1
|
Gurel PS, Newman RG, Pearson S, Dreaden K, Wang C, Donatelli SS, Zhao Y, Chamoun J, Heiber JF. Self-assembling sequentially administered tumor targeted Split IL-12p35 and p40 subunits to improve the therapeutic index of systemically delivered IL-12 therapy for cancer. Cytokine 2025; 190:156912. [PMID: 40154091 DOI: 10.1016/j.cyto.2025.156912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
IL-12, also called IL-12p70, is a highly potent, proinflammatory heterodimeric cytokine that can mediate many beneficial anti-tumor effects. In preclinical studies, recombinant IL-12, as well as IL-12 gene therapies, have demonstrated notable anti-tumor results across various tumor types; however, IL-12 clinical benefit has been limited by its poor tolerability at potentially efficacious doses. We have developed a novel approach to mitigate the toxicity of IL-12 by engineering tumor-targeted split IL-12 that preferentially localizes IL-12 activity to the tumor microenvironment. The functionally inactive IL-12 subunits, p35 and p40, are separately fused to antibody fragments targeting a highly expressed tumor-associated antigen, uPAR. The goal of this strategy is to drive assembly and activity of the IL-12 heterodimer into the tumor site through sequential administration of the targeted subunits, reducing systemic exposure and thereby potentially reducing associated toxicities. We use in vitro activity assays along with in vivo pharmacokinetic and pharmacodynamic studies in mice and non-human primates to demonstrate that the split IL-12 anti-uPAR fusions are capable of assembly and activity in vivo. The targeted p35 and p40 subunits are capable of complexing to form IL-12p70 and inducing STAT4 phosphorylation when applied to cultured immune cells, indicating in vitro IL-12 activity. Furthermore, sequential administration of subunits in in vivo mouse models demonstrates rapid serum clearance of IL-12 while extending retention in the tumor. Finally, dosing in non-human primates shows molecules are functionally active in vivo. This is a unique strategy with great clinical promise to harness the therapeutic potential of IL-12 while potentially avoiding the toxicity associated with systemic delivery.
Collapse
Affiliation(s)
- P S Gurel
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA.
| | - R G Newman
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - S Pearson
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - K Dreaden
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - C Wang
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - S S Donatelli
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - Y Zhao
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - J Chamoun
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| | - J F Heiber
- Mural Oncology Incorporated, 852 Winter St. Waltham, MA 02451, USA
| |
Collapse
|
2
|
Cini JK, Kenney RT, Dexter S, McAndrew SJ, Eraslan RN, Brody R, Rezac DJ, Boohaker R, Lapi SE, Mohan P. SON-1010: an albumin-binding IL-12 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2024; 15:1493257. [PMID: 39697343 PMCID: PMC11652653 DOI: 10.3389/fimmu.2024.1493257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cytokines have been promising cancer immunotherapeutics for decades, yet only two are licensed to date. Interleukin-12 (IL-12) is a potent regulator of cell-mediated immunity that activates NK cells and interferon-γ (IFNγ) production. It plays a central role in multiple pathways that can enhance cancer cell death and modify the tumor microenvironment (TME). Attempts to dose rIL-12 were initially successful but IFNγ toxicity in Phase 2 complicated further development in the late 1990s. Since then, better dosing strategies have been developed, but none have achieved the level of cancer control seen in preclinical models. We set out to develop a novel strategy to deliver fully functional IL-12 and other biologics to the TME by binding albumin, taking advantage of its ability to be concentrated and retained in the tumor. Methods Single-chain variable fragments (scFv) were identified from a human phage display library that bound human, mouse, and cynomolgus macaque serum albumin, both at physiologic and acidic conditions. These were taken through a series of steps to identify strongly binding molecules that don't interfere with the normal physiology of albumin to bind FcRn, giving it prolonged half-life in serum, along with SPARC/GP60, which allows albumin to target the TME. A final molecule was chosen and a single mutation was made that minimizes the potential for immunogenicity. This fully human albumin-binding (FHAB®) domain was characterized and manufacturing processes were developed to bring the first drug candidate into the clinic. Results Once identified, the murine form of mIL12-FHAB was studied preclinically to understand its mechanism of action and biodistribution. It was found to be much more efficient at blocking tumor growth compared to murine IL-12, while stimulating significant IFNγ production with minimal toxicity. SON-1010, which uses the human IL-12 sequence, passed through all of the characterization and required toxicology and is currently being studied in the clinic. Conclusions We identified and developed a platform technology with prolonged half-life that can target IL-12 and other immune modulators to the TME. Safety and efficacy are being studied using SON-1010 as monotherapy and in combination with checkpoint blockade strategies.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Suzanne E. Lapi
- Radiology, Chemistry, and Biomedical Engineering, University of Alabama, Birmingham, AL, United States
| | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
3
|
Lee D, Kim D, Kim D, Kim N, Nam YW, Lee BC, Song J, Chang J. Development of a targeted IL-12 immunotherapy platform for B-cell lymphomas. Int Immunopharmacol 2024; 139:112600. [PMID: 39002524 DOI: 10.1016/j.intimp.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment that utilizes the potential of the immune system to precisely identify and eradicate cancerous cells. Despite significant progress in immunotherapy, innovative approaches are required to enhance the effectiveness and safety of these treatments. Interleukin-12 (IL-12), widely recognized for its essential function in immune responses, has been explored as a potential candidate for treating cancer. However, early attempts involving the systemic administration of IL-12 were ineffective, with significant adverse effects, thus underscoring the need for innovation. To address these challenges, we developed a therapeutic molecule that utilizes a single-chain IL-12 mutant (IL-12mut) linked to a tumor-targeting arm. Here, we describe the development of a highly effective IL-12-based TMEkine™ platform by employing a B-cell lymphoma model (termed CD20-IL-12mut). CD20-IL-12mut combined the attenuated activities of IL-12 with targeted delivery to the tumor, thereby maximizing therapeutic potential while minimizing off-target effects. Our results revealed that CD20-IL-12mut exhibited potent anticancer activity by inducing complete regression and generating immunological memory for tumor antigens. Collectively, our data provide a basis for additional research on CD20-IL-12mut as a potential treatment choice for patients with B-cell lymphomas such as non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Dahea Lee
- Kanaph Therapeutics, Seoul, South Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | | |
Collapse
|
4
|
Lin C, Xiang Y, Zhang Y, Yang Z, Chen N, Zhang W, Hu L, Chen J, Luo Y, Wang X, Xiao Y, Zhang Q, Ran X, Chen L, Dai J, Li Z, Ran Q. Interleukin-12 sustained release system promotes hematopoietic recovery after radiation injury. MedComm (Beijing) 2024; 5:e704. [PMID: 39268354 PMCID: PMC11391269 DOI: 10.1002/mco2.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024] Open
Abstract
The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12). The local administration of RGD-Alg/Laponite@IL-12 increased survival rates and promoted the hematopoietic recovery of mice who had received sublethal-dose irradiation. Local intra-bone marrow (intra-BM) injection of RGD-Alg/Laponite@IL-12 hydrogel effectively stimulated IL12 receptor-phosphoinositide 3-kinase/protein kinase B (IL-12R-PI3K/AKT) signaling axis, which promoted proliferation and hematopoietic growth factors secretion of BM mesenchymal stem/stromal cells. This signaling axis facilitates the repair of the hematopoietic microenvironment and plays a pivotal role in hematopoietic reconstitution. In conclusion, we describe a biomaterial-sustained release of IL-12 for the treatment of irradiated hematopoietic injury and provide a new therapeutic strategy for hematopoietic ARS.
Collapse
Affiliation(s)
- Chuanchuan Lin
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yangyang Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Nanxi Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jianxin Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Ya Luo
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Xueying Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering Chongqing University Chongqing China
| | - Qing Zhang
- Institute of Respiratory Diseases The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Xi Ran
- Department of Clinical Laboratory The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Jigang Dai
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
- Department of Thoracic Surgery The Second Affiliated Hospital, Army Medical University Chongqing China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center The Second Affiliated Hospital, Army Medical University Chongqing China
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center Ministry of Education of the People's Republic of China Chongqing China
| |
Collapse
|
5
|
Pires IS, Covarrubias G, Gomerdinger VF, Backlund C, Shanker A, Gordon E, Wu S, Pickering AJ, Melo MB, Suh H, Irvine DJ, Hammond PT. "Target-and-release" nanoparticles for effective immunotherapy of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602135. [PMID: 39005274 PMCID: PMC11245112 DOI: 10.1101/2024.07.05.602135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Immunotherapies such as checkpoint inhibitors (CPI) are effective in treating several advanced cancers, but these treatments have had limited success in metastatic ovarian cancer (OC). Here, we engineered liposomal nanoparticles (NPs) carrying a layer-by-layer (LbL) polymer coating that promotes their binding to the surface of OC cells. Covalent anchoring of the potent immunostimulatory cytokine interleukin-12 (IL-12) to phospholipid headgroups of the liposome core enabled the LbL particles to concentrate IL-12 in disseminated OC tumors following intraperitoneal administration. Shedding of the LbL coating and serum protein-mediated extraction of IL-12-conjugated lipids from the liposomal core over time enabled IL-12 to disseminate in the tumor bed following rapid NP localization in tumor nodules. Optimized IL-12 LbL-NPs promoted robust T cell accumulation in ascites and tumors in mouse models, extending survival compared to free IL-12 and remarkedly sensitizing tumors to CPI, leading to curative treatments and immune memory.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Victoria F Gomerdinger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Coralie Backlund
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Apoorv Shanker
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ezra Gordon
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Andrew J Pickering
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02139 USA
| |
Collapse
|
6
|
Kenney RT, Cini JK, Dexter S, DaFonseca M, Bingham J, Kuan I, Chawla SP, Polasek TM, Lickliter J, Ryan PJ. A phase I trial of SON-1010, a tumor-targeted, interleukin-12-linked, albumin-binding cytokine, shows favorable pharmacokinetics, pharmacodynamics, and safety in healthy volunteers. Front Immunol 2024; 15:1362775. [PMID: 38487528 PMCID: PMC10937388 DOI: 10.3389/fimmu.2024.1362775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Background The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.
Collapse
Affiliation(s)
| | - John K. Cini
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | | | | | | | - Sant P. Chawla
- Sarcoma Oncology Center, Santa Monica, CA, United States
| | - Thomas M. Polasek
- Centre for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
- InClin, Inc, San Mateo, CA, United States
| | | | | |
Collapse
|
7
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Jia Z, Ragoonanan D, Mahadeo KM, Gill J, Gorlick R, Shpal E, Li S. IL12 immune therapy clinical trial review: Novel strategies for avoiding CRS-associated cytokines. Front Immunol 2022; 13:952231. [PMID: 36203573 PMCID: PMC9530253 DOI: 10.3389/fimmu.2022.952231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin 12 (IL-12) is a naturally occurring cytokine that plays a key role in inducing antitumor immune responses, including induction of antitumor immune memory. Currently, no IL-12-based therapeutic products have been approved for clinical application because of its toxicities. On the basis of this review of clinical trials using primarily wild-type IL-12 and different delivery methods, we conclude that the safe utilization of IL-12 is highly dependent on the tumor-specific localization of IL-12 post administration. In this regard, we have developed a cell membrane-anchored and tumor-targeted IL-12-T (attIL12-T) cell product for avoiding toxicity from both IL-12 and T cells-induced cytokine release syndrome in peripheral tissues. A phase I trial using this product which seeks to avoid systemic toxicity and boost antitumor efficacy is on the horizon. Of note, this product also boosts the impact of CAR-T or TCR-T cell efficacy against solid tumors, providing an alternative approach to utilize CAR-T to overcome tumor resistance.
Collapse
Affiliation(s)
- Zhiliang Jia
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dristhi Ragoonanan
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kris Michael Mahadeo
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Gill
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard Gorlick
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth Shpal
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shulin Li
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: Shulin Li,
| |
Collapse
|
9
|
Synthesis, Characterization, and In Vivo Cytokinome Profile of IL-12-Loaded PLGA Nanospheres. J Immunol Res 2022; 2022:6993187. [PMID: 35465347 PMCID: PMC9023212 DOI: 10.1155/2022/6993187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023] Open
Abstract
We report the successful encapsulation and elution of recombinant murine IL-12 (rmIL-12) from poly(lactide-co-glycolic) acid (PLGA) nanospheres (IL-12-NS) synthesized using the double emulsion/solvent evaporation (DESE) technique with microsphere depletion through ultracentrifugation. Images obtained with scanning electron microscopy (SEM) showcased a characteristic spherical shape with a mean particle diameter of 138.1 ± 10.8 nm and zeta potential of −15.1 ± 1.249 mV. These values suggest minimal flocculation when in solution, which was reflected in an in vivo biodistribution study that reported no observed morbidity/mortality. Encapsulation efficiency (EE) was determined to be 0.101 ± 0.009% with average particle concentration obtained per batch of 1.66 × 109 ± 4.45 × 108 particles/mL. Disparate zeta (ζ) potentials obtained from both protein-loaded and protein-unloaded batches suggested surface adsorption of protein, and confocal microscopy of BSA-FITC-loaded nanospheres confirmed the presence of protein within the polymeric shell. Furthermore, elution of rmIL-12 from IL-12-NS at a concentration of 500 million particles/mL was characterized using enzyme-linked immunosorbent assay (ELISA). When IL-12-NS was administered in vivo to female BALB/c mice through retroorbital injection, IL-12-NS produced a favorable systemic cytokine profile for tumoricidal activity within the peripheral blood. Whereas IFN-γ nadir occurred at 72 hours, levels recovered quickly and displayed positive correlations postburst out to 25 days postinjection. IL-12-NS administration induced proinflammatory changes while prompting minimal counterregulatory increases in anti-inflammatory IL-10 and IL-4 cytokine levels. Further, while IL-6 levels increased to 30 folds of the baseline during the burst phase, they normalized by 72 hours and trended negatively throughout the sill phase. Similar trends were observed with IL-1β and CXCL-1, suggesting a decreased likelihood of progression to a systemic inflammatory response syndrome-like state. As IL-12-NS delivers logarithmically lower amounts of IL-12 than previously administered during human clinical trials, our data reflect the importance of IL-12-NS which safely create a systemic immunostimulatory environment.
Collapse
|
10
|
Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. Int J Mol Sci 2022; 23:3218. [PMID: 35328639 PMCID: PMC8951452 DOI: 10.3390/ijms23063218] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-associated neutrophils display many roles during cancer progression. Several tumor microenvironment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment and functional polarization, while simultaneously neutrophils are active stimulators of the TME by secreting factors that affect immune interactions and subsequently tumor progression. Successful immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lymphocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade therapies, by displaying lymphocyte suppressive properties. The identification and characterization of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and the identification of the major TME-derived factors of neutrophil polarization would allow us to harness the full potential of neutrophils as complementary targets in anticancer precision therapies.
Collapse
Affiliation(s)
| | | | | | | | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.R.); (P.V.-C.); (Z.N.M.); (R.S.)
| |
Collapse
|
11
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
12
|
Bourdiol A, Roquilly A. New Insights in the Pathophysiology of Hospital- and Ventilator-Acquired Pneumonia: A Complex Interplay between Dysbiosis and Critical-Illness-Related Immunosuppression. Semin Respir Crit Care Med 2022; 43:271-279. [PMID: 35100649 DOI: 10.1055/s-0041-1740606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Both hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) have long been considered as diseases resulting from the invasion by pathogens of a previously sterile lung environment. Based on this historical understanding of their pathophysiology, our approaches for the prevention and treatment have significantly improved the outcomes of patients, but treatment failures remain frequent. Recent studies have suggested that the all-antimicrobial therapy-based treatment of pneumonia has reached a glass ceiling. The demonstration that the constant interactions between the respiratory microbiome and mucosal immunity are required to tune homeostasis in a state of symbiosis has changed our comprehension of pneumonia. We proposed that HAP and VAP should be considered as a state of dysbiosis, defined as the emergence of a dominant pathogen thriving at the same time from the catastrophic collapse of the fragile ecosystem of the lower respiratory tract and from the development of critical-illness-related immunosuppression. This multidimensional approach to the pathophysiology of HAP and VAP holds the potential to achieve future successes in research and critical care. Microbiome and mucosal immunity can indeed be manipulated and used as adjunctive therapies or targets to prevent or treat pneumonia.
Collapse
Affiliation(s)
- A Bourdiol
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - A Roquilly
- Université de Nantes, CHU Nantes, Pôle Anesthésie Réanimations, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| |
Collapse
|
13
|
Li F, Zhang R, Hu C, Ran Q, Xiang Y, Xiang L, Chen L, Yang Y, Li SC, Zhang G, Li Z. Irradiation Haematopoiesis Recovery Orchestrated by IL-12/IL-12Rβ1/TYK2/STAT3-Initiated Osteogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:729293. [PMID: 34540843 PMCID: PMC8446663 DOI: 10.3389/fcell.2021.729293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Repairing the irradiation-induced osteogenic differentiation injury of bone marrow mesenchymal stem cells (BM-MSCs) is beneficial to recovering haematopoiesis injury in radiotherapy; however, its mechanism is elusive. Our study aimed to help meet the needs of understanding the effects of radiotherapy on BM-MSC osteogenic potential. Methods and Materials Balb/c mice and the BM-MSCs were used to evaluate the irradiation-induced osteogenic differentiation injury in vivo. The cellular and molecular characterization were applied to determine the mechanism for recovery of irradiation-derived haematopoiesis injuries. Results We report a functional role of IL-12 in acute irradiation hematopoietic injury recovery and intend to dissect the possible mechanisms through BM-MSC, other than the direct effect of IL-12 on hematopoietic stem and progenitor cells (HSPCs). Specifically, we show that early use of IL-12 enhanced the osteogenic differentiation of BM-MSCs through IL-12Rβ1/TYK2/STAT3 signaling; furthermore, IL-12 induced osteogenesis facilitated bone formation and irradiation hematopoiesis recovery when transplanted BM-MSCs in the femur of Balb/c mice. For the mechanism of action, we found that IL-12 receptor beta 1 (IL-12Rβ1) expression of irradiated BM-MSCs was upregulated rapidly, coincidentally consistent with early use of IL-12 induced osteogenic differentiation enhancement. IL-12Rβ1 and tyrosine kinase 2 gene (Tyk2) silencing experiments and phosphotyrosine of signal transducer and activator of transcription 3 (p-STAT3) suppression experiments indicated the IL-12Rβ1/TYK2/STAT3 signaling was essential in IL-12-induced osteogenic differentiation enhancement of BM-MSCs. Conclusion These findings suggested that IL-12 may exert BM-MSCs-based hematopoietic recovery by repairing osteogenic differentiation abilities damages through IL-12Rβ1/TYK2/STAT3 signaling pathway post-irradiation.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yang Yang
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Shengwen Calvin Li
- CHOC Children's Research Institute, Children's Hospital of Orange County, University of California, Irvine, Irvine, CA, United States
| | - Gang Zhang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Irradiation Biology Laboratory, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Shi T, Jiang J, Gao M, Ma R, Chen X, Zhang R, Xu J, Wang W, Xu S, Liu X, Zheng H, Wang C, Li L, Li R. Editing flagellin derivatives for exploration of potent radioprotective agents. Eur J Pharmacol 2021; 907:174259. [PMID: 34153338 DOI: 10.1016/j.ejphar.2021.174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Exploration of medical radiation countermeasures (MRCs) has great implications in protection of mammals from radiation damages. While flagellin has been recently reported to show radioprotective effects, the relationships between flagellin structure and radioprotective activity are rarely explored. Herein, we deliberately edited the amino acid sequence of flagellin in its binding domain with toll-like receptor 5 (TLR5) for exploration of potent flagellin derivatives (Fds). An in vitro screening paradigm was developed to examine the radioprotective effects of six engineered Fds. Notably, mutation of 103 threonine on flagellin into asparagine resulted in a potent MRC candidate (Fd-T103N) displaying 1.28-fold increment of interactions with TLR5. Fd-T103N was able to further activate NF-κB pathway, induce immune protective cytokine (e.g. G-CSF) release, and significantly ameliorate γ-irradiation induced cell death. The protection effects of Fd-T103N were further validated in mice exposed to 10 Gy γ-irradiations. Compared to parent flagellin, Fd-T103N treatment showed higher G-CSF release in mouse blood, lower intestine damages, and 13% increments of mouse survival rates. In short, the established predictive paradigm could greatly reduce the labor-, time- and animal-costs in exploration of MRC candidates. Fd-T103N is a promising candidate of investigational new drug for radioprotection.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
15
|
Przedborski M, Smalley M, Thiyagarajan S, Goldman A, Kohandel M. Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade. Commun Biol 2021; 4:877. [PMID: 34267327 PMCID: PMC8282606 DOI: 10.1038/s42003-021-02393-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Anti-PD-1 immunotherapy has recently shown tremendous success for the treatment of several aggressive cancers. However, variability and unpredictability in treatment outcome have been observed, and are thought to be driven by patient-specific biology and interactions of the patient's immune system with the tumor. Here we develop an integrative systems biology and machine learning approach, built around clinical data, to predict patient response to anti-PD-1 immunotherapy and to improve the response rate. Using this approach, we determine biomarkers of patient response and identify potential mechanisms of drug resistance. We develop systems biology informed neural networks (SBINN) to calculate patient-specific kinetic parameter values and to predict clinical outcome. We show how transfer learning can be leveraged with simulated clinical data to significantly improve the response prediction accuracy of the SBINN. Further, we identify novel drug combinations and optimize the treatment protocol for triple combination therapy consisting of IL-6 inhibition, recombinant IL-12, and anti-PD-1 immunotherapy in order to maximize patient response. We also find unexpected differences in protein expression levels between response phenotypes which complement recent clinical findings. Our approach has the potential to aid in the development of targeted experiments for patient drug screening as well as identify novel therapeutic targets.
Collapse
Affiliation(s)
- Michelle Przedborski
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Munisha Smalley
- Integrative Immuno Oncology Center, Mitra Biotech, Woburn, MA, USA
| | | | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Li P, Zhang H, Ji L, Wang Z. A Review of Clinical and Preclinical Studies on Therapeutic Strategies Using Interleukin-12 in Cancer Therapy and the Protective Role of Interleukin-12 in Hematological Recovery in Chemoradiotherapy. Med Sci Monit 2020; 26:e923855. [PMID: 32811803 PMCID: PMC7453748 DOI: 10.12659/msm.923855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin-12 (IL-12), a heterodimeric glycoprotein with α and β subunits covalently bonded with a disulfide bond, is a potent anticancer agent. Its action is accomplished through a linkage of the adaptive and innate immune responses. IL-12 can promote the recovery of the hematopoietic system after cancer chemoradiotherapy by stimulating the physiological processes of stem cells, including cell proliferation and differentiation, reconstitution of hematopoietic function, and peripheral blood count recovery. We review therapeutic strategies using IL-12 in clinical studies, including single-agent and combination strategies in hematological tumors and solid tumors, and studies on the protective effects of IL-12 in chemoradiotherapy. This review highlights promising therapeutic strategies based on the anticancer role of IL-12 and the potential protective effects of IL-12 for cancer patients receiving chemoradiotherapy.
Collapse
Affiliation(s)
- Ping Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Hong Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Lina Ji
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Zhi Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
17
|
Roquilly A, Torres A, Villadangos JA, Netea MG, Dickson R, Becher B, Asehnoune K. Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. THE LANCET RESPIRATORY MEDICINE 2019; 7:710-720. [PMID: 31182406 DOI: 10.1016/s2213-2600(19)30140-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Hospital-acquired pneumonia is a major cause of morbidity and mortality. The incidence of hospital-acquired pneumonia remains high globally and treatment can often be ineffective. Here, we review the available data and unanswered questions surrounding hospital-acquired pneumonia, discuss alterations of the respiratory microbiome and of the mucosal immunity in patients admitted to hospital, and explore potential approaches to stratify patients for tailored treatments. The lungs have been considered a sterile organ for decades because microbiological culture techniques had shown negative results. Culture-independent techniques have shown that healthy lungs harbour a diverse and dynamic ecosystem of bacteria, changing our comprehension of respiratory physiopathology. Understanding dysbiosis of the respiratory microbiome and altered mucosal immunity in patients with critical illness holds great promise to develop targeted host-directed immunotherapy to reduce ineffective treatment, to improve patient outcomes, and to tackle the global threat of resistant bacteria that cause these infections.
Collapse
Affiliation(s)
- A Roquilly
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes, France; Department of Microbiology and Immunology, Faculty of Medicine, University of Nantes, Nantes, France
| | - A Torres
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona Institut d'investigació Biomédica August Pi i Sunyer, Centro de Investigación Biomédica en Red.Enfermedades Respiratorias, Barcelona, Spain
| | - J A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity and Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Integrative Research in Critical Care; Ann Arbor, MI, USA
| | - B Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - K Asehnoune
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes, France; Department of Microbiology and Immunology, Faculty of Medicine, University of Nantes, Nantes, France.
| |
Collapse
|
18
|
DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK, Case CM. Use of Growth Factors and Other Cytokines for Treatment of Injuries During a Radiation Public Health Emergency. Radiat Res 2019; 192:99-120. [PMID: 31081742 DOI: 10.1667/rr15363.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the threat of a radiological or nuclear incident that could impact citizens, the U.S. Department of Health and Human Services tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- to mid-stage medical countermeasure (MCM) development to treat radiation-induced injuries. Given that the body's natural response to radiation exposure includes production of growth factors and cytokines, and that the only drugs approved by the U.S. Food and Drug Administration to treat acute radiation syndrome are growth factors targeting either the granulocyte (Neupogen® or Neulasta®) or granulocyte and macrophage (Leukine®) hematopoietic cell lineages, there is interest in understanding the role that these factors play in responding to and/or ameliorating radiation damage. Furthermore, in an environment where resources are scarce, such as what might be expected during a radiation public health emergency, availability of growth factor or other treatments may be limited. For these reasons, the NIAID partnered with the Radiation Injury Treatment Network (RITN), whose membership includes medical centers with expertise in the management of bone marrow failure, to explore the use of growth factors and other cytokines as MCMs to mitigate/treat radiation injuries. A workshop was convened that included government, industry and academic subject matter experts, with presentations covering the anticipated concept of operations during a mass casualty incident including triage and treatment, growth factors under development for a radiation indication, and how the practice of medicine can inform other potential approaches, as well as considerations for administration of these products to diverse civilian populations. This report reviews the information presented, and provides an overview of the discussions from a guided breakout session.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Zulmarie Perez Horta
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | | | - Ann A Jakubowski
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota.,c Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | - William K Skinner
- d Uniformed Services University for Health Sciences (USUHS), Bethesda, Maryland
| | - Cullen M Case
- b Radiation Injury Treatment Network (RITN), Minneapolis, Minnesota
| |
Collapse
|
19
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|
20
|
Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31:37-54. [DOI: 10.1016/j.smim.2017.07.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
21
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
22
|
Role of thrombocytopenia in radiation-induced mortality and review of therapeutic approaches targeting platelet regeneration after radiation exposure. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0201-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Singh VK, Romaine PL, Seed TM. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. HEALTH PHYSICS 2015; 108:607-630. [PMID: 25905522 PMCID: PMC4418776 DOI: 10.1097/hp.0000000000000279] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 05/28/2023]
Abstract
World events over the past decade have highlighted the threat of nuclear terrorism as well as an urgent need to develop radiation countermeasures for acute radiation exposures and subsequent bodily injuries. An increased probability of radiological or nuclear incidents due to detonation of nuclear weapons by terrorists, sabotage of nuclear facilities, dispersal and exposure to radioactive materials, and accidents provides the basis for such enhanced radiation exposure risks for civilian populations. Although the search for suitable radiation countermeasures for radiation-associated injuries was initiated more than half a century ago, no safe and effective radiation countermeasure for the most severe of these injuries, namely acute radiation syndrome (ARS), has been approved by the United States Food and Drug Administration (FDA). The dearth of FDA-approved radiation countermeasures has prompted intensified research for a new generation of radiation countermeasures. In this communication, the authors have listed and reviewed the status of radiation countermeasures that are currently available for use, or those that might be used for exceptional nuclear/radiological contingencies, plus a limited few medicines that show early promise but still remain experimental in nature and unauthorized for human use by the FDA.
Collapse
Affiliation(s)
- Vijay K. Singh
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Patricia L.P. Romaine
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Thomas M. Seed
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| |
Collapse
|
24
|
Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 2015; 14:487-98. [PMID: 26000725 DOI: 10.1038/nrd4506] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scientific insights into the human immune system have recently led to unprecedented breakthroughs in immunotherapy. In the twenty-first century, drugs and cell-based therapies developed to bolster humoral and T cell immunity represent an established and growing component of cancer therapeutics. Although natural killer (NK) cells have long been known to have advantages over T cells in terms of their capacity to induce antigen-independent host immune responses against malignancies, their therapeutic potential in the clinic has been largely unexplored. A growing number of scientific discoveries into pathways that both activate and suppress NK cell function, as well as methods to sensitize tumours to NK cell cytotoxicity, have led to the development of numerous pharmacological and genetic methods to enhance NK cell antitumour immunity. These findings, as well as advances in our ability to expand NK cells ex vivo and manipulate their capacity to home to the tumour, have now provided investigators with a variety of new methods and strategies to harness the full potential of NK cell-based cancer immunotherapy in the clinic.
Collapse
|
25
|
Gluzman-Poltorak Z, Vainstein V, Basile LA. Recombinant interleukin-12, but not granulocyte-colony stimulating factor, improves survival in lethally irradiated nonhuman primates in the absence of supportive care: evidence for the development of a frontline radiation medical countermeasure. Am J Hematol 2014; 89:868-73. [PMID: 24852354 DOI: 10.1002/ajh.23770] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/11/2022]
Abstract
Hematopoietic syndrome of acute radiation syndrome (HSARS) is a life-threatening condition with no approved treatment. We compared recombinant human interleukin-12 (rHuIL-12; 175 ng/kg × 1) with vehicle, granulocyte-colony-stimulating factor (G-CSF; 10 µg/kg/day × 18), or rHuIL-12+G-CSF after lethal irradiation in rhesus monkeys in a Good Laboratory Practice, randomized, blinded, placebo-controlled study. Fluids, antibiotics, and blood products were not used. Survival at day 60 was significantly increased for rHuIL-12 versus G-CSF or vehicle. rHuIL-12/G-CSF combination provided no additional survival benefit over rHuIL-12. Both rHuIL-12 and rHuIL-12+G-CSF increased blood cell nadirs, induced earlier recovery of all hematopoietic lineages, and significantly decreased frequencies of severe cytopenias versus vehicle or G-CSF. In bone marrow, rHuIL-12 alone increased erythroid, myeloid, and megakaryocyte counts relative to vehicle or G-CSF. Thus, a single injection of rHuIL-12, without supportive medical intervention, significantly improved survival and promoted multilineage hematopoietic recovery in a nonhuman primate model of HSARS.
Collapse
|