1
|
Galal SM, El Kiki SM, Elgazzar EM. The Potential Therapeutic Approach of Ursodeoxycholic Acid as a Potent Activator of ACE-2 on Cerebral Disorders Induced by γ-irradiation in Rats. Cell Biochem Funct 2024; 42:e70024. [PMID: 39660593 DOI: 10.1002/cbf.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
The present investigation assesses ursodeoxycholic acid's efficacy (UDCA) as an ACE2 activator against gamma irradiation through activating the renin-angiotensin system's (RAS) beneficial axis, ACE2/Ang-(1-7)/Mas1 via its profitable influence on inflammation, oxidative stress, and neuronal damage caused by irradiation (IRR). Four groups of rats were treated as follows: control group, group receiving UDCA (100 mg/kg/day) for 14 days by gavage, group irradiated at 6 Gy, and group receiving UDCA post-irradiation for 14 days. The results revealed that gamma-irradiation (6 Gy) caused a substantial drop in the cerebral ACE2/Ang-(1-7)/Mas1 axis and remarkably increased the expression of cerebral inflammatory mediators: tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6) and interleukin-1β (IL-1β) combined with significant elevation in cyclooxygenase-II (COX-II), (NADPH) oxidases (NOX4), lipooxygenase (LOX) activities and nitric oxide (NO) content. Moreover, it greatly enhanced the reduction in N-methyl-d-aspartate (NMDA) level, while dramatically increasing gamma-aminobutyric acid (GABA) level and neuronal nitric oxide synthases (nNOS) enzyme activity in cerebral tissue homogenate. Irradiated rats' brain sections underwent histological investigation using hematoxylin and eosin staining, which revealed cellular damage and a pathological appearance. The administration of UDCA inverts these unusual alterations. In conclusion, UDCA treatment efficiently normalizes the above-mentioned pathological abnormalities and avoids the development of IRR-associated neurological dysfunction by upregulating the beneficial axis of RAS in the brain. Hence, ursodeoxycholic acid presents a novel option for patient care during radiotherapy.
Collapse
Affiliation(s)
- Shereen Mohamed Galal
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shereen Mohamed El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman Mahmoud Elgazzar
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
3
|
Rousseau AF, Martindale R. Nutritional and metabolic modulation of inflammation in critically ill patients: a narrative review of rationale, evidence and grey areas. Ann Intensive Care 2024; 14:121. [PMID: 39088114 PMCID: PMC11294317 DOI: 10.1186/s13613-024-01350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Inflammation is the hallmark of critical illness and triggers the neuro-endocrine stress response and an oxidative stress. Acute inflammation is initially essential for patient's survival. However, ongoing or exaggerated inflammation, due to persistent organ dysfunction, immune dysfunction or poor inflammation resolution, is associated to subsequent hypermetabolism and hypercatabolism that severely impact short and long-term functional status, autonomy, as well as health-related costs. Modulation of inflammation is thus tempting, with the goal to improve the short- and long-term outcomes of critically ill patients. FINDINGS Inflammation can be modulated by nutritional strategies (including the timing of enteral nutrition initiation, the provision of some specific macronutrients or micronutrients, the use of probiotics) and metabolic treatments. The most interesting strategies seem to be n-3 polyunsaturated fatty acids, vitamin D, antioxidant micronutrients and propranolol, given their safety, their accessibility for clinical use, and their benefits in clinical studies in the specific context of critical care. However, the optimal doses, timing and route of administration are still unknown for most of them. Furthermore, their use in the recovery phase is not well studied and defined. CONCLUSION The rationale to use strategies of inflammation modulation is obvious, based on critical illness pathophysiology and based on the increasingly described effects of some nutritional and pharmacological strategies. Regretfully, there isn't always substantial proof from clinical research regarding the positive impacts directly brought about by inflammation modulation. Some arguments come from studies performed in severe burn patients, but such results should be transposed to non-burn patients with caution. Further studies are needed to explore how the modulation of inflammation can improve the long-term outcomes after a critical illness.
Collapse
Affiliation(s)
- Anne-Françoise Rousseau
- Intensive Care Department, University Hospital of Liège, University of Liège, Avenue de l'Hôpital, 1/B35, Liège, B-4000, Belgium.
- GIGA-I3 Thematic Unit, Inflammation and Enhanced Rehabilitation Laboratory (Intensive Care), GIGA-Research, University of Liège, Liège, Belgium.
| | - Robert Martindale
- Department of Surgery, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
4
|
Isidoro-Ayza M, Lorch JM, Klein BS. The skin I live in: Pathogenesis of white-nose syndrome of bats. PLoS Pathog 2024; 20:e1012342. [PMID: 39207947 PMCID: PMC11361426 DOI: 10.1371/journal.ppat.1012342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The emergence of white-nose syndrome (WNS) in North America has resulted in mass mortalities of hibernating bats and total extirpation of local populations. The need to mitigate this disease has stirred a significant body of research to understand its pathogenesis. Pseudogymnoascus destructans, the causative agent of WNS, is a psychrophilic (cold-loving) fungus that resides within the class Leotiomycetes, which contains mainly plant pathogens and is unrelated to other consequential pathogens of animals. In this review, we revisit the unique biology of hibernating bats and P. destructans and provide an updated analysis of the stages and mechanisms of WNS progression. The extreme life history of hibernating bats, the psychrophilic nature of P. destructans, and its evolutionary distance from other well-characterized animal-infecting fungi translate into unique host-pathogen interactions, many of them yet to be discovered.
Collapse
Affiliation(s)
- Marcos Isidoro-Ayza
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jeffrey M. Lorch
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Bruce S. Klein
- Department of Pediatrics, Medicine and Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Tian X, Guo J, Gu C, Wang H, Wang D, Liao Y, Zhu S, Zhao M, Gu Z. Ergothioneine-Sodium Hyaluronate Dressing: A Promising Approach for Protecting against Radiation-Induced Skin Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29917-29929. [PMID: 38813785 DOI: 10.1021/acsami.4c05416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Radiotherapy commonly causes damage to healthy tissues, particularly radiation-induced skin injury (RISI) that affects a significant majority of patients undergoing radiotherapy. Effective treatments for RISI are lacking. This study focuses on the pathogenesis of RISI, which primarily involves oxidative stress. Excessive reactive oxygen species (ROS) generation during radiation induces damage to biological macromolecules, triggering oxidative stress and inflammation. To address this, ergothioneine (EGT), a natural and biocompatibile thiol compound with excellent antioxidant activity, is explored as a potential radiation-protective agent. By utilizing its specific transport and absorption in the skin tissue, as well as its efficient and stable clearance of radiation-induced "ROS storm", EGT is combined with sodium hyaluronate (NaHA) to develop a novel radiation protective dressing suitable for the skin. This EGT-NaHA dressing demonstrates an effective ability to scavenge free radicals and reduce oxidative stress in vitro and in vivo, reducing cellular apoptosis and inflammation. These results demonstrate the protective properties of EGT against RISI, with far-reaching implications for research and development in the field of radioprotection.
Collapse
Affiliation(s)
- Xinyi Tian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junsong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Department of Gastrointestinal Surgery, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Gao W, Wang XY, Wang XJ, Huang L. An integrated signature of clinical metrics and immune-related genes as a prognostic indicator for ST-segment elevation myocardial infarction patient survival. Heliyon 2024; 10:e31247. [PMID: 38813183 PMCID: PMC11133808 DOI: 10.1016/j.heliyon.2024.e31247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Background The immune-inflammatory pathway plays a critical role in myocardial infarction development. However, few studies have systematically explored immune-related genes in relation to myocardial infarction prognosis using bioinformatic analysis. Our study aims to identify differentially expressed immune-related genes(DEIRGs) in ST-segment elevation myocardial infarction (STEMI) patients and investigate their association with clinical outcomes. Materials and methods We conducted a systematic review of Gene Expression Omnibus datasets, selecting GSE49925, GSE60993, and GSE61144 for analysis. DEIRGs were identified using GEO2R and overlapped across the chosen datasets. Functional enrichment analysis elucidated the DEIRGs' biological functions and pathways. We established an optimal prognostic prediction model using LASSO penalized Cox proportional hazards regression. The signature's clinical utility was evaluated through survival analysis, ROC curve assessment, and decision curve analysis. Additionally, we constructed a prognostic nomogram for survival rate prediction. External validation was performed using our own plasma samples. Results The resulting prognostic signature integrated two dysregulated DEIRGs (S100A12 and IL2RB) and two clinical variables (serum creatinine level and Gensini score). This signature effectively stratified patients into low- and high-risk groups. Survival analysis, ROC curve analysis, and decision curve analysis demonstrated its robust predictive performance and clinical utility within the first two years post-disease onset. External validation confirmed significant outcome differences between risk groups. Conclusions Our study establishes a prognostic signature that combines DEIRGs and clinical variables for STEMI patients. The signature exhibits promising predictive capabilities for patient stratification and survival risk assessment.
Collapse
Affiliation(s)
- Wei Gao
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, 300170, PR China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, PR China
- Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, PR China
| | - Xiao-yan Wang
- Institute of Biomedical Science, Fudan University, Shanghai, 200030, PR China
| | - Xing-jie Wang
- Clinical Laboratory of Tianjin Chest Hospital, Tianjin, 300222, PR China
| | - Lei Huang
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, 300170, PR China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, PR China
- Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, PR China
| |
Collapse
|
7
|
Kong Z, Cai S, Xie W, Chen J, Xie J, Yang F, Li Z, Bai X, Liu T. CD4 + T cells ferroptosis is associated with the development of sepsis in severe polytrauma patients. Int Immunopharmacol 2024; 127:111377. [PMID: 38104369 DOI: 10.1016/j.intimp.2023.111377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Immunological disorder remains a great challenge in severe poly-trauma, in which lymphopenia is an important contributor. The purpose of present study is to explore whether ferroptosis, a new manner of programmed cell death (PCD), is involved in the lymphocyte depletion and predictive to the adverse prognosis of severe injuries. PATIENTS AND METHODS Severe polytrauma patients admitted from January 2022 to December 2022 in our trauma center were prospectively investigated. Peripheral blood samples were collected at admission (day 1), day 3 and day 7 from them. Included patients were classified based on whether they developed sepsis or not. Clinical outcomes, systematic inflammatory response, lymphocyte subpopulation, CD4 + T cell ferroptosis were collected, detected and analyzed. RESULTS Notable lymphopenia was observed on the first day after severe trauma and failed to normalize on the 7th day if patients were complicated with sepsis, in which CD4 + T cell was the subset of lymphocyte that depleted most pronouncedly. Lymphocyte loss was significantly correlated with the acute and biphasic systemic inflammatory response. Ferroptosis participated in the death of CD4 + T cells, potentially mediated by the downregulation of xCT-GSH-GPX4 pathway. CD4 + T cells ferroptosis had a conducive predicting value for the development of sepsis following severe trauma. CONCLUSIONS CD4 + T cells ferroptosis occurs early in the acute stage of severe polytrauma, which may become a promising biomarker and therapeutic target for post-traumatic sepsis.
Collapse
Affiliation(s)
- Zhiqiang Kong
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shiqi Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weiming Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiajun Chen
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fan Yang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhanfei Li
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiangjun Bai
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Liu
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
8
|
Luo P, Ji Y, Liu X, Zhang W, Cheng R, Zhang S, Qian X, Huang C. Affected inflammation-related signaling pathways in snake envenomation: A recent insight. Toxicon 2023; 234:107288. [PMID: 37703930 DOI: 10.1016/j.toxicon.2023.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Snake envenomation is well known to cause grievous pathological signs, including haemorrhagic discharge, necrosis, and respiratory distress. However, inflammatory reactions are also common envenoming manifestations that lead to successive damage, such as oedema, ulceration, lymphadenectasis, systemic inflammatory response syndrome (SIRS) and even multiple organ dysfunction syndrome (MODS). Interference with the inflammatory burst is hence important in the clinical treatment of snake envenomation. Here, we summarize the typical snake toxins (or venoms) that cause inflammatory reactions and the underlying signaling pathways. In brief, inflammatory reactions are usually triggered by snake venom phospholipase A2 (svPLA2), snake venom metalloprotease (SVMP), snake venom serine protease (SVSP) and C-type lectin/snaclec (CTL) as well as disintegrin (DIS) via multiple signaling pathways. They are nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), janus kinase/signal transducer and activator of transcription (JAK-STAT) and phosphoinositide 3-Kinase/protein kinase B (PI3K/PKB also called PI3K-AKT) signaling pathways. Activation of these pathways promotes the expression of pro-inflammatory molecules such as cytokines, especially interleukin-1β (IL-1β) which causes further inflammatory cascades and manifestations, such as swelling, fever, pain, and severe complications. Remarkably, almost half of introduced snake toxins (or venoms) have anti-inflammatory effects through blocking these pathways and suppressing the expression of pro-inflammatory molecules. Investigation of affected inflammation-related signaling pathways is meaningful to achieve better clinical treatment.
Collapse
Affiliation(s)
- Peiyi Luo
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Yuxin Ji
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiaohan Liu
- Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| | - Weiyun Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Ruoxi Cheng
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Shuxian Zhang
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Xiao Qian
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| | - Chunhong Huang
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330000, PR China.
| |
Collapse
|
9
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Cell-Free DNA in Plasma and Serum Indicates Disease Severity and Prognosis in Blunt Trauma Patients. Diagnostics (Basel) 2023; 13:diagnostics13061150. [PMID: 36980458 PMCID: PMC10047705 DOI: 10.3390/diagnostics13061150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Trauma is still a major cause of mortality in people < 50 years of age. Biomarkers are needed to estimate the severity of the condition and the patient outcome. Methods: Cell-free DNA (cfDNA) and further laboratory markers were determined in plasma and serum of 164 patients at time of admission to the emergency room. Among them were 64 patients with severe trauma (Injury Severity Score (ISS) ≥ 16), 51 patients with moderate trauma (ISS < 16) and 49 patients with single fractures (24 femur neck and 25 ankle fractures). Disease severity was objectified by ISS and Glasgow Coma Scale (GCS). Results: cfDNA levels in plasma and serum were significantly higher in patients with severe multiple trauma (SMT) than in those with moderate trauma (p = 0.002, p = 0.003, respectively) or with single fractures (each p < 0.001). CfDNA in plasma and serum correlated very strongly with each other (R = 0.91; p < 0.001). The AUC in ROC curves for identification of SMT patients was 0.76 and 0.74 for cfDNA in plasma and serum, respectively—this was further increased to 0.84 by the combination of cfDNA and hemoglobin. Within the group of multiple trauma patients, cfDNA levels were significantly higher in more severely injured patients and patients with severe traumatic brain injury (GCS ≤ 8 versus GCS > 8). Thirteen (20.3%) of the multiple trauma patients died during the first week after trauma. Levels of cfDNA were significantly higher in non-surviving patients than in survivors (p < 0.001), reaching an AUC of 0.81 for cfDNA in both, plasma and serum, which was further increased by the combination with hemoglobin and leukocytes. Conclusions: cfDNA is valuable for estimation of trauma severity and prognosis of trauma patients.
Collapse
|
11
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Proskurina A, Nikolin V, Popova N, Varaksin N, Ryabicheva T, Ershova E, Kostyuk S, Leplina O, Ostanin A, Chernykh E, Bogachev S. Comparing the Biological Properties of Double-Stranded DNA Extracted from Human and Porcine Placenta and Salmon Sperm. Rep Biochem Mol Biol 2023; 11:577-589. [PMID: 37131888 PMCID: PMC10149128 DOI: 10.52547/rbmb.11.4.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023]
Abstract
Background Double-stranded fragmented extracellular DNA is a participant, inducer, and indicator of various processes occurring in the organism. When investigating the properties of extracellular DNA, the question regarding the specificity of exposure to DNA from different sources has always been raised. The aim of this study was to perform comparative assessment of biological properties of double-stranded DNA obtained from the human placenta, porcine placenta and salmon sperm. Methods The intensity of leukocyte-stimulating effect of different dsDNA was assessed in mice after cyclophosphamide-induced cytoreduction. The stimulatory effect of different dsDNA on maturation and functions of human dendritic cells and the intensity of cytokine production by human whole blood cells was analyzed ex vivo. The oxidation level of the dsDNA was also compared. Results Human placental DNA exhibited the strongest leukocyte-stimulating effect. DNA extracted from human and porcine placenta exhibited similar stimulatory action on maturation of dendritic cells, allostimulatory capacity, and ability of dendritic cells to induce generation of cytotoxic CD8+CD107a+ T cells in the mixed leukocyte reaction. DNA extracted from salmon sperm stimulated the maturation of dendritic cells, while having no effect on their allostimulatory capacity. DNA extracted from human and porcine placenta was shown to exhibit a stimulatory effect on cytokine secretion by human whole blood cells. The observed differences between the DNA preparations can be caused by the total methylation level and are not related to differences in oxidation level of DNA molecules. Conclusions Human placental DNA exhibited the maximum combination of all biological effects.
Collapse
Affiliation(s)
- Anastasia Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Valeriy Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nelly Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nikolay Varaksin
- JSC “Vector-Best”, Koltsovo, Novosibirsk Region, 630559, Russia.
| | | | | | | | - Olga Leplina
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Alexandr Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Elena Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, 630099, Russia.
| | - Sergey Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Corresponding author: Sergey Bogachev; Tel: +7 383 363 49 63; E-mail:
| |
Collapse
|
13
|
Foster MA, Bentley C, Hazeldine J, Acharjee A, Nahman O, Shen-Orr SS, Lord JM, Duggal NA. Investigating the potential of a prematurely aged immune phenotype in severely injured patients as predictor of risk of sepsis. Immun Ageing 2022; 19:60. [PMID: 36471343 PMCID: PMC9720981 DOI: 10.1186/s12979-022-00317-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Traumatic injury elicits a hyperinflammatory response and remodelling of the immune system leading to immuneparesis. This study aimed to evaluate whether traumatic injury results in a state of prematurely aged immune phenotype to relate this to clinical outcomes and a greater risk of developing additional morbidities post-injury. METHODS AND FINDINGS Blood samples were collected from 57 critically injured patients with a mean Injury Severity Score (ISS) of 26 (range 15-75 years), mean age of 39.67 years (range 20-84 years), and 80.7% males, at days 3, 14, 28 and 60 post-hospital admission. 55 healthy controls (HC), mean age 40.57 years (range 20-85 years), 89.7% males were also recruited. The phenotype and frequency of adaptive immune cells were used to calculate the IMM-AGE score, an indicator of the degree of phenotypic ageing of the immune system. IMM-AGE was elevated in trauma patients at an early timepoint (day 3) in comparison with healthy controls (p < 0.001), driven by an increase in senescent CD8 T cells (p < 0.0001), memory CD8 T cells (p < 0.0001) and regulatory T cells (p < 0.0001) and a reduction in naïve CD8 T cells (p < 0.001) and overall T cell lymphopenia (p < 0 .0001). These changes persisted to day 60. Furthermore, the IMM-AGE scores were significantly higher in trauma patients (mean score 0.72) that developed sepsis (p = 0.05) in comparison with those (mean score 0.61) that did not. CONCLUSIONS The profoundly altered peripheral adaptive immune compartment after critical injury can be used as a potential biomarker to identify individuals at a high risk of developing sepsis and this state of prematurely aged immune phenotype in biologically young individuals persists for up to two months post-hospitalisation, compromising the host immune response to infections. Reversing this aged immune system is likely to have a beneficial impact on short- and longer-term outcomes of trauma survivors.
Collapse
Affiliation(s)
- Mark A Foster
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Conor Bentley
- NIHR-Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ornit Nahman
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Chaoul V, Awad M, Harb F, Najjar F, Hamade A, Nabout R, Soueid J. Saffron Extract Attenuates Anxiogenic Effect and Improves Cognitive Behavior in an Adult Zebrafish Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms231911600. [PMID: 36232902 PMCID: PMC9570094 DOI: 10.3390/ijms231911600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) has the highest mortality rates worldwide, yet effective treatment remains unavailable. TBI causes inflammatory responses, endoplasmic reticulum stress, disruption of the blood-brain barrier and neurodegeneration that lead to loss of cognition, memory and motor skills. Saffron (Crocus sativus L.) is known for its anti-inflammatory and neuroprotective effects, which makes it a potential candidate for TBI treatment. Zebrafish (Danio rerio) shares a high degree of genetic homology and cell signaling pathways with mammals. Its active neuro-regenerative function makes it an excellent model organism for TBI therapeutic drug identification. The objective of this study was to assess the effect of saffron administration to a TBI zebrafish model by investigating behavioral outcomes such as anxiety, fear and memory skills using a series of behavioral tests. Saffron exhibited anxiolytic effect on anxiety-like behaviors, and showed prevention of fear inhibition observed after TBI. It improved learning and enhanced memory performance. These results suggest that saffron could be a novel therapeutic enhancer for neural repair and regeneration of networks post-TBI.
Collapse
Affiliation(s)
- Victoria Chaoul
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
| | - Maria Awad
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
| | - Frederic Harb
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Al Kurah P.O. Box 100, Lebanon
| | - Fadia Najjar
- Laboratoire d’Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
| | - Aline Hamade
- Laboratoire d’Innovation Thérapeutique, Departments of Biology, Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
| | - Rita Nabout
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
| | - Jihane Soueid
- Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Jdeidet P.O. Box 90656, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence:
| |
Collapse
|
15
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
16
|
Xu CF, Huo MC, Huang JH, Liu CF, Xu W. Early changes in white blood cell, C-reactive protein and procalcitonin levels in children with severe multiple trauma. World J Emerg Med 2022; 13:448-452. [PMID: 36636564 PMCID: PMC9807391 DOI: 10.5847/wjem.j.1920-8642.2022.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To analyze early changes in white blood cells (WBCs), C-reactive protein (CRP) and procalcitonin (PCT) in children with multiple trauma, before secondary inflammation develops. METHODS This single-center retrospective study collected data from patients with blunt traumatic injury admitted to the pediatric intensive care unit (PICU). According to the prognostic outcome of 28 d after admission to the PICU, patients were divided into survival group (n=141) and non-survival group (n=36). Characteristics between the two groups were compared. Receiver operation characteristic (ROC) curve analysis was conducted to evaluate the capacity of different biomarkers as predictors of mortality. RESULTS The percentages of children with elevated WBC, CRP, and PCT levels were 81.36%, 31.07%, and 95.48%, respectively. Patients in the non-survival group presented a statistically significantly higher injury severity score (ISS) than those in the survival group: 37.17±16.11 vs. 22.23±11.24 (t=6.47, P<0.01). WBCs were also higher in non-survival group than in the survival group ([18.70±8.42]×109/L vs. [15.89±6.98] ×109/L, t=2.065, P=0.040). There was no significant difference between the survival and non-survival groups in PCT or CRP. The areas under the ROC curves of PCT, WBC and ISS for predicting 28-day mortality were 0.548 (P=0.376), 0.607 (P=0.047) and 0.799 (P<0.01), respectively. CONCLUSIONS Secondary to multiple trauma, PCT levels increased in more patients, even if their WBC and CRP levels remained unchanged. However, early rising WBC and ISS were superior to PCT at predicting the mortality of multiple trauma patients in the PICU.
Collapse
Affiliation(s)
- Cai-fang Xu
- The Pediatrics Department, Shengjing Hospital of China Medical University, Shenyang 110004, China,Department of Critical Care Medicine, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Ming-chao Huo
- The Pediatrics Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin-hui Huang
- The Pediatrics Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chun-feng Liu
- The Pediatrics Department, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Xu
- The Pediatrics Department, Shengjing Hospital of China Medical University, Shenyang 110004, China,Corresponding Author: Wei Xu,
| |
Collapse
|
17
|
Morimoto A, Shioda Y, Sakamoto K, Imamura T, Imashuku S. Bone lesions of Langerhans cell histiocytosis triggered by trauma in children. Pediatr Int 2022; 64:e15199. [PMID: 35770832 DOI: 10.1111/ped.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bone lesions of Langerhans cell histiocytosis (LCH) may be triggered by trauma. METHODS The characteristics of pediatric patients in the JLSG-02 study cohort who developed a bone lesion at the trauma site at diagnosis of LCH were analyzed retrospectively. RESULTS Of the 261 pediatric patients with LCH, 12 (4.6%), of median age 4.9 years, had trauma-triggered bone LCH lesions at diagnosis, making them significantly older than the remaining patients (P = 0.006). Trauma sites included the craniofacial regions in 10 patients and the lumbar spine and pelvis in one patient each. At the time of trauma, six patients had a bump at the site, whereas none had extradural hematomas or bone fractures. The median time from trauma to onset was 4 weeks. Of these 12 patients, three had isolated bone (IB) disease; four had multifocal bone (MFB) disease, including the bone lesion at the trauma site; and five had multisystem disease, including four with lesions in neighboring tissue and one with polyuria (posterior pituitary lesion) more than 1 year before the trauma-triggered bone lesion. Treatment responses were good in all 12 patients and none died, but relapses were observed in two patients, one each with IB and MFB disease. CONCLUSIONS About 5% of pediatric patients with LCH developed new trauma-triggered bone lesions at a relatively old age. These lesions can manifest as IB, or, in patients with underlying LCH diseases, as MFB or multisystem. Good clinical outcomes were observed in these patients.
Collapse
Affiliation(s)
- Akira Morimoto
- Department of Pediatrics, Showa Innan General Hospital, Komagane, Japan.,Department of Pediatrics, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yoko Shioda
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Imashuku
- Department of Laboratory Medicine, Uji-Tokushukai Medical Center, Uji, Kyoto, Japan
| | | |
Collapse
|
18
|
Effectiveness of preconditioned adipose-derived mesenchymal stem cells with photobiomodulation for the treatment of diabetic foot ulcers: a systematic review. Lasers Med Sci 2021; 37:1415-1425. [PMID: 34697696 DOI: 10.1007/s10103-021-03451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
The primary goal of this systematic review article was to provide an outline of the use of diabetic autologous adipose-derived mesenchymal stem cells (DAAD-MSCs) in the treatment of wounds and ulcers in animal models and patients with diabetes mellitus (DM). The secondary goal was to present the outcomes of pretreatment of diabetic adipose-derived mesenchymal stem cells (DAD-MSCs) with probable different agents in the treatment of diabetic foot ulcers (DFUs) and wounds. In view of possible clinical applications of AD-MSC-mediated cell therapy for DFUs, it is essential to evaluate the influence of DM on AD-MSC functions. Nevertheless, there are conflicting results about the effects of DAAD-MSCs on accelerating wound healing in animals and DM patients. Multistep research of the MEDLINE, PubMed, Embase, Clinicaltrials.gov, Scopus database, and Cochrane databases was conducted for abstracts and full-text scientific papers published between 2000 and 2020. Finally, 5 articles confirmed that the usage of allogeneic or autologous AD-MSCs had encouraging outcomes on diabetic wound healing. One study reported that DM changes AD-MSC function and therapeutic potential, and one article recommended that the pretreatment of diabetic allogeneic adipose-derived mesenchymal stem cells (DAlD-MSCs) was more effective in accelerating diabetic wound healing. Recently, much work has concentrated on evolving innovative healing tactics for hastening the repair of DFUs. While DM alters the intrinsic properties of AD-MSCs and impairs their function, one animal study showed that the pretreatment of DAlD-MSCs in vitro significantly increased the function of DAlD-MSCs compared with DAlD-MSCs without any treatment. Preconditioning diabetic AD-MSCs with pretreatment agents like photobiomodulation (PBM) significantly hastened healing in delayed-healing wounds. It is suggested that further animal and human studies be conducted in order to provide more documentation. Hopefully, these outcomes will help the use of DAAD-MSCs plus PBM as a routine treatment protocol for healing severe DFUs in DM patients.
Collapse
|
19
|
Zhao M, Sun YD, Yin M, Zhao JJ, Li SA, Li G, Zhang F, Xu J, Meng FY, Zhang B, Sun XY, Zhang JP, Cheng T, Zhang XB. Modulation of Immune Reaction in Hydrodynamic Gene Therapy for Hemophilia A. Hum Gene Ther 2021; 33:404-420. [PMID: 34555961 DOI: 10.1089/hum.2021.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A (HA) is a monogenic disease characterized by plasma clotting factor 8 (F8) deficiency due to F8 mutation. We have been attempting to cure HA permanently using a CRISPR-Cas9 gene-editing strategy. Here, we induced targeted integration of BDDF8 (B-domain-deleted F8) gene into the albumin locus of HA mice by hydrodynamic tail vein injection of editing plasmid vectors. One week after treatment, a high F8 activity ranging from 70% to 280% of normal serum levels was observed in all treated HA mice but dropped to background levels 3-5 weeks later. We found that the humoral immune reaction targeting F8 is the predominant cause of the decreased F8 activity. We hypothesized that hydrodynamic injection-induced liver damage triggered the release of large quantities of inflammatory cytokines. However, co-injection of plasmids expressing a dozen immunomodulatory factors failed to curtail the immune reaction and stabilize F8 activity. The spCas9 plasmid carrying a miR-142-3p target sequence alleviated the cellular immune response but was unable to deliver therapeutic efficacy. Strikingly, immunosuppressant cyclo-phosphamide virtually abolished the immune response, leading to a year-long stable F8 level. Our findings should have important implications in developing therapies in mouse models using the hydrodynamic gene delivery approach, highlighting the ne-cessity of modulating the innate immune response triggered by liver damage.
Collapse
Affiliation(s)
- Mei Zhao
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Yi-Dan Sun
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Mengdi Yin
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Juan-Juan Zhao
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China.,Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Si-Ang Li
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Guohua Li
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Feng Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Jing Xu
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Fei-Ying Meng
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Beldon Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Xin-Yu Sun
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Jian-Ping Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Tao Cheng
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| | - Xiao-Bing Zhang
- Chinese Academy of Medical Sciences Institute of Hematology and Blood Diseases Hospital, 70585, Tianjin, Tianjin, China;
| |
Collapse
|
20
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Impact of uric acid on liver injury and intestinal permeability following resuscitated hemorrhagic shock in rats. J Trauma Acute Care Surg 2021; 89:1076-1084. [PMID: 33231951 DOI: 10.1097/ta.0000000000002868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Multiorgan failure is a consequence of severe ischemia-reperfusion injury after traumatic hemorrhagic shock (HS), a major cause of mortality in trauma patients. Circulating uric acid (UA), released from cell lysis, is known to activate proinflammatory and proapoptotic pathways and has been associated with poor clinical outcomes among critically ill patients. Our group has recently shown a mediator role for UA in kidney and lung injury, but its role in liver and enteric damage after HS remains undefined. Therefore, the objective of this study was to evaluate the role of UA on liver and enteric injury after resuscitated HS. METHODS A murine model of resuscitated HS was treated during resuscitation with a recombinant uricase, a urate oxidase enzyme (rasburicase; Sanofi-Aventis, Canada Inc, Laval, Canada), to metabolize and reduce circulating UA. Biochemical analyses (liver enzymes, liver apoptotic, and inflammatory markers) were performed at 24 hours and 72 hours after HS. Physiological testing for enteric permeability and gut bacterial product translocation measurement (plasma endotoxin) were performed 72 hours after HS. In vitro, HT-29 cells were exposed to UA, and the expression of intercellular adhesion proteins (ZO-1, E-cadherin) was measured to evaluate the influence of UA on enteric permeability. RESULTS The addition of uricase to resuscitation significantly reduced circulating and liver UA levels after HS. It also prevented HS-induced hepatolysis and liver apoptotic/inflammatory mediators at 24 hours and 72 hours. Hemorrhagic shock-induced enteric hyperpermeability and endotoxemia were prevented with uricase. CONCLUSIONS After resuscitated HS, UA is an important mediator in liver and enteric injury. Uric acid represents a therapeutic target to minimize organ damage in polytrauma patients sustaining HS.
Collapse
|
22
|
Ahmadi H, Amini A, Fadaei Fathabady F, Mostafavinia A, Zare F, Ebrahimpour-malekshah R, Ghalibaf MN, Abrisham M, Rezaei F, Albright R, Ghoreishi SK, Chien S, Bayat M. Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther 2020; 11:494. [PMID: 33239072 PMCID: PMC7688005 DOI: 10.1186/s13287-020-01967-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer is the most costly and complex challenge for patients with diabetes. We hereby assessed the effectiveness of different preconditioned adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation protocols on treating an infected ischemic wound in type 1 diabetic rats. METHODS There were five groups of rats: (1) control, (2) control AD-MSCs [diabetic AD-MSCs were transplanted (grafted) into the wound bed], (3) AD-MSC + photobiomodulation in vivo (diabetic AD-MSCs were grafted into the wound, followed by in vivo PBM treatment), (4) AD-MSCs + photobiomodulation in vitro, and (5) AD-MSCs + photobiomodulation in vitro + in vivo. RESULTS Diabetic AD-MSCs preconditioned with photobiomodulation had significantly risen cell function compared to diabetic AD-MSC. Groups 3 and 5 had significantly decreased microbial flora correlated to groups 1 and 2 (all, p = 0.000). Groups 2, 3, 4, and 5 had significantly improved wound closure rate (0.4, 0.4, 0.4, and 0.8, respectively) compared to group 1 (0.2). Groups 2-5 had significantly increased wound strength compared to group 1 (all p = 0.000). In most cases, group 5 had significantly better results than groups 2, 3, and 4. CONCLUSIONS Preconditioning diabetic AD-MSCs with photobiomodulation in vitro plus photobiomodulation in vivo significantly hastened healing in the diabetic rat model of an ischemic infected delayed healing wound.
Collapse
Affiliation(s)
- Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mustafa Neshat Ghalibaf
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Abrisham
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehalsadat Rezaei
- University of Kentucky, College of Pharmacy, 789 South Limestone, Lexington, Kentucky 40536 USA
| | | | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY USA
| |
Collapse
|
23
|
Khosravipour A, Amini A, Masteri Farahani R, Zare F, Mostafavinia A, Fallahnezhad S, Akbarzade S, Asgari M, Mohammadbeigi A, Rezaei F, Ghoreishi SK, Chien S, Bayat M. Preconditioning adipose-derived stem cells with photobiomodulation significantly increased bone healing in a critical size femoral defect in rats. Biochem Biophys Res Commun 2020; 531:105-111. [PMID: 32778332 DOI: 10.1016/j.bbrc.2020.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/23/2022]
Abstract
We assessed the combined impacts of human demineralized bone matrix (hDBM) scaffold, adipose-derived stem cells (hADS), and photobiomodulation (PBM) on bone repair of a critical size femoral defect (CSFD) in 72 rats. The rats were divided into six groups: control (group 1); ADS (group 2 - ADS transplanted into hDBM); PBM (group 3 - PBM-treated CSFDs); ADS + PBM in vivo (group 4 - ADS transplanted into hDBM and the CSFDs were treated with PBM in vivo); ADS + PBM in vitro (group 5 - ADS were treated with PBM in vitro, then seeded into hDBM); and ADS + PBM in vitro+in vivo (group 6 - PBM-treated ADS were seeded into hDBM, and the CSFDs were treated with PBM in vivo. At the anabolic phase (2 weeks after surgery), bone strength parameters of the groups 5, 6, and 4 were statistically greater than the control, ADS, and PBM in vivo groups (all, p = 0.000). Computed tomography (CT) scans during the catabolic phase (6 weeks after surgery) of bone healing revealed that the Hounsfield unit (HU) of CSFD in the groups 2 (p = 0.000) and 5 (p = 0.019) groups were statistically greater than the control group. The groups 5, 4, and 6 had significantly increased bone strength parameters compared with the PBM in vivo, control, and ADS groups (all, p = 0.000). The group 5 was statistically better than the groups 4, and 6 (both, p = 0.000). In vitro preconditioned of hADS with PBM significantly increased bone repair in a rat model of CSFD in vivo.
Collapse
Affiliation(s)
- Armin Khosravipour
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Masteri Farahani
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saman Akbarzade
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Asgari
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Mohammadbeigi
- Department of Radiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemehsadat Rezaei
- University of Kentucky College of Pharmacy 789 South Limestone Lexington, Kentucky, 40536, USA.
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Price Institute of Surgical Research, University of Louisville, and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
24
|
Ding J, Li S, Jiang L, Li Y, Zhang X, Song Q, Hayat MA, Zhang JT, Wang H. Laminar Inflammation Responses in the Oligofructose Overload Induced Model of Bovine Laminitis. Front Vet Sci 2020; 7:351. [PMID: 32766286 PMCID: PMC7381234 DOI: 10.3389/fvets.2020.00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Bovine laminitis causes substantial economic losses and animal welfare problems in dairy farms worldwide. Previously published studies have reported that the inflammatory response plays a central role in the pathogenesis of the disease. To our knowledge, inflammation associated with bovine laminitis induced by high levels of exposure to oligofructose (OF) has not been reported and characterized. In fact, the disease manifestations in this model closely approximate those of clinical laminitis. The objective of this study was to characterize the inflammatory response in OF-induced bovine laminitis. A total of 12 Chinese Holstein dairy heifers were utilized in this study. The heifers were randomly divided into two groups, treatment (n = 6) and control (n = 6). The treatment group heifers were administered OF solutions via a stomach tube (dose: 17 g/kg of body weight). Upon development of a lameness score of 2 with consecutive positive reactions in the same claw, they would be humanely euthanized. Control heifers were administered deionized water (dose: 2 L/100 kg of body weight) and humanely euthanized at 72 h. Real-time quantitative PCR (qPCR) assays were performed to determine the messenger RNA (mRNA) concentrations of inflammatory mediators in the lamellae. Concentrations of interleukin (IL)-1β, IL-6, IL-8, C-X-C motif chemokine ligand-1 (CXCL-1), macrophage cationic peptide-2 (MCP-2), E-selectin, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase-1 (iNOS-1), and plasminogen activator inhibitor-1 (PAI-1) were significantly increased (P < 0.05) in the treatment group. No significant difference was found for tumor necrosis factor alpha (TNF-α), IL-10, CXCL-6, and MCP-1. These results demonstrated and characterized the laminar inflammatory response leading to the pathogenesis of bovine laminitis at the early stages.
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Shuaichen Li
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Lihong Jiang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Yuepeng Li
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Xianhao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Qiaozhi Song
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Muhammad A Hayat
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Jian-Tao Zhang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, China
| |
Collapse
|
25
|
Teuben MPJ, Pfeifer R, Teuber H, De Boer LL, Halvachizadeh S, Shehu A, Pape HC. Lessons learned from the mechanisms of posttraumatic inflammation extrapolated to the inflammatory response in COVID-19: a review. Patient Saf Surg 2020; 14:28. [PMID: 32665786 PMCID: PMC7346848 DOI: 10.1186/s13037-020-00253-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Up to 20% of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients develop severe inflammatory complications with diffuse pulmonary inflammation, reflecting acute respiratory distress syndrome (ARDS). A similar clinical profile occurs in severe trauma cases. This review compares pathophysiological and therapeutic principles of severely injured trauma patients and severe coronavirus disease 2019 (COVID-19). The development of sequential organ failure in trauma parallels deterioration seen in severe COVID-19. Based on established pathophysiological models in the field of trauma, two complementary pathways of disease progression into severe COVID-19 have been identified. Furthermore, the transition from local contained disease into systemic and remote inflammation has been addressed. More specifically, the traumatology concept of sequential insults ('hits') resulting in immune dysregulation, is applied to COVID-19 disease progression modelling. Finally, similarities in post-insult humoral and cellular immune responses to severe trauma and severe COVID-19 are described. To minimize additional 'hits' to COVID-19 patients, we suggest postponing all elective surgery in endemic areas. Based on traumatology experience, we propose that immunoprotective protocols including lung protective ventilation, optimal thrombosis prophylaxis, secondary infection prevention and calculated antibiotic therapy are likely also beneficial in the treatment of SARS-CoV-2 infections. Finally, rising SARS-CoV-2 infection and mortality rates mandate exploration of out-of-the box treatment concepts, including experimental therapies designed for trauma care.
Collapse
Affiliation(s)
- Michel P. J. Teuben
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopedic Research, Zurich, Switzerland
- Department of Spine- Neuro- and Special orthopedic Surgery, Rhein-Maas Klinikum Würselen, Aachen, Germany
| | - Roman Pfeifer
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopedic Research, Zurich, Switzerland
| | - Henrik Teuber
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006 Zurich, Switzerland
- Department of Surgery, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Leonard L. De Boer
- Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sascha Halvachizadeh
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopedic Research, Zurich, Switzerland
| | - Alba Shehu
- Department of Trauma and Orthopedic Surgery, Marienhospital, Aachen, Germany
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital Zurich, Raemistrasse 100, 8006 Zurich, Switzerland
- Harald Tscherne Laboratory for Orthopedic Research, Zurich, Switzerland
| |
Collapse
|
26
|
Research progress on mechanism and dosimetry of brainstem injury induced by intensity-modulated radiotherapy, proton therapy, and heavy ion radiotherapy. Eur Radiol 2020; 30:5011-5020. [PMID: 32318844 DOI: 10.1007/s00330-020-06843-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Radiotherapy (RT) is an effective method for treating head and neck cancer (HNC). However, RT may cause side effects during and after treatment. Radiation-induced brainstem injury (BSI) is often neglected due to its low incidence and short survival time and because it is indistinguishable from intracranial tumor progression. It is currently believed that the possible mechanism of radiation-induced BSI includes increased expression of vascular endothelial growth factor and damage of vascular endothelial cells, neurons, and glial cells as well as an inflammatory response and oxidative stress. At present, it is still difficult to avoid BSI even with several advanced RT techniques. Intensity-modulated radiotherapy (IMRT) is the most commonly used therapeutic technique in the field of RT. Compared with early conformal therapy, it has greatly reduced the injury to normal tissues. Proton beam radiotherapy (PBT) and heavy ion radiotherapy (HIT) have good dose distribution due to the presence of a Bragg peak, which not only results in better control of the tumor but also minimizes the dose to the surrounding normal tissues. There are many clinical studies on BSI caused by IMRT, PBT, and HIT. In this paper, we review the mechanism, dosimetry, and other aspects of BSI caused by IMRT, PBT, and HIT.Key Points• Enhanced MRI imaging can better detect radiation-induced BSI early.• This article summarized the dose constraints of brainstem toxicity in clinical studies using different techniques including IMRT, PBT, and HIT and recommended better dose constraints pattern to clinicians.• The latest pathological mechanism of radiation-induced BSI and the corresponding advanced treatment methods will be discussed.
Collapse
|
27
|
Clinical Characteristics, Major Morbidity, and Mortality in Trauma-Related Pediatric Acute Respiratory Distress Syndrome. Pediatr Crit Care Med 2020; 21:122-128. [PMID: 32032263 DOI: 10.1097/pcc.0000000000002175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine the presence, central characteristics, and impact on major morbidity and mortality of trauma-related pediatric acute respiratory distress syndrome. DESIGN Retrospective review of a prospective trauma database. SETTING American College of Surgeons verified level 1 trauma center in an urban setting. PATIENTS Trauma patients age 0 to 18 years old inclusive. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of the 7,382 patients presenting within the 10-year study period, 646 met study criteria for inclusion in the analysis. Trauma-related pediatric acute respiratory distress syndrome was present in 9% of the analyzed cohort. On univariate analysis and compared with those without, trauma-related pediatric acute respiratory distress syndrome occurred more commonly among those with traumatic brain injury (77.2% vs 45.5%; p < 0.001), non-accidental trauma (28.8% vs 10.2%; p < 0.001), and an injury severity score greater than 30 (27.1% vs 3.8%; p 0.001). New or progressive multiple organ dysfunction syndrome was significantly higher in trauma-related pediatric acute respiratory distress syndrome patients (86.7% vs 10.4%; p < 0.001) as was mortality (18.3% vs 3.1%; p < 0.001) than in those without. The presence of trauma-related pediatric acute respiratory distress syndrome (odds ratio, 6.98; 95% CI, 2.95-16.5; p < 0.001), younger age (odds ratio, 0.93; 95% CI, 0.87-0.99; p = 0.038), and worse injury severity (odds ratio, 1.19; 95% CI, 1.14-1.24; p < 0.001) were all independent statistical predictors of new or progressive multiple organ dysfunction syndrome in this retrospective cohort. Mortality in patients without trauma-related pediatric acute respiratory distress syndrome increased with increasing injury severity, whereas mortality in patients with trauma-related pediatric acute respiratory distress syndrome was the same regardless of injury severity. On multivariable regression analysis, while age and injury severity were independent statistical predictors of mortality, trauma-related pediatric acute respiratory distress syndrome was not (odds ratio, 2.35; 95% CI, 0.88-6.28; p = 0.087). CONCLUSIONS Pediatric acute respiratory distress syndrome is present in the pediatric trauma population. Trauma-related pediatric acute respiratory distress syndrome is associated with eight times the organ dysfunction and five times the mortality compared with patients without trauma-related pediatric acute respiratory distress syndrome, yet research in this area is lacking. Further prospective, mechanistic evaluations are essential to understand why these patients are at risk and how to effectively intervene to improve outcomes.
Collapse
|
28
|
Boeno CN, Paloschi MV, Lopes JA, Pires WL, Setúbal SDS, Evangelista JR, Soares AM, Zuliani JP. Inflammasome Activation Induced by a Snake Venom Lys49-Phospholipase A 2 Homologue. Toxins (Basel) 2019; 12:toxins12010022. [PMID: 31906173 PMCID: PMC7020408 DOI: 10.3390/toxins12010022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Snake venom phospholipases A2 (PLA2s) have hemolytic, anticoagulant, myotoxic, oedematogenic, bactericidal, and inflammatory actions. BthTX-I, a Lys49-PLA2 isolated from Bothrops jararacussu venom, is an example of Lys49-PLA2 that presents such actions. NLRP3 is a cytosolic receptor from the NLR family responsible for inflammasome activation via caspase-1 activation and IL-1β liberation. The study of NLRs that recognize tissue damage and activate the inflammasome is relevant in envenomation. Methods: Male mice (18–20 g) received an intramuscular injection of BthTX-I or sterile saline. The serum was collected for creatine-kinase (CK), lactate dehydrogenase (LDH), and interleukin-1β (IL-1β) assays, and muscle was removed for inflammasome activation immunoblotting and qRT-PCR expression for nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 receptor (NLRP3) inflammasome components. Results: BthTX-I-induced inflammation and myonecrosis, shown by intravital microscope, and LDH and CK release, respectively. Mouse treatment with A438079, a P2X7 receptor antagonist, did not modify these effects. BthTX-I induced inflammasome activation in muscle, but P2X7R participation in this effect was not observed. Conclusion: Together, the results showed for the first time that BthTX-I in gastrocnemius muscle induces inflammation and consequently, inflammasome activation via NLRP3 with caspase-1 activation and IL-1β liberation.
Collapse
Affiliation(s)
- Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Jaína Rodrigues Evangelista
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho-RO, Brazil;
- Centro Universitário São Lucas, UniSL, 76805-846 Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, 76812-245 Porto Velho-RO, Brazil; (C.N.B.); (M.V.P.); (J.A.L.); (W.L.P.); (S.d.S.S.); (J.R.E.)
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, 76812-245 Porto Velho-RO, Brazil;
- Correspondence: ; Tel.: +55-69-3219-6010; Fax: +55-69-3219-6000
| |
Collapse
|
29
|
Grazioli S, Dunn-Siegrist I, Pauchard LA, Blot M, Charles PE, Pugin J. Mitochondrial alarmins are tissue mediators of ventilator-induced lung injury and ARDS. PLoS One 2019; 14:e0225468. [PMID: 31756204 PMCID: PMC6874419 DOI: 10.1371/journal.pone.0225468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale Endogenous tissue mediators inducing lung inflammation in the context of ventilator-induced lung injury (VILI) and acute respiratory distress syndrome (ARDS) are ill-defined. Objectives To test whether mitochondrial alarmins are released during VILI, and are associated with lung inflammation. Methods Release of mitochondrial DNA, adenosine triphosphate (ATP), and formyl-Met-Leu-Phe (fMLP) peptide-dependent neutrophil chemotaxis were measured in conditioned supernatants from human alveolar type II-like (A549) epithelial cells submitted to cyclic stretch in vitro. Similar measurements were performed in bronchoalveolar lavage fluids from rabbits submitted to an injurious ventilatory regimen, and from patients with ARDS. Measurements and main results Mitochondrial DNA was released by A549 cells during cell stretching, and was found elevated in BAL fluids from rabbits during VILI, and from ARDS patients. Cyclic stretch-induced interleukin-8 (IL-8) of A549 cells could be inhibited by Toll-like receptor 9 (TLR9) blockade. ATP concentrations were increased in conditioned supernatants from A549 cells, and in rabbit BAL fluids during VILI. Neutrophil chemotaxis induced by A549 cells conditioned supernatants was essentially dependent on fMLP rather than IL-8. A synergy between cyclic stretch-induced alarmins and lipopolysaccharide (LPS) was found in monocyte-derived macrophages in the production of IL-1ß. Conclusions Mitochondrial alarmins are released during cyclic stretch of human epithelial cells, as well as in BAL fluids from rabbits ventilated with an injurious ventilatory regimen, and found in BAL fluids from ARDS patients, particularly in those with high alveolar inflammation. These alarmins are likely to represent the proximal endogenous mediators of VILI and ARDS, released by injured pulmonary cells.
Collapse
Affiliation(s)
- Serge Grazioli
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
- Department of Pediatrics, Division of Neonatal and Pediatric Intensive Care, University Hospital of Geneva, Genève, Switzerland
- * E-mail:
| | - Irène Dunn-Siegrist
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| | - Laure-Anne Pauchard
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Mathieu Blot
- Department of Infectious Diseases, University Hospital of Dijon, Dijon, France
| | - Pierre-Emmanuel Charles
- Intensive Care Unit, University Hospital of Dijon, Dijon, France
- U.M.R. 1231, I.N.S.E.R.M, Burgundy University, Dijon, France
| | - Jérôme Pugin
- Intensive Care Laboratory, Department of Microbiology and Molecular Medicine, University Hospitals of Geneva & Faculty of Medicine, Genève, Switzerland
| |
Collapse
|
30
|
Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3010342. [PMID: 31781332 PMCID: PMC6875293 DOI: 10.1155/2019/3010342] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023]
Abstract
Radiotherapy (RT) is currently one of the leading treatments for various cancers; however, it may cause damage to healthy tissue, with both short-term and long-term side effects. Severe radiation-induced normal tissue damage (RINTD) frequently has a significant influence on the progress of RT and the survival and prognosis of patients. The redox system has been shown to play an important role in the early and late effects of RINTD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the main sources of RINTD. The free radicals produced by irradiation can upregulate several enzymes including nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), lipoxygenases (LOXs), nitric oxide synthase (NOS), and cyclooxygenases (COXs). These enzymes are expressed in distinct ways in various cells, tissues, and organs and participate in the RINTD process through different regulatory mechanisms. In recent years, several studies have demonstrated that epigenetic modulators play an important role in the RINTD process. Epigenetic modifications primarily contain noncoding RNA regulation, histone modifications, and DNA methylation. In this article, we will review the role of oxidative stress and epigenetic mechanisms in radiation damage, and explore possible prophylactic and therapeutic strategies for RINTD.
Collapse
|
31
|
Lin CW, Hung SY, Huang CH, Yeh JT, Huang YY. Diabetic Foot Infection Presenting Systemic Inflammatory Response Syndrome: A Unique Disorder of Systemic Reaction from Infection of the Most Distal Body. J Clin Med 2019; 8:jcm8101538. [PMID: 31557854 PMCID: PMC6832445 DOI: 10.3390/jcm8101538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Diabetic foot infection (DFI) is a major complication of diabetic foot that lead to nontraumatic lower-extremity amputation (LEA). Such distal infection of the body having systemic inflammatory response syndrome (SIRS) is rarely reported. Consecutive patients treated for limb-threatening DFI in a major diabetic foot center in Taiwan were analyzed between the years 2014 to 2017. Clinical factors, laboratory data, perfusion, extent, depth, infection and sensation (PEDIS) wound score in 519 subjects with grade 3 DFI and 203 presenting SIRS (28.1%) were compared. Major LEA and in-hospital mortality were defined as poor prognosis. Patients presenting SIRS had poor prognosis compared with those with grade 3 DFI (14.3% versus 6.6% for major LEA and 6.4% versus 3.5% for in-hospital mortality). Age, wound size, and HbA1c were independent risk factors favoring SIRS presentation. Perfusion grade 3 (odds ratio 3.37, p = 0.044) and history of major adverse cardiac events (OR 2.41, p = 0.036) were the independent factors for poor prognosis in treating patients with DFI presenting SIRS. SIRS when presented in patients with DFI is not only limb- but life-threatening as well. Clinicians should be aware of the clinical factors that are prone to develop and those affecting the prognosis in treating patients with limb-threatening foot infections.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| | - Shih-Yuan Hung
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| | - Chung-Huei Huang
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| | - Jiun-Ting Yeh
- Department of Plastic surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| | - Yu-Yao Huang
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
32
|
Extracellular Mitochondrial DNA and N-Formyl Peptides in Trauma and Critical Illness: A Systematic Review. Crit Care Med 2019; 46:2018-2028. [PMID: 30113320 DOI: 10.1097/ccm.0000000000003381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Extracellular mitochondrial DNA and N-formyl peptides released following tissue damage may contribute to systemic inflammation through stimulation of the innate immune system. In this review, we evaluate existing in vivo human data regarding a role for mitochondrial DNA and N-formyl peptides in producing systemic inflammation in trauma and critical illness, investigate the utility of these molecules in risk prediction and clinical decision support, and provide suggestions for standardization of future research. DATA SOURCES PubMed, Embase (1971-2017). STUDY SELECTION Studies measuring extracellular mitochondrial DNA and/or N-formyl peptides in acutely ill patients. DATA EXTRACTION Fifty-four studies were analyzed. Data extracted included article characteristics, methods, results, and performance in clinical prediction. DATA SYNTHESIS The most common patient types investigated were trauma (19 studies) and sepsis (eight). In studies comparing patient mitochondrial DNA or N-formyl peptide levels to healthy controls, 38 (90.5%) reported significantly elevated mitochondrial DNA levels in patients at first reported time point, as did the one study making this comparison for N-formyl peptides. Nine studies (81.8%) reported significantly elevated plasma/serum mitochondrial DNA levels in at least one time point in patients who developed inflammatory complications of their primary pathology compared with patients without inflammatory complications. For the ability of mitochondrial DNA to predict complications or outcomes, the area under the curve was 0.7 or greater in 84.6% of receiver operating characteristic curves, and 92.9% of odds, adjusted odds, risk, and hazard ratios were statistically significant. CONCLUSIONS Extracellular mitochondrial DNA levels are elevated early in patients' hospital courses in many acute illnesses and are higher in patients who develop inflammatory complications. Elevated mitochondrial DNA levels may be clinically useful in risk prediction and clinical decision support systems. Further research is needed to determine the role of extracellular N-formyl peptides in systemic inflammation and their possible clinical utility.
Collapse
|
33
|
Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. BURNS & TRAUMA 2019; 7:26. [PMID: 31388512 PMCID: PMC6676517 DOI: 10.1186/s41038-019-0158-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Severe injuries are the major cause of death in those aged under 40, mainly due to road traffic collisions. Endocrine, metabolic and immune pathways respond to limit the tissue damage sustained and initiate wound healing, repair and regeneration mechanisms. However, depending on age and sex, the response to injury and patient prognosis differ significantly. Glucocorticoids are catabolic and immunosuppressive and are produced as part of the stress response to injury leading to an intra-adrenal shift in steroid biosynthesis at the expense of the anabolic and immune enhancing steroid hormone dehydroepiandrosterone (DHEA) and its sulphated metabolite dehydroepiandrosterone sulphate (DHEAS). The balance of these steroids after injury appears to influence outcomes in injured humans, with high cortisol: DHEAS ratio associated with increased morbidity and mortality. Animal models of trauma, sepsis, wound healing, neuroprotection and burns have all shown a reduction in pro-inflammatory cytokines, improved survival and increased resistance to pathological challenges with DHEA supplementation. Human supplementation studies, which have focused on post-menopausal females, older adults, or adrenal insufficiency have shown that restoring the cortisol: DHEAS ratio improves wound healing, mood, bone remodelling and psychological well-being. Currently, there are no DHEA or DHEAS supplementation studies in trauma patients, but we review here the evidence for this potential therapeutic agent in the treatment and rehabilitation of the severely injured patient.
Collapse
Affiliation(s)
- Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Carolyn Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Janet Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Mark Foster
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- Royal Centre for Defence Medicine, Birmingham Research Park, Birmingham, B15 2SQ UK
| |
Collapse
|
34
|
Trauma-Induced Long-Term Alterations of Human T Cells and Monocytes-Results of an Explorative, Cross-Sectional Study. Shock 2019; 53:35-42. [PMID: 30998650 DOI: 10.1097/shk.0000000000001358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Major trauma leads to complex immune reactions, known to result in a transient immunodeficiency. The long-term consequences of severe trauma on immune function and regulation as well as its clinical impact remain unclear. METHODS Six months (ranging from -12 to +5 days) after a major trauma event, 12 former trauma patients (Injury Severity Score ≥ 16) and 12 healthy volunteers were enrolled. The current clinical status and infection history since discharge were assessed by a standardized questionnaire. Immune cell subsets (cluster of differentiation (CD)4, CD8, CD14), cell surface receptor expression (programmed cell death protein 1 (PD-1), B- and T-lymphocyte attenuator (BTLA), cytotoxic T-lymphocyte-associated protein 4, toll-like receptor (TLR)-2, -4, and -5, Dectin-1, programmed death ligand 1 (PD-1L)), and human leucocyte antigen D-related receptor (HLA-DR)-expression were quantified by flow cytometry. Cytokine secretion (IL-2, -4, -6, -10, and 17A, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ) was assessed after stimulation of whole blood with LPS-, α-CD3/28, or zymosan. RESULTS Analysis of surface receptors on T cells revealed a significant elevation of PD-1 expression on CD4 T cells, whereas BTLA expression on CD4 and CD8 T cells was significantly suppressed in the trauma cohort. Monocytes showed a significantly reduced expression of TLR-2 and -4 as well as a reduced proportion of TLR-4 monocytes. HLA-DR receptor density revealed no significant changes between both cohorts. LPS-induced IL-6 and TNF-α secretion showed non-significant trends toward reduced values. No differences regarding clinical apparent infections could be detected. CONCLUSIONS Six months following major trauma, changes of cell surface receptors on CD4 and CD8 T cells as well as on CD14 monocytes were present, hinting toward an immunosuppressive phenotype. Following major trauma, although IL-6 and TNF-α release after stimulation were reduced, they did not reach statistical significance. Overall, further studies are necessary to evaluate the clinical implications of these findings. TRIAL REGISTRATION DRKS00009876, Internet Portal of the German Clinical Trials Register (DRKS), registration date 11.08.2016, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00009876.
Collapse
|
35
|
Pathophysiology of Acute Illness and Injury. OPERATIVE TECHNIQUES AND RECENT ADVANCES IN ACUTE CARE AND EMERGENCY SURGERY 2019. [PMCID: PMC7122041 DOI: 10.1007/978-3-319-95114-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathophysiology of acute illness and injury recognizes three main effectors: infection, trauma, and ischemia-reperfusion injury. Each of them can act by itself or in combination with the other two in developing a systemic inflammatory reaction syndrome (SIRS) that is a generalized reaction to the morbid event. The time course of SIRS is variable and influenced by the number and severity of subsequent insults (e.g., reparative surgery, acquired hospital infections). It occurs simultaneously with a complex of counter-regulatory mechanisms (compensatory anti-inflammatory response syndrome, CARS) that limit the aggressive effects of SIRS. In adjunct, a progressive dysfunction of the acquired (lymphocytes) immune system develops with increased risk for immunoparalysis and associated infectious complications. Both humoral and cellular effectors participate to the development of SIRS and CARS. The most important humoral mediators are pro-inflammatory (IL-1β, IL-6, IL-8, IL-12) and anti-inflammatory (IL-4, IL-10) cytokines and chemokines, complement, leukotrienes, and PAF. Effector cells include neutrophils, monocytes, macrophages, lymphocytes, and endothelial cells. The endothelium is a key factor for production of remote organ damage as it exerts potent chemo-attracting effects on inflammatory cells, allows for leukocyte trafficking into tissues and organs, and promotes further inflammation by cytokines release. Moreover, the loss of vasoregulatory properties and the increased permeability contribute to the development of hypotension and tissue edema. Finally, the disseminated activation of the coagulation cascade causes the widespread deposition of microthrombi with resulting maldistribution of capillary blood flow and ultimately hypoxic cellular damage. This mechanism together with increased vascular permeability and vasodilation is responsible for the development of the multiple organ dysfunction syndrome (MODS).
Collapse
|
36
|
Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res 2018; 11:167-177. [PMID: 30613164 PMCID: PMC6306060 DOI: 10.2147/cmar.s188655] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiotherapy (RT) is a major treatment for malignant tumors. The latest data show that >70% of patients with malignant tumors need RT at different periods. Skin changes can be experienced by up to 95% of patients who underwent RT. Inflammation and oxidative stress (OS) have been shown to be generally associated with radiation-induced skin reactions (RISRs). Inflammatory response and OS interact and promote each other during RISRs. Severe skin reactions often have a great impact on the progress of RT. The treatment of RISRs is particularly critical because advanced RT technology can also lead to skin reactions. RISRs are classified into acute and chronic reactions. The treatment methods for acute RISRs include steroid treatment, creams, ointments, and hydrocolloid dressings, depending on the reaction grading. Chronic RISRs includes chronic ulcerations, telangiectasias, and fibrosis of the skin, and advanced treatments such as mesenchymal stem cells, hyperbaric oxygen therapy, superoxide dismutase, and low-intensity laser therapy can be considered. Here, we review and summarize the important mechanisms that cause RISRs as well as the standard and advanced treatments for RISRs.
Collapse
Affiliation(s)
- Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Lingbin Meng
- Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA
| | - Xue Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Chao Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
37
|
Iba T, Ogura H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J Intensive Care 2018; 6:68. [PMID: 30377532 PMCID: PMC6194680 DOI: 10.1186/s40560-018-0340-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background The advances of research on extracellular vesicles (EVs) are of particular interest to the clinicians as well as the researchers who are studying coagulation disorder in sepsis. Here, we intend to update the latest knowledge and currently unsolved problems that should be addressed. Main body Secreted membrane-enclosed vesicles including apoptotic bodies, exosomes, ectosomes, microvesicles, and microparticles are generically called EVs. Though the basic structure of these vesicles is the same, i.e., originating from the plasma membrane, their characteristics differ significantly depending on their surface structures and interior components. Numerous studies have shown elevated levels of circulating EVs that exhibit proinflammatory and procoagulant properties during sepsis. These EVs are known to play important roles in the development of coagulation disorder and organ dysfunction in sepsis. Coagulation disorder in sepsis is characterized by activated coagulation, disrupted anticoagulant systems, and imbalanced fibrinolytic systems. These processes collaborate with one another and contribute to the development of disseminated intravascular coagulation (DIC), with devastating consequences. As part of this pathogenesis, the membrane-exposed tissue factor, phosphatidylserine and bioactive substances contained within the vesicles, such as histones, nucleosomes, and high-mobility group box 1, contribute to the development of DIC. EVs not only upregulate the procoagulant systems by themselves, but they also disseminate prothrombotic activities by transferring their procoagulant properties to distant target cells. Though the basic concept behind the role of procoagulant properties, EVs in the development of sepsis-induced coagulopathy has started to be unveiled, knowledge of the actual status is far from satisfactory, mainly because of the lack of standardized assay procedures. Recent advances and current problems that remain to be resolved are introduced in this review. Conclusion The recent studies succeeded to elucidate the important roles of EVs in the progress of coagulation disorder in sepsis. However, further harmonization in terminology, methodology, and evaluation methods is required for future studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- 1Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Hiroshi Ogura
- 2Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
38
|
Torrance HDT, Longbottom ER, Vivian ME, Lalabekyan B, Abbott TEF, Ackland GL, Hinds CJ, Pearse RM, O’Dwyer MJ. Post-operative immune suppression is mediated via reversible, Interleukin-10 dependent pathways in circulating monocytes following major abdominal surgery. PLoS One 2018; 13:e0203795. [PMID: 30212506 PMCID: PMC6136775 DOI: 10.1371/journal.pone.0203795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction Post-operative infections occur frequently following major surgery. The magnitude of the post-operative immune response is associated with an increased risk of post-operative infections, although the mechanisms driving post-operative immune-dysfunction and the potential reversibility of this response with immune stimulants are not well understood. This study aims to describe the immediate immune response to major surgery and establish links to both post-operative infection and functional aspects of immune dysregulation. We also investigate the potential of clinically available immune stimulants to reverse features of post-operative immune-dysfunction. Methods Patients over 45 years old undergoing elective gastro-intestinal surgery with planned post-operative surgical ICU admission were recruited. The expression of selected genes was determined pre-operatively and at 2, 24 and 48 hours post-operatively using qRT-PCR. Circulating levels of Interleukin-10 protein were determined by ELISA. Peri-operative cell surface monocyte HLA-DR (mHLA-DR) expression was determined using flow cytometry. Gene expression and mHLA-DR levels were determined in healthy monocytes cultured in peri-operative serum with and without neutralising antibodies and immune stimulants. Results 119 patients were recruited; 44 developed a post-operative infection. Interleukin-10 mRNA and protein increased 4-fold post-operatively (P<0.0001), peaking within 2 hours of the procedure. Higher post-operative Interleukin-10 mRNA (P = 0.007) and protein (P = 0.001) levels were associated with an increased risk of infection. Cell surface mHLA-DR expression fell post-operatively (P<0.0001). Reduced production, rather than intracellular sequestration, accounted for the post-operative decline in cell surface mHLA-DR expression. Interleukin-10 antibody prevented the decrease in mHLA-DR expression observed when post-operative serum was added to healthy monocytes. GM-CSF and IFN-γ prevented the decline in mHLA-DR production through distinct pathways. Conclusions Monocyte dysfunction and features of immune suppression occur frequently after major surgery. Greater post-operative Interleukin-10 production is associated with later infection. Interleukin-10 is an important mediator of post-operative reductions in mHLA-DR expression, while clinically available immune stimulants can restore mHLA-DR levels.
Collapse
Affiliation(s)
- Hew D. T. Torrance
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - E. Rebecca Longbottom
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Mark E. Vivian
- Cambridge University Division of Anaesthesia, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Bagrat Lalabekyan
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Tom E. F. Abbott
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Gareth L. Ackland
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Charles J. Hinds
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
| | - Rupert M. Pearse
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Michael J. O’Dwyer
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, United Kingdom
- Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Zhang X, Wang T, Yuan ZC, Dai LQ, Zeng N, Wang H, Liu L, Wen FQ. Mitochondrial peptides cause proinflammatory responses in the alveolar epithelium via FPR-1, MAPKs, and AKT: a potential mechanism involved in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L775-L786. [PMID: 30188748 DOI: 10.1152/ajplung.00466.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar epithelial damage and uncontrolled pulmonary inflammation. Mitochondrial damage-associated molecular patterns (DAMPs), including mitochondrial peptides [ N-formyl peptides (NFPs)], are released during cell injury and death and induce inflammation by unclear mechanisms. In this study, we have investigated the role of mitochondrial DAMPs (MTDs), especially NFPs, in alveolar epithelial injury and lung inflammation. In murine models of ALI, high levels of mitochondrial NADH dehydrogenase 1 in bronchoalveolar lavage fluid (BALF) were associated with lung injury scores and increased formyl peptide receptor (FPR)-1 expression in the alveolar epithelium. Cyclosporin H (CsH), a specific inhibitor of FPR1, inhibited lung inflammation in the ALI models. Both MTDs and NFPs upon intratracheal challenge caused accumulation of neutrophils into the alveolar space with elevated BALF levels of mouse chemokine KC, interleukin-1β, and nitric oxide and increased pulmonary FPR-1 levels. CsH significantly attenuated MTDs or NFP-induced inflammatory lung injury and activation of MAPK and AKT pathways. FPR1 expression was present in rat primary alveolar epithelial type II cells (AECIIs) and was increased by MTDs. CsH inhibited MTDs or NFP-induced CINC-1/IL-8 release and phosphorylation of p38, JNK, and AKT in rat AECII and human cell line A549. Inhibitors of MAPKs and AKT also suppressed MTD-induced IL-8 release and NF-κB activation. Collectively, our data indicate an important role of the alveolar epithelium in initiating immune responses to MTDs released during ALI. The potential mechanism may involve increase of IL-8 production in MTD-activated AECII through FPR-1 and its downstream MAPKs, AKT, and NF-κB pathways.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China.,Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province , Luoyang , China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Zhi-Cheng Yuan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lu-Qi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Ni Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| | - Fu-Qiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University , Chengdu , China
| |
Collapse
|
40
|
Mechanical ventilation and Streptococcus pneumoniae pneumonia alter mitochondrial homeostasis. Sci Rep 2018; 8:11718. [PMID: 30082877 PMCID: PMC6078986 DOI: 10.1038/s41598-018-30226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Required mechanical ventilation (MV) may contribute to bacterial dissemination in patients with Streptococcus pneumoniae pneumonia. Significant variations in plasma mitochondrial DNA (mtDNA) have been reported in sepsis according to the outcome. The impact of lung stretch during MV was addressed in a model of pneumonia. Healthy or S. pneumoniae infected rabbits were submitted to MV or kept spontaneously breathing (SB). Bacterial burden, cytokines release, mitochondrial DNA levels, integrity and transcription were assessed along with 48-hour mortality. Compared with infected SB rabbits, MV rabbits developed more severe pneumonia with greater concentrations of bacteria in the lungs, higher rates of systemic dissemination, higher levels of circulating inflammatory mediators and decreased survival. Pulmonary mtDNA levels were significantly lower in infected animals as compared to non-infected ones, whenever they were SB or MV. After a significant early drop, circulating mtDNA levels returned to baseline values in the infected SB rabbits, but remained low until death in the MV ones. Whole blood ex-vivo stimulation with Streptococcus pneumoniae resulted in a reduction of polymorphonuclear leukocytes mitochondrial density and plasma mtDNA concentrations. Thus, persistent mitochondrial depletion and dysfunction in the infected animals submitted to MV could account for their less efficient immune response against S. pneumoniae.
Collapse
|
41
|
Eppensteiner J, Davis RP, Barbas AS, Kwun J, Lee J. Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults. Front Immunol 2018; 9:190. [PMID: 29472928 PMCID: PMC5810426 DOI: 10.3389/fimmu.2018.00190] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Despite significant improvements in injury prevention and emergency response, injury-related death and morbidity continues to increase in the US and worldwide. Patients with trauma, invasive operations, anti-cancer treatment, and organ transplantation produce a host of danger signals and high levels of pro-inflammatory and pro-thrombotic mediators, such as damage-associated molecular patterns (DAMPs) and extracellular vesicles (EVs). DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100) are molecules released from injured, stressed, or activated cells that act as endogenous ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome) are membranous vesicles budding off from plasma membranes and act as messengers between cells. DAMPs and EVs can stimulate multiple innate immune signaling pathways and coagulation cascades, and uncontrolled DAMP and EV production causes systemic inflammatory and thrombotic complications and secondary organ failure (SOF). Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomarkers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with mortality and morbidity of patients or animals with trauma or surgical insults. Blocking or neutralizing DAMPs using antibodies or small molecules has been demonstrated to ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory and thrombotic complications in vitro and in vivo. In this review, we will summarize the current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer therapy, and allogeneic transplantation.
Collapse
Affiliation(s)
| | | | - Andrew S Barbas
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jean Kwun
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jaewoo Lee
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
42
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
43
|
Polymorphisms and expression of inflammasome genes are associated with the development and severity of rheumatoid arthritis in Brazilian patients. Inflamm Res 2017; 67:255-264. [PMID: 29230505 DOI: 10.1007/s00011-017-1119-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE In the present study, we analyzed the possible association of inflammasome gene variants and expression to rheumatoid arthritis (RA)'s development and severity in the Brazilian population. MATERIALS AND METHODS Thirteen single nucleotide polymorphisms within six inflammasome genes (NLRP1, NLRP3, NLRC4, AIM2, CARD8, CASP1) as well as IL1B and IL18 genes in two different Brazilian populations (from Northeast and Southeast Brazil) were analyzed. We also evaluated inflammasome gene expression profile in resting and LPS + ATP-treated monocytes from RA patients and healthy individuals. For genetic association study, 218 patients and 307 healthy controls were genotyped. For gene expression study, inflammasome genes mRNA levels of 12 patients and ten healthy individuals were assessed by qPCR. RESULTS Our results showed that rs10754558 NLRP3 and rs2043211 CARD8 polymorphisms are associated with RA development (p value = 0.044, OR = 1.77, statistical power = 0.999) and severity measured by Health Assessment Questionnaire (HAQ) (p value = 0.03), respectively. Gene expression analyses showed that RA patients display activation of CASP1, IL1B and IL1R genes independently of LPS + ATP activation. In LPS + ATP-treated monocytes, NLRP3 and NLRC4 expressions were also significantly higher in patients compared with controls. CONCLUSIONS The first reported results in Brazilian populations support the role of inflammasome in the development of RA.
Collapse
|
44
|
Tanaka S, Labreuche J, Drumez E, Harrois A, Hamada S, Vigué B, Couret D, Duranteau J, Meilhac O. Low HDL levels in sepsis versus trauma patients in intensive care unit. Ann Intensive Care 2017; 7:60. [PMID: 28589535 PMCID: PMC5461227 DOI: 10.1186/s13613-017-0284-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The protective cardiovascular effect of high-density lipoproteins (HDLs) is considered to chiefly rely on reverse cholesterol transport from peripheral tissues back to the liver. However, HDL particles display pleiotropic properties, including anti-inflammatory, anti-apoptotic or antioxidant functions. Some studies suggest that HDL concentration decreases during sepsis, and an association was reported between low HDL levels and a poor outcome. Like sepsis, trauma is also associated with a systemic inflammatory response syndrome. However, no study has yet explored changes in lipid profiles during trauma. We sought to compare lipid profiles between sepsis and trauma patients in intensive care unit (ICU). In septic patients, we analyzed the association between lipid profile, severity and prognosis. METHODS A prospective, observational, single-centered study was conducted in a surgical ICU. For each patient, total cholesterol, HDL, triglyceride and low-density lipoprotein cholesterol levels were assessed at admission. Short-term prognosis outcome was prospectively assessed. RESULTS Seventy-five consecutive patients were admitted (50 sepsis and 25 trauma). There was no difference in SOFA and SAPSII scores between the two groups. Patients with sepsis had lower total cholesterol levels than patients with trauma. Regarding the lipoprotein profile, only HDLs differed significantly between the two groups (median [IQR] = 0.33 mmol/l [0.17-0.78] in sepsis patients versus median [IQR] = 0.99 mmol/l [0.74-1.28] in trauma patients; P < 0.0001). Whereas ICU mortality was not associated with lipid levels in the sepsis group, a significant negative correlation was found between HDL concentration and the length of ICU stay (r = -0.35; P = 0.03) in the group of survivor septic patients at ICU discharge. In addition, poor outcome defined as death or a SOFA score >6 at day 3 was associated with lower HDL levels (median [IQR] = 0.20 mmol/l [0.11-0.41] vs. 0.35 mmol/l [0.19-0.86] in patients with poor outcome versus others; P = 0.03). CONCLUSIONS Lipid profile was totally different between sepsis and trauma in ICU patients: HDL levels were low in septic patients, whereas their concentration was not altered in trauma patients. This major difference reinforces the necessity to explore the therapeutic potential of HDL in sepsis.
Collapse
Affiliation(s)
- Sébastien Tanaka
- Assistance Publique des Hopitaux de Paris, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, le Kremlin-Bicêtre, France.
| | - Julien Labreuche
- Département de biostatistique, Université de Lille, CHU Lille, EA 2694 - Santé publique, épidémiologie et qualité des soins, 59000, Lille, France
| | - Elodie Drumez
- Département de biostatistique, Université de Lille, CHU Lille, EA 2694 - Santé publique, épidémiologie et qualité des soins, 59000, Lille, France
| | - Anatole Harrois
- Assistance Publique des Hopitaux de Paris, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, le Kremlin-Bicêtre, France.,Laboratoire d'étude de la Microcirculation, « Bio-CANVAS: biomarqueurs in CardioNeuroVascular DISEASES », UMRS 942, Paris, France
| | - Sophie Hamada
- Assistance Publique des Hopitaux de Paris, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
| | - Bernard Vigué
- Assistance Publique des Hopitaux de Paris, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, le Kremlin-Bicêtre, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis, France.,CHU de La Réunion, Saint-Denis, France
| | - Jacques Duranteau
- Assistance Publique des Hopitaux de Paris, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, le Kremlin-Bicêtre, France.,Laboratoire d'étude de la Microcirculation, « Bio-CANVAS: biomarqueurs in CardioNeuroVascular DISEASES », UMRS 942, Paris, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis, France.,CHU de La Réunion, Saint-Denis, France
| |
Collapse
|
45
|
Li Z, Fan EK, Liu J, Scott MJ, Li Y, Li S, Xie W, Billiar TR, Wilson MA, Jiang Y, Wang P, Fan J. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma. Cell Death Dis 2017; 8:e2775. [PMID: 28492546 PMCID: PMC5584526 DOI: 10.1038/cddis.2017.187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mϕ) direct trauma-induced inflammation, and Mϕ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mϕ and the subsequent regulation of Mϕ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)–TLR4–MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mϕ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mϕ. However, autophagy activation also suppressed Mϕ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mϕ homeostasis in response to trauma.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Erica K Fan
- University of Pittsburgh School of Arts and Science, Pittsburgh, PA 15213, USA
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Song Li
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Ping Wang
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
46
|
Gougeon ML. Alarmins and central nervous system inflammation in HIV-associated neurological disorders. J Intern Med 2017; 281:433-447. [PMID: 27862491 DOI: 10.1111/joim.12570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of highly active antiretroviral therapy (HAART), HIV-1-associated neurocognitive disorders (HAND) persist in infected individuals with adequate immunological and virological status. Risk factors for cognitive impairment include hepatitis C virus co-infection, host genetic factors predisposing to HAND, the early establishment of the virus in the CNS and its persistence under HAART; thus, the CNS is an important reservoir for HIV. Microglial cells are permissive to HIV-1, and NLRP3 inflammasome-associated genes were found expressed in brains of HIV-1-infected persons, contributing to brain disease. Inflammasomes can be triggered by alarmins or danger-associated molecular patterns (DAMPs), which directly stimulate the production of proinflammatory mediators by glial cells, contribute to blood-brain barrier injury through induction of release of various proteases and allow the passage of infected macrophages, and trigger IL-1β release from primed cells. Amongst alarmins involved in HIV-1-induced neuropathogenesis, IL-33 and high-mobility group box 1 (HMGB1) are of particular interest. Neurocognitive alterations were recently associated with dysregulation of the IL-33/ST2 axis in the CNS, leading to the induction of neuronal apoptosis, decrease in synaptic function and neuroinflammation. Specific biomarkers, including HMGB1 and anti-HMGB1 antibodies, have been identified in cerebrospinal fluid from patients with HAND, correlated with immune activation and identifying a very early stage of neurocognitive impairment that precedes changes in metabolites detected by magnetic resonance spectroscopy. Moreover, HMGB1 plays a crucial role in HIV-1 persistence in dendritic cells and in the constitution of viral reservoirs. In this review, the mechanisms whereby alarmins contribute to HIV-1-induced CNS inflammation and neuropathogenesis will be discussed.
Collapse
Affiliation(s)
- M-L Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| |
Collapse
|
47
|
Sun BF, Chen QP. Mechanism and effect of excessive inflammatory response in perioperative period of abdominal surgery. Shijie Huaren Xiaohua Zazhi 2017; 25:178-184. [DOI: 10.11569/wcjd.v25.i2.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an important pathophysiological change in the perioperative period of abdominal surgery. Moderate inflammatory plays a positive role in wound healing, but excessive inflammation is harmful to the body and is a major cause of postoperative complications and the common pathway of multiple organ dysfunction syndrome. Therefore, intervention of excessive inflammation response in the perioperative period can reduce the morbidity and mortality of patients. However, the current understanding of the pathophysiological process of excessive inflammatory response during the perioperative period is still in the primary stage. This article systematically reviews the induced factors, mechanism and pathophysiological changes of excessive inflammatory response during the perioperative period of abdominal surgery as well as its harm to and influence on the body.
Collapse
|
48
|
Zha QB, Wei HX, Li CG, Liang YD, Xu LH, Bai WJ, Pan H, He XH, Ouyang DY. ATP-Induced Inflammasome Activation and Pyroptosis Is Regulated by AMP-Activated Protein Kinase in Macrophages. Front Immunol 2016; 7:597. [PMID: 28018360 PMCID: PMC5149551 DOI: 10.3389/fimmu.2016.00597] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is released by bacteria and host cells during bacterial infection as well as sterile tissue injury, acting as an inducer of inflammasome activation. Previous studies have shown that ATP treatment leads to AMP-activated protein kinase (AMPK) activation. However, it is unclear whether AMPK signaling has been involved in the regulation of ATP-induced inflammasome activation and subsequent pyroptosis. In this study, we aimed to investigate this issue in lipopolysaccharide-activated murine macrophages. Our results showed that AMPK signaling was activated in murine macrophages upon ATP treatment, which was accompanied by inflammasome activation and pyroptosis as evidenced by rapid cell membrane rupture as well as mature interleukin (IL)-1β and active caspase-1p10 release. The ATP-induced inflammasome activation and pyroptosis were markedly suppressed by an AMPK inhibitor compound C or small-interfering RNA-mediated knockdown of AMPKα, but could be greatly enhanced by metformin (a well-known AMPK agonist). Importantly, metformin administration increased the mortality of mice with bacterial sepsis, which was likely because metformin treatment enhanced the systemic inflammasome activation as indicated by elevated serum and hepatic IL-1β levels. Collectively, these data indicated that the AMPK signaling positively regulated ATP-induced inflammasome activation and pyroptosis in macrophages, highlighting the possibility of AMPK-targeting therapies for inflammatory diseases involving inflammasome activation.
Collapse
Affiliation(s)
- Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Hong-Xia Wei
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Yi-Dan Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| |
Collapse
|
49
|
The involvement of RUNX2 and SPARC genes in the bacterial chondronecrosis with osteomyelitis in broilers. Animal 2016; 11:1063-1070. [PMID: 27881195 DOI: 10.1017/s1751731116002433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Economic losses due to an increase of leg disorders in broilers have become a major concern of the poultry industry. Despite the efforts to reduce skeletal abnormalities in chickens, insufficient progress has been made. Bacterial chondronecrosis with osteomyelitis (BCO) is one of the main disorders that affect bone integrity in broilers. However, the genetic pathways and genes involved in most bone problems, including BCO, remains unclear. In this study, femoral samples from male broilers with 45 days of age affected or not with BCO were used to compare the relative expression with a reverse transcription real time PCR approach of 13 candidate genes: SPP1 (osteopontin), TNFRSF11B (osteoprotegerin), SPARC (osteonectin), CALB1 (calbidin 1), CALM (Calmodulin 2), IBSP (sialoprotein), COL1A2 (collagen, type I, α 2), BMP2 (bone morphogenetic protein 2), BMP3 (bone morphogenetic protein 3), RANKL (κ-B nuclear factor ligand), SMAD1 (SMAD family member 1), LEPR (leptin receptor) and RUNX2 (related transcription factor Runt 2). Differential expression test between affected and non-affected groups was performed using the REST software. The RUNX2 and SPARC genes were downregulated (P<0.05) in the affected group, with reduced expression of fourfold when compared with the non-affected group. This result indicates that the downregulation of RUNX2 and SPARC can contribute to an increased incidence of BCO in broilers.
Collapse
|
50
|
Máca J, Burša F, Ševčík P, Sklienka P, Burda M, Holub M. Alarmins and Clinical Outcomes After Major Abdominal Surgery-A Prospective Study. J INVEST SURG 2016; 30:152-161. [PMID: 27689623 DOI: 10.1080/08941939.2016.1231855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Tissue injury causing immune response is an integral part of surgical procedure. Evaluation of the degree of surgical trauma could help to improve postoperative management and determine the clinical outcomes. MATERIALS AND METHODS We analyzed serum levels of alarmins, including S100A5, S100A6, S100A8, S100A9, S100A11, and S100A12; high-mobility group box 1; and heat-shock protein 70, after elective major abdominal surgery (n = 82). Blood samples were collected for three consecutive days after surgery. The goals were to evaluate the relationships among the serum levels of alarmins and selected surgical characteristics and to test potential of alarmins to predict the clinical outcomes. RESULTS Significant, positive correlations were found for high-mobility group box 1 with the length of surgery, blood loss, and intraoperative fluid intake for all three days of blood sampling. The protein S100A8 serum levels showed positive correlations with intensive care unit length of stay, 28-day and in-hospital mortality. The protein S100A12 serum levels had significant, positive correlations with intensive care unit length of stay, 28-day mortality, and in-hospital mortality. We did not find significant differences in alarmin levels between cancer and noncancer subjects. CONCLUSION The high-mobility group box 1 serum levels reflect the degree of surgical injury, whereas proteins S100A8 and S100A12 might be considered good predictors of major abdominal surgery morbidity and mortality.
Collapse
Affiliation(s)
- Jan Máca
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Filip Burša
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Pavel Ševčík
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Peter Sklienka
- a University of Ostrava , Ostrava , Czech Republic.,b University Hospital of Ostrava , Ostrava , Czech Republic
| | - Michal Burda
- c University of Ostrava , Institute for Research and Applications of Fuzzy Modeling , Ostrava , Czech Republic
| | - Michal Holub
- d Univerzita Karlova v Praze , First Faculty Of Medicine , Praha , Czech Republic.,e Military Hospital of Prague , Prague , Czech Republic
| |
Collapse
|