1
|
Bandini M, Ross JS, Raggi D, Gallina A, Colecchia M, Lucianò R, Giannatempo P, Farè E, Pederzoli F, Bianchi M, Colombo R, Gandaglia G, Fossati N, Marandino L, Capitanio U, Deho' F, Ali SM, Madison R, Chung JH, Salonia A, Briganti A, Montorsi F, Necchi A. Predicting the Pathologic Complete Response After Neoadjuvant Pembrolizumab in Muscle-Invasive Bladder Cancer. J Natl Cancer Inst 2021; 113:48-53. [PMID: 32516377 DOI: 10.1093/jnci/djaa076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/28/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In the PURE-01 study (NCT02736266), we aimed to evaluate the ability to predict the pathologic complete response (pT0N0) after pembrolizumab by using clinical and tumor biomarkers. METHODS In an open-label, single-arm, phase 2 study, 3 courses of 200 mg pembrolizumab preceding radical cystectomy were administered in patients with T2-4aN0M0 muscle-invasive bladder cancer. The analyses included a comprehensive genomic profiling and programmed cell-death-ligand-1 (PD-L1)-combined positive score assessment (CPS; Dako 22C3 antibody) of pre- and posttherapy samples. Multivariable logistic regression analyses evaluated baseline clinical T stage and tumor biomarkers in association with pT0N0 response. Corresponding coefficients were used to develop a calculator of pT0N0 response based on the tumor mutational burden (TMB), CPS, and the clinical T stage. Decision-curve analysis was also performed. All statistical tests were 2-sided. RESULTS From February 2017 to June 2019, 112 patients with biomarker data were enrolled (105 with complete TMB and CPS data). Increasing TMB and CPS values featured a linear association with logistic pT0N0 probabilities (P = .02 and P = .004, respectively). For low TMB values (≤11 mut/Mb, median value, n = 53), pT0N0 probability was not associated with increasing CPS. Conversely, for high TMB values (>11 mut/Mb, n = 52), pT0N0 was statistically significantly associated with higher CPS (P = .004). The C index of the pT0N0 probability calculator was 0.77. On decision-curve analysis, the net benefit of the model was higher than the "treat-all" option within the clinically meaningful threshold probabilities of 40%-50%. CONCLUSIONS The study presents a composite biomarker-based pT0N0 probability calculator that reveals the complex interplay between TMB and CPS, added to the clinical T stage.
Collapse
Affiliation(s)
- Marco Bandini
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Daniele Raggi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Gallina
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | | | - Roberta Lucianò
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | | | - Elena Farè
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Bianchi
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Renzo Colombo
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | | | - Nicola Fossati
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Federico Deho'
- San Raffaele Hospital and Scientific Institute, Milan, Italy
| | | | | | | | - Andrea Salonia
- San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Necchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
2
|
Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5:90. [PMID: 29157300 PMCID: PMC5696728 DOI: 10.1186/s40425-017-0294-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence.
Collapse
Affiliation(s)
- Adam Ajina
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John Maher
- King’s College London, CAR Mechanics Group, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London, SE1 9RT UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
3
|
Guennoun A, Sidahmed H, Maccalli C, Seliger B, Marincola FM, Bedognetti D. Harnessing the immune system for the treatment of melanoma: current status and future prospects. Expert Rev Clin Immunol 2016; 12:879-93. [PMID: 27070898 DOI: 10.1080/1744666x.2016.1176529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When malignant melanoma is diagnosed early, surgical resection is the intervention of choice and is often curative, but many patients present with unresectable disease at later stages. Due to its complex etiology paired with well-documented chemoresistance and high metastatic potential, patients with advanced melanoma had a poor prognosis, and the treatment of this disease remained unsatisfactory for many years. Recently, targeted therapy, immune checkpoint inhibition, or combinatory approaches have revolutionized the therapeutic options of melanoma allowing considerable improvement in disease control and survival. In this review we will summarize these novel therapeutic strategies with particular focus on combinatory immunotherapies and further discuss recent data derived from immunogenomic studies and potential options to improve the therapeutic efficacy of immune modulatory approaches.
Collapse
Affiliation(s)
- Andrea Guennoun
- a Division of Translational Medicine , Research Branch, Sidra Medical and Research Center , Doha , Qatar
| | - Heba Sidahmed
- a Division of Translational Medicine , Research Branch, Sidra Medical and Research Center , Doha , Qatar
| | - Cristina Maccalli
- b Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine , Research Branch, Sidra Medical and Research Center , Doha , Qatar
| | - Barbara Seliger
- c Institute of Medical Immunology , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Francesco M Marincola
- d Office of the Chief Research Officer (CRO) , Research Branch, Sidra Medical and Research Center , Doha , Qatar
| | - Davide Bedognetti
- b Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine , Research Branch, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
4
|
Bedognetti D, Hendrickx W, Ceccarelli M, Miller LD, Seliger B. Disentangling the relationship between tumor genetic programs and immune responsiveness. Curr Opin Immunol 2016; 39:150-8. [PMID: 26967649 DOI: 10.1016/j.coi.2016.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar.
| | - Wouter Hendrickx
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|