706 PMCID: PMC8878833 DOI: 10.3390/microorganisms10020249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
The vaginal microbiome of healthy women contains nondiphtheria corynebacteria. The role and functions of nondiphtheria corynebacteria in the vaginal biotope are still under study. We sequenced and analysed the genomes of three vaginal C. amycolatum strains isolated from healthy women. Previous studies have shown that these strains produced metabolites that significantly increased the antagonistic activity of peroxide-producing lactic acid bacteria against pathogenic and opportunistic microorganisms and had strong antimicrobial activity against opportunistic pathogens. Analysis of the C. amycolatum genomes revealed the genes responsible for adaptation and survival in the vaginal environment, including acid and oxidative stress resistance genes. The genes responsible for the production of H2O2 and the synthesis of secondary metabolites, essential amino acids and vitamins were identified. A cluster of genes encoding the synthesis of bacteriocin was revealed in one of the annotated genomes. The obtained results allow us to consider the studied strains as potential probiotics that are capable of preventing the growth of pathogenic microorganisms and supporting colonisation resistance in the vaginal biotope.
Collapse
|
44
|
Kim S, Lee SH, Min KJ, Lee S, Hong JH, Song JY, Lee JK, Lee NW, Lee E. Females with impaired ovarian function could be vulnerable to environmental pollutants: identification via next-generation sequencing of the vaginal microbiome. J OBSTET GYNAECOL 2022; 42:1482-1488. [PMID: 34996320 DOI: 10.1080/01443615.2021.2006162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vaginal microbiome has been widely investigated. However, its relationship with impaired ovarian function has not been evaluated. We conducted a next-generation sequencing (NGS) study of the vaginal microbiome in females with normal and decreased ovarian function and analysed its sensitivity to environmental pollutants. Vaginal swabs were collected from 92 individuals (22 with impaired ovarian function). The 16S rDNA sequences were assembled by FLASH and clustered in OTUs. Diversity analysis was performed using QIIME. The impaired function group showed lower AMH (p < .01) and higher FSH (p = .04). Only two species showed significant differences: Propionibacterium acnes and Prevotella copri. Moreover, more environmental pollutants were related to changes in the vaginal microbiome in the impaired ovarian function group than in the normal group. Vaginal microbiomes in young women with decreased ovarian function tended to be more sensitive to environmental pollutants, especially volatile organic compounds.Impact StatementWhat is already known on this subject? In this study, the possible influence of environmental pollutants, especially volatile organic compounds to ovarian function were identified via next-generation sequencing.What do the results of this study add? This is the first study that shows vaginal microbiomes in young women with decreased ovarian function to be more sensitive to environmental pollutants.What are the implications of these findings for clinical practice and/or further research? The association between impaired ovarian function and environmental pollutants from this study could be helpful when counselling patients with POI.
Collapse
Affiliation(s)
- Seongmin Kim
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang-si, Republic of Korea.,Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Se Hee Lee
- Department of Medical Science, Korea University Graduate School, Seoul, Republic of Korea
| | - Kyung Jin Min
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nak Woo Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunil Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Krog MC, Madsen ME, Bliddal S, Bashir Z, Vexø LE, Hartwell D, Hugerth LW, Fransson E, Hamsten M, Boulund F, Wannerberger K, Engstrand L, Schuppe-Koistinen I, Nielsen HS. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac015. [PMID: 35441092 PMCID: PMC9014536 DOI: 10.1093/hropen/hoac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
STUDY QUESTION What is the microbiome profile across different body sites in relation to the normal menstrual cycle (with and without hormonal contraception), recurrent pregnancy loss (RPL) (before and during pregnancy, pregnancy loss or birth) and endometriosis (before, during and after surgery)? How do these profiles interact with genetics, environmental exposures, immunological and endocrine biomarkers? WHAT IS KNOWN ALREADY The microbiome is a key factor influencing human health and disease in areas as diverse as immune functioning, gastrointestinal disease and mental and metabolic disorders. There is mounting evidence to suggest that the reproductive microbiome may be influential in general and reproductive health, fertility and pregnancy outcomes. STUDY DESIGN, SIZE, DURATION This is a prospective, longitudinal, observational study using a systems biology approach in three cohorts totalling 920 participants. Since microbiome profiles by shot-gun sequencing have never been investigated in healthy controls during varying phases of the menstrual cycle, patients with RPL and patients with endometriosis, no formal sample size calculation can be performed. The study period is from 2017 to 2024 and allows for longitudinal profiling of study participants to enable deeper understanding of the role of the microbiome and of host–microbe interactions in reproductive health. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants in each cohort are as follows: Part 1 MiMens—150 healthy women with or without hormonal contraception; Part 2 MiRPL—200 couples with RPL, 50 healthy couples with prior uncomplicated pregnancy and 150 newborns; Part 3 MiEndo—120 patients with endometriosis requiring surgery with or without hormonal treatment. Microbiome profiles from saliva, faeces, rectal mucosa, vaginal fluid and endometrium will be studied, as well as the Omics profile, endocrine disrupting chemicals and endocrine and immune factors in blood, hair, saliva and urine. Pregnancy loss products, seminal microbiome, HLA types, endometriotic tissue and genetic risk and comprehensive questionnaire data will also be studied, where appropriate. Correlations with mental and physical health will be evaluated. STUDY FUNDING/COMPETING INTEREST(S) This work is supported by funding from Ferring Pharmaceuticals ([#MiHSN01] to H.S.N., M.C.K., M.E.M., L.E.V., L.E., I.S.-K., F.B., L.W.H., E.F. and M.H.), Rigshospitalet’s Research Funds ([#E-22614-01 and #E-22614-02] to M.C.K. and [#E-22222-06] to S.B.), Niels and Desiree Yde’s Foundation (S.B., endocrine analyses [#2015-2784]), the Musikforlæggerne Agnes and Knut Mørk’s Foundation (S.B., endocrine and immune analyses [#35108-001]) and Oda and Hans Svenningsen’s Foundation ([#F-22614-08] to H.S.N.). Medical writing assistance with this manuscript was provided by Caroline Loat, PhD, and funded by Ferring Pharmaceuticals. H.S.N. reports personal fees from Ferring Pharmaceuticals, Merck Denmark A/S, Ibsa Nordic, Astra Zeneca and Cook Medical outside the submitted work. K.W. is a full-time employee of Ferring Pharmaceuticals. No other conflicts are reported. TRIAL REGISTRATION NUMBER N/A TRIAL REGISTRATION DATE N/A DATE OF FIRST PATIENT’S ENROLMENT N/A
Collapse
Affiliation(s)
- Maria Christine Krog
- Correspondence address. The Recurrent Pregnancy Loss Unit, The Fertility Clinic 4071, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark. E-mail:
| | | | - Sofie Bliddal
- The Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Zahra Bashir
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Slagelse Hospital, Slagelse, Denmark
| | - Laura Emilie Vexø
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Dorthe Hartwell
- Department of Gynecology, The Endometriosis Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Luisa W Hugerth
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marica Hamsten
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Boulund
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, The Fertility Clinic, Copenhagen University Hospitals Rigshospitalet and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen N, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
46
|
Andralojc KM, Molina MA, Qiu M, Spruijtenburg B, Rasing M, Pater B, Huynen MA, Dutilh BE, Ederveen THA, Elmelik D, Siebers AG, Loopik D, Bekkers RLM, Leenders WPJ, Melchers WJG. Novel high-resolution targeted sequencing of the cervicovaginal microbiome. BMC Biol 2021; 19:267. [PMID: 34915863 PMCID: PMC8680041 DOI: 10.1186/s12915-021-01204-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cervicovaginal microbiome (CVM) plays a significant role in women's cervical health and disease. Microbial alterations at the species level and characteristic community state types (CST) have been associated with acquisition and persistence of high-risk human papillomavirus (hrHPV) infections that may result in progression of cervical lesions to malignancy. Current sequencing methods, especially most commonly used multiplex 16S rRNA gene sequencing, struggle to fully clarify these changes because they generally fail to provide sufficient taxonomic resolution to adequately perform species-level associative studies. To improve CVM species designation, we designed a novel sequencing tool targeting microbes at the species taxonomic rank and examined its potential for profiling the CVM. RESULTS We introduce an accessible and practical circular probe-based RNA sequencing (CiRNAseq) technology with the potential to profile and quantify the CVM. In vitro and in silico validations demonstrate that CiRNAseq can distinctively detect species in a mock mixed microbial environment, with the output data reflecting its ability to estimate microbes' abundance. Moreover, compared to 16S rRNA gene sequencing, CiRNAseq provides equivalent results but with improved sequencing sensitivity. Analyses of a cohort of cervical smears from hrHPV-negative women versus hrHPV-positive women with high-grade cervical intraepithelial neoplasia confirmed known differences in CST occurring in the CVM of women with hrHPV-induced lesions. The technique also revealed variations in microbial diversity and abundance in the CVM of hrHPV-positive women when compared to hrHPV-negative women. CONCLUSIONS CiRNAseq is a promising tool for studying the interplay between the CVM and hrHPV in cervical carcinogenesis. This technology could provide a better understanding of cervicovaginal CST and microbial species during health and disease, prompting the discovery of biomarkers, additional to hrHPV, that can help detect high-grade cervical lesions.
Collapse
Affiliation(s)
- Karolina M. Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Mariano A. Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mengjie Qiu
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bram Spruijtenburg
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Menno Rasing
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bernard Pater
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Duaa Elmelik
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Albert G. Siebers
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Diede Loopik
- Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ruud L. M. Bekkers
- Department of Obstetrics and Gynecology, Catharina Hospital, 5602 ZA Eindhoven, The Netherlands
- GROW, School for Oncology & Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Predica Diagnostics, Toernooiveld 1, 6525 GA Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
47
|
Zheng N, Guo R, Wang J, Zhou W, Ling Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol 2021; 11:792787. [PMID: 34881196 PMCID: PMC8645935 DOI: 10.3389/fcimb.2021.792787] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus iners, first described in 1999, is a prevalent bacterial species of the vaginal microbiome. As L. iners does not easily grow on de Man-Rogosa-Sharpe agar, but can grow anaerobically on blood agar, it has been initially overlooked by traditional culture methods. It was not until the wide application of molecular biology techniques that the function of L. iners in the vaginal microbiome was carefully explored. L. iners has the smallest genome among known Lactobacilli and it has many probiotic characteristics, but is partly different from other major vaginal Lactobacillus species, such as L. crispatus, in contributing to the maintenance of a healthy vaginal microbiome. It is not only commonly present in the healthy vagina but quite often recovered in high numbers in bacterial vaginosis (BV). Increasing evidence suggests that L. iners is a transitional species that colonizes after the vaginal environment is disturbed and offers overall less protection against vaginal dysbiosis and, subsequently, leads to BV, sexually transmitted infections, and adverse pregnancy outcomes. Accordingly, under certain conditions, L. iners is a genuine vaginal symbiont, but it also seems to be an opportunistic pathogen. Further studies are necessary to identify the exact role of this intriguing species in vaginal health and diseases.
Collapse
Affiliation(s)
- Nengneng Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renyong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Jinxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
48
|
Mei S, Zhao M, Liu Y, Zhao C, Xu H, Fang Y, Zhu B. Evaluations and comparisons of microbial diversities in four types of body fluids based on two 16S rRNA gene sequencing methods. Forensic Sci Int 2021; 331:111128. [PMID: 34959019 DOI: 10.1016/j.forsciint.2021.111128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Body fluids are one of the common biological traces at crime scenes. Understanding the types of these biological traces could provide key clues for the investigations of the forensic cases. In recent years, partial hypervariable regions of 16S rRNA gene sequencing and full-length 16S rRNA gene sequencing have attracted the interests of researchers and we intend to explore which method can be better applied to forensic researches. METHODS In this study, the 16S rRNA gene V3-V4 (short-read) sequencing based on next-generation sequencing and the full-length 16S rRNA gene sequencing based on single molecule real-time sequencing were used to classify microbes in saliva, peripheral blood, vaginal secretion and menstrual blood samples. RESULTS Alpha diversity metrics in short-read sequencing were larger than those of full-length sequencing. Phylum-level bacteria in four kinds of body fluids obtained from the two platforms were similar, while their abundances were different. The results of principal coordinates analysis and analysis of molecular variance indicated the microbial compositions of vaginal secretion and menstrual blood samples were similar, and the microbial compositions among saliva, peripheral blood, vaginal secretion or menstrual blood samples were significantly different. The linear discriminant analysis effect size showed the differential bacteria screened among the four kinds of body fluids were variant in two sequencing results. CONCLUSION Both sequencing methods could be used to detect bacterial diversities in four different types of body fluids and provide potential tools for microbes to identify the four kinds of body fluids in forensic investigation, in which full-length sequencing could provide more accurate taxonomy.
Collapse
Affiliation(s)
- Shuyan Mei
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ming Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yanfang Liu
- School of Nursing, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Congying Zhao
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hui Xu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yating Fang
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bofeng Zhu
- Multi-Omics Innovative Research Center of Forensic Identification; Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, P. R. China.
| |
Collapse
|
49
|
Gladysheva IV, Chertkov KL, Cherkasov SV, Khlopko YA, Kataev VY, Valyshev AV. Probiotic Potential, Safety Properties, and Antifungal Activities of Corynebacterium amycolatum ICIS 9 and Corynebacterium amycolatum ICIS 53 Strains. Probiotics Antimicrob Proteins 2021; 15:588-600. [PMID: 34807410 DOI: 10.1007/s12602-021-09876-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to evaluate the probiotic characteristics and safety and to study the antifungal activity of C. amycolatum ICIS 9 and C. amycolatum ICIS 53 against Candida spp. The probiotic potential and safety properties were assessed by standard parameters. Both strains showed good survival at pH 3 for 3 h and high tolerance to 0.3% bile salts after 4 h of incubation. The indicators of hydrophobicity, autoaggregation, and surface tension for ICIS 9 were 89.43% (n-hexane) and 73.96% (xylene) and ranged from 13.13 to 39.86% and 34.27 mN/m, respectively. For ICIS 53, they were 59.95% (n-hexane) and 45.68% (xylene), from 35.58 to 51.53% and 32.40 mN/m, respectively. The strains ICIS 9 and ICIS 53 exhibited varying levels of coaggregation with all eight examined bacterial pathogens. The ICIS 9 strain was resistant to amikacin, amoxicillin, clarithromycin, chloramphenicol, ciprofloxacin, and gentamycin. ICIS 53 was resistant only to ciprofloxacin. The cell-free supernatant of strains ICIS 9 and ICIS 53 showed good antimicrobial and antibiofilm activity against 10 pathogenic vaginal and intestinal isolates of Candida spp. The CFS of ICIS 9 was more active against intestinal isolates, and the CFS of ICIS 53 showed good antimicrobial activity against vaginal isolates while inhibiting the growth of 2 out of 5 Candida spp. isolated from the intestine. Both of the strains were capable of reducing the biofilm formation of Candida fungi. In the case of the vaginal isolates of C. krusei V1, the results showed that the inhibition levels of ICIS 9 and ICIS 53 were 36.75 and 11.4%, respectively. In the case of C. albicans (V2, V3, V7, and V8), the inhibition of biofilm formation was no more than 7.07%. ICIS 9 and ICIS 53 also significantly inhibited biofilm formation of C. krusei 2613 intestinal isolates by 42.75 and 41.87%, respectively, with ICIS 9 inhibiting biofilm formation of C. albicans (2607, 2311, 2615, and 2615) from 3.38 to 15.69% and ICIS 53 from 5.95 to 23.48%. None of the strains showed DNase, haemolytic, or gelatinase activities. The results obtained revealed that ICIS 9 and ICIS 53 have safe properties and have the potential to be developed as probiotics.
Collapse
Affiliation(s)
- I V Gladysheva
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia.
| | - K L Chertkov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - S V Cherkasov
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - Y A Khlopko
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - V Y Kataev
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | - A V Valyshev
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
50
|
Shifts in Vaginal Bacterial Community Composition Are Associated With Vaginal Mesh Exposure. Female Pelvic Med Reconstr Surg 2021; 27:e681-e686. [PMID: 34705800 DOI: 10.1097/spv.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the relationship between vaginal mesh exposure and vaginal bacterial community composition. METHODS Vaginal swab samples were collected from 13 women undergoing excision of vaginal mesh with vaginal mesh exposure. Samples were collected at the midvagina, site of exposure, and underneath the vaginal epithelium at the exposure. Control samples were collected vaginally during 15 new patient examinations. For all samples, we extracted genomic DNA and polymerase chain reaction amplified and sequenced the 16S rRNA gene V4 region. We tested for differences in the microbiota among control and exposure samples with PERMANOVA tests of beta diversity measures (Morisita-Horn dissimilarity) and Wilcoxon rank sum tests of Lactobacillus distribution. RESULTS Vaginal bacterial communities in both control and case groups were divided into 2 primary community types, one characterized by Lactobacillus dominance (>50% of community) and the other by low Lactobacillus and a high diversity of vaginal anaerobes. In 10 of 13 case women, bacterial communities were highly similar between the 3 vaginal sites (adonis R2 = 0.86, P = 0.0099). In the 3 women with community divergence, all 3 were characterized by decreased Lactobacillus abundance at the exposure site. Overall, Lactobacillus abundance was lower at the site of mesh exposure and under the epithelium than in the experimental control (W = 137, P = 0.072, r = 0.41; W = 146, P = 0.025, r = 0.50). Common putative pathogenic mesh colonizing bacteria were common (in 51 of 54 samples), but generally not abundant (median relative abundance = 0.014%). CONCLUSIONS In vaginal mesh exposure cases, a woman is more likely to have a diverse, non-Lactobacillus-dominant community.
Collapse
|