1
|
Godain A, Vogel TM, Monnier JM, Paitier A, Haddour N. Metaproteomic and Metagenomic-Coupled Approach to Investigate Microbial Response to Electrochemical Conditions in Microbial Fuel Cells. Microorganisms 2023; 11:2695. [PMID: 38004707 PMCID: PMC10673480 DOI: 10.3390/microorganisms11112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
MFCs represent a promising sustainable biotechnology that enables the direct conversion of organic matter from wastewater into electricity using bacterial biofilms as biocatalysts. A crucial aspect of MFCs is how electroactive bacteria (EAB) behave and their associated mechanisms during extracellular electron transfer to the anode. A critical phase in the MFC start-up process is the initial colonization of the anode by EAB. Two MFCs were operated with an external resistance of 1000 ohms, one with an applied electrical voltage of 500 mV during the initial four days of biofilm formation and the other without any additional applied voltage. After stabilization of electricity production, total DNA and protein were extracted and sequenced from both setups. The combined metaproteomic/metagenomic analysis revealed that the application of voltage during the colonization step predominantly increased direct electron transfer via cytochrome c, mediated primarily by Geobacter sp. Conversely, the absence of applied voltage during colonization resulted in a broader diversity of bacteria, including Pseudomonas and Aeromonas, which participated in electricity production via mediated electron transfer involving flavin family members.
Collapse
Affiliation(s)
- Alexiane Godain
- Ecole Centrale de Lyon, INSA Lyon, University Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Jean-Michel Monnier
- Ecole Centrale de Lyon, INSA Lyon, University Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France
| | - Agathe Paitier
- Ecole Centrale de Lyon, INSA Lyon, University Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Naoufel Haddour
- Ecole Centrale de Lyon, INSA Lyon, University Lyon, Université Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, 69130 Ecully, France
| |
Collapse
|
2
|
Rogińska J, Philippon T, Hoareau M, P. A. Jorand F, Barrière F, Etienne M. Challenges and Applications of Nitrate-Reducing Microbial Biocathodes. Bioelectrochemistry 2023; 152:108436. [PMID: 37099858 DOI: 10.1016/j.bioelechem.2023.108436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Bioelectrochemical systems which employ microbes as electrode catalysts to convert chemical energy into electrical energy (or conversely), have emerged in recent years for water sanitation and energy recovery. Microbial biocathodes, and especially those reducing nitrate are gaining more and more attention. The nitrate-reducing biocathodes can efficiently treat nitrate-polluted wastewater. However, they require specific conditions and they have not yet been applied on a large scale. In this review, the current knowledge on nitrate-reducing biocathodes will be summarized. The fundamentals of microbial biocathodes will be discussed, as well as the progress towards applications for nitrate reduction in the context of water treatment. Nitrate-reducing biocathodes will be compared with other nitrate-removal techniques and the challenges and opportunities of this approach will be identified.
Collapse
|
3
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Tagg AS, Sperlea T, Labrenz M, Harrison JP, Ojeda JJ, Sapp M. Year-Long Microbial Succession on Microplastics in Wastewater: Chaotic Dynamics Outweigh Preferential Growth. Microorganisms 2022; 10:microorganisms10091775. [PMID: 36144377 PMCID: PMC9506493 DOI: 10.3390/microorganisms10091775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics are a globally-ubiquitous aquatic pollutant and have been heavily studied over the last decade. Of particular interest are the interactions between microplastics and microorganisms, especially the pursuit to discover a plastic-specific biome, the so-called plastisphere. To follow this up, a year-long microcosm experimental setup was deployed to expose five different microplastic types (and silica beads control) to activated aerobic wastewater in controlled conditions, with microbial communities being measured four times over the course of the year using 16S rDNA (bacterial) and ITS (fungal) amplicon sequencing. The biofilm community shows no evidence of a specific plastisphere, even after a year of incubation. Indeed, the microbial communities (particularly bacterial) show a clear trend of increasing dissimilarity between plastic types as time increases. Despite little evidence for a plastic-specific community, there was a slight grouping observed for polyolefins (PE and PP) in 6–12-month biofilms. Additionally, an OTU assigned to the genus Devosia was identified on many plastics, increasing over time while showing no growth on silicate (natural particle) controls, suggesting this could be either a slow-growing plastic-specific taxon or a symbiont to such. Both substrate-associated findings were only possible to observe in samples incubated for 6–12 months, which highlights the importance of studying long-term microbial community dynamics on plastic surfaces.
Collapse
Affiliation(s)
- Alexander S. Tagg
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- Correspondence:
| | - Theodor Sperlea
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Matthias Labrenz
- Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Jesse P. Harrison
- CSC—IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Melanie Sapp
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Algae-Assisted Microbial Desalination Cell: Analysis of Cathode Performance and Desalination Efficiency Assessment. Processes (Basel) 2021. [DOI: 10.3390/pr9112011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Algae-assisted microbial desalination cells represent a sustainable technology for low-energy fresh water production in which microalgae culture is integrated into the system to enhance oxygen reduction reaction in the cathode chamber. However, the water production (desalination rate) is low compared to conventional technologies (i.e., reverse osmosis and/or electrodialysis), as biocathodes provide low current generation to sustain the desalination process. In this sense, more research efforts on this topic are necessary to address this bottleneck. Thus, this study provides analysis, from the electrochemical point of view, on the cathode performance of an algae-assisted microbial desalination cell (MDC) using Chlorella vulgaris. Firstly, the system was run with a pure culture of Chlorella vulgaris suspension in the cathode under conditions of an abiotic anode to assess the cathodic behavior (i.e., cathode polarization curves in light-dark conditions and oxygen depletion). Secondly, Geobacter sulfurreducens was inoculated in the anode compartment of the MDC, and the desalination cycle was carried out. The results showed that microalgae could generate an average of 9–11.5 mg/L of dissolved oxygen during the light phase, providing enough dissolved oxygen to drive the migration of ions (i.e., desalination) in the MDC system. Moreover, during the dark phase, a residual concentration of oxygen (ca. 5.5–8 mg/L) was measured, indicating that oxygen was not wholly depleted under our experimental conditions. Interestingly, the oxygen concentration was restored (after complete depletion of dissolved oxygen by flushing with N2) as soon as microalgae were exposed to the light phase again. After a 31 h desalination cycle, the cell generated a current density of 0.12 mA/cm2 at an efficiency of 60.15%, 77.37% salt was removed at a nominal desalination rate of 0.63 L/m2/h, coulombic efficiency was 9%, and 0.11 kWh/m3 of electric power was generated. The microalgae-assisted biocathode has an advantage over the air diffusion and bubbling as it can self-sustain a steady and higher concentration of oxygen, cost-effectively regenerate or recover from loss and sustainably retain the system’s performance under naturally occurring conditions. Thus, our study provides insights into implementing the algae-assisted cathode for sustainable desalination using MDC technology and subsequent optimization.
Collapse
|
6
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
7
|
Rogińska J, Perdicakis M, Midoux C, Bouchez T, Despas C, Liu L, Tian JH, Chaumont C, P A Jorand F, Tournebize J, Etienne M. Electrochemical analysis of a microbial electrochemical snorkel in laboratory and constructed wetlands. Bioelectrochemistry 2021; 142:107895. [PMID: 34364026 DOI: 10.1016/j.bioelechem.2021.107895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
Microbial electrochemical snorkel (MES) is a short-circuited microbial fuel cell applicable to water treatment that does not produce energy but requires lower cost for its implementation. Few reports have already described its water treatment capabilities but no deeper electrochemical analysis were yet performed. We tested various materials (iron, stainless steel and porous graphite) and configurations of snorkel in order to better understand the rules that will control in a wetland the mixed potential of this self-powered system. We designed a model snorkel that was studied in laboratory and on the field. We confirmed the development of MES by identifying anodic and cathodic parts, by measuring the current between them and by analyzing microbial ecology in laboratory and field experiments. An important application is denitrification of surface water. Here we discuss the influence of nitrate on its electrochemical response and denitrification performances. Introducing nitrate caused the increase of the mixed potential of MES and of current at a potential value relatively more positive than for nitrate-reducing biocathodes described in the literature. The major criteria for promoting application of MES in artificial wetland dedicated to mitigation of non-point source nitrate pollution from agricultural water are considered.
Collapse
Affiliation(s)
| | | | - Cédric Midoux
- UR PROSE, Université de Paris Saclay, INRAE, centre d'Antony, 92761 Antony Cedex, France
| | - Théodore Bouchez
- UR PROSE, Université de Paris Saclay, INRAE, centre d'Antony, 92761 Antony Cedex, France
| | | | - Liang Liu
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Jiang-Hao Tian
- UR PROSE, Université de Paris Saclay, INRAE, centre d'Antony, 92761 Antony Cedex, France
| | - Cédric Chaumont
- UR HYCAR, Université de Paris Saclay, INRAE, centre d'Antony, 92761, Antony Cedex, France
| | | | - Julien Tournebize
- UR HYCAR, Université de Paris Saclay, INRAE, centre d'Antony, 92761, Antony Cedex, France
| | | |
Collapse
|
8
|
Vinayak V, Khan MJ, Varjani S, Saratale GD, Saratale RG, Bhatia SK. Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol 2021; 338:5-19. [PMID: 34245783 DOI: 10.1016/j.jbiotec.2021.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
With the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants. However, for industrial scale application coupling the MFCs with photocatalytic and photoelectric fuel cell has a potential in improving the output of power. It can also be used for remediation of pollutants more expeditiously, conserving fossil fuels, cleaning environment, hence making the coupled hybrid fuel cell to run economically. Furthermore, such MFC inbuilt with algae in living or powder form give additional value addition products like biofuel, polysaccharides, biopolymers, and polyhydroxy alkanoates etc. This review provides bird's eye view on the removal of environmental pollutants by different biological sources like bacteria and algae. The article is focussed on diatoms as potential algae since they are rich source of crude oil and high value added products in a hybrid photocatalytic MFC. It also covers bottle necks, challenges and future in this field of research.
Collapse
Affiliation(s)
- Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
9
|
Chang CC, Li SL, Hu A, Yu CP. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells. CHEMOSPHERE 2021; 266:129059. [PMID: 33250234 DOI: 10.1016/j.chemosphere.2020.129059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms were observed to facilitate cathodic oxygen reduction and enhance cathode performance of microbial fuel cells (MFCs). However, the long-term activity and stability of bio-catalyzed cathode needs to be explored. This study evaluated the long-term performance of bio-catalyzed cathode and iron(II) phthalocyanine (FePc)-catalyzed cathode MFCs through effluent water quality, electricity production and electrochemical impedance spectroscopy (EIS) analysis under different scenarios, including conventional wastewater treatment and energy harvesting using a power management system (PMS). During the continuous operation, both systems demonstrated high chemical oxygen demand and ammonium removal, but bio-catalyzed cathode MFCs could achieve significantly better total nitrogen removal than FePc-catalyzed cathode MFCs. The FePc-coated cathode showed constant cathode potential during the entire operation period, but the biocathode showed varied but step-wise increased cathode potential to achieve more than 500 mV versus the standard hydrogen electrode, likely due to the gradual enrichment of biocathode biofilm. EIS analysis revealed that biocathode had higher ohmic resistance than bare carbon felt cathode but the microbial biofilm could largely decrease polarization resistance of cathode material. Microbial community analysis has shown the presence of nitrifying and denitrifying bacteria in the bio-catalyzed cathode biofilm. When connecting PMS, both bio-catalyzed cathode and FePc-catalyzed cathode MFCs successfully charged a capacitor, but the bio-catalyzed cathode MFC voltage significantly dropped to less than 100 mV after charging for 91 h, and gradually recovered when disconnecting PMS. This study has demonstrated the potential application of oxygen reduction bio-catalyzed cathode MFCs for continuous wastewater treatment and energy harvesting for long period of time.
Collapse
Affiliation(s)
- Chao-Chin Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shiue-Lin Li
- Department of Environmental Science and Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Nguyen HTH, Min B. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138054. [PMID: 32222505 DOI: 10.1016/j.scitotenv.2020.138054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Algae-cathode microbial fuel cells (MFCs) with various hydraulic retention times (HRTs) were investigated for electricity generation, and chemical oxygen demand (COD) and nutrient removal from diluted landfill leachate (15% v/v). The cell voltage and dissolved oxygen (DO) in the cathode were considerably affected by the HRT. The highest cell voltage was 303 mV at 20-h HRT, and DO concentration of 5.3 mg/L was only observed at 60-h HRT. Nutrient removal increased with increasing HRTs, and the maximum removal efficiency was 76.4% and 86.3% at 60-h HRT for ammonium and phosphorus, respectively. The highest COD removal of 26% was observed at 60-h HRT. The dominant phyla in the cathode were Proteobacteria, Cyanobacteria, Bacteroidetes, and Chlorophyta, which could have contributed to electricity generation and nutrient removal. This study suggests that an algae-cathode MFC with an appropriate HRT can continuously generate electricity and simultaneously remove nutrients from real leachate wastewater in field applications.
Collapse
Affiliation(s)
- Hai T H Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Republic of Korea.
| |
Collapse
|
11
|
Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater. ENERGIES 2020. [DOI: 10.3390/en13092231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The variation of substrate concentration in anode chamber directly affects the power generation efficiency and decontamination performance of microbial fuel cell (MFC). In this study, three concentrations of swine wastewater with 800 mg/L, 1600 mg/L and 2500 mg/L were selected as substrates, and the performance of MFC and response characteristics of anode microbial community were investigated. The results show that the concentration of a selected substrate is positively correlated with the output voltage of MFC and chemical oxygen demand (COD) removal rate. The microbial community diversity in the anode chamber and the performance of battery can be significantly affected when concentration changes in different ways, which helps to selectively cultivate the adaptable dominant bacteria to enhance the stability and decontamination performance of MFC. The community structure of anodic biofilm is mainly composed of Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Spirochaetae. These findings are meaningful to improve the treatment effects of swine wastewater and can help to find out the mechanism of varying concentration that influences the production of microorganisms in MFC.
Collapse
|
12
|
Jugnia L, Manno D, Hendry M, Tartakovsky B. Removal of heavy metals in a flow‐through vertical microbial electrolysis cell. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis‐B. Jugnia
- Energy, Mining and Environment Research CentreNational Research Council Canada 6100 Royalmount Avenue, Montréal QC Canada
| | - Dominic Manno
- Energy, Mining and Environment Research CentreNational Research Council Canada 6100 Royalmount Avenue, Montréal QC Canada
| | - Meghan Hendry
- National Defence Garrison Petawawa 4 CDSG Environmental Services 101 Menin Road, Building S‐600 P.O. Box 9999 Stn Main, Petawawa ON Canada
| | - Boris Tartakovsky
- Energy, Mining and Environment Research CentreNational Research Council Canada 6100 Royalmount Avenue, Montréal QC Canada
| |
Collapse
|
13
|
Cao X, Zhang S, Wang H, Li X. Azo dye as part of co-substrate in a biofilm electrode reactor-microbial fuel cell coupled system and an analysis of the relevant microorganisms. CHEMOSPHERE 2019; 216:742-748. [PMID: 30391896 DOI: 10.1016/j.chemosphere.2018.10.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
In general, refractory organics were hardly used as co-substrate in bioelectrochemical system. This study established a coupled bioelectrochemical system composed of a biofilm electrode reactor and a microbial fuel cell for using the azo dye X-3B as part of co-substrate. The two units degraded the azo dye X-3B stepwise while using it as part of co-substrate. Our results indicated that the removal efficiency of X-3B increased 28.5% using the coupled system compared with a control system. Moreover, the addition of the co-substrate glucose, which was necessary for MFC electricity generation, was reduced on the premise of stable removal efficiency in the coupled system to prevent resource waste due to using X-3B as part of co-substrate. The intermediate products of X-3B degradation were further explored using gas chromatography-mass spectrometry and a X-3B degradation pathway was proposed at the same time. Microbial communities were analyzed, illustrating that the mechanism of X-3B degradation was dependent on bioelectrochemistry rather than on microbial degradation.
Collapse
Affiliation(s)
- Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
14
|
Wang G, Guo Y, Cai J, Wen H, Mao Z, Zhang H, Wang X, Ma L, Zhu M. Electricity production and the analysis of the anode microbial community in a constructed wetland-microbial fuel cell. RSC Adv 2019; 9:21460-21472. [PMID: 35521306 PMCID: PMC9066182 DOI: 10.1039/c8ra10130b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/10/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this study is to assess bioelectricity generation, pollutant removal (COD, ammonium, nitrate) and the bacterial communities on anodes in constructed wetlands coupled with microbial fuel cells (CW-MFCs), through feeding the systems with three different types of synthetic wastewater (system 1: normal wastewater; system 2: ammonium-free wastewater; system 3: nitrate-free wastewater). Three CW-MFCs were operated with different wastewater concentrations and hydraulic retention times (HRTs) over a long time period (6 months). The results indicate that the maximum open circuit voltage (775.63 mV) and maximum power density (0.628 W m−3) were observed in system 3 (period 3), and that bioenergy production was inhibited in system 2, when feeding with ammonium-free wastewater continuously. COD removal rates in the three systems were similar during each period and ranged from 82.2 ± 6.8% to 98.3 ± 2.2%. Ammonium removal occurred at the air cathode of the CW-MFCs through nitrification, and a higher level of ammonium removal was found in system 1 (period 3) compared with the others. Meanwhile, denitrification occurred at the anaerobic anode of the CW-MFCs, and a large amount of nitrate was removed effectively. The highest nitrate removal rate was 98.8 ± 0.5% in system 2 (period 3). Additionally, four genera related to electricity generation were detected at the anode: Geothrix; Desulfovibrio; Desulfobulbus; and Geobacter. The relative abundances of Desulfovibrio, Desulfobulbus and Geothrix gradually increased during the three periods in system 3, which might be beneficial for bioelectricity generation. Further investigations are needed to optimize the CW-MFC performance and explain the mechanism behind the pollutant degradation and electron motion in the CW-MFCs. The objective of this study is to assess bioelectricity generation, pollutant removal and the bacterial communities on anodes in constructed wetlands coupled with microbial fuel cells, through feeding the systems with three different types of synthetic wastewater.![]()
Collapse
Affiliation(s)
- Guozhen Wang
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yating Guo
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Jiaying Cai
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Hongyu Wen
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Zhen Mao
- School of Environment Science and Spatial Informatics
- China University of Mining and Technology
- Xuzhou 221116
- China
| | - Hao Zhang
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Xin Wang
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Lei Ma
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Mengqin Zhu
- School of Life Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|
15
|
Cao X, Wang H, Zhang S, Nishimura O, Li X. Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors. CHEMOSPHERE 2018; 208:219-225. [PMID: 29870911 DOI: 10.1016/j.chemosphere.2018.05.190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, the degradation pathway of the azo dye X-3B was explored in biofilm electrode reactors (BERs). The X-3B and chemical oxygen demand (COD) removal efficiencies were evaluated under different voltages, salinities, and temperatures. The removal efficiencies increased with increasing voltage. Additionally, the BER achieved maximum X-3B removal efficiencies of 66.26% and 75.27% at a NaCl concentration of 0.33 g L-1 and temperature of 32 °C, respectively; it achieved a COD removal efficiency of 75.64% at a NaCl concentration of 0.330 g L-1. Fourier transform infrared spectrometry and gas chromatography-mass spectrometry analysis indicated that the X-3B biodegradation process first involved the interruption of the conjugated double-bond, resulting in aniline, benzodiazepine substance, triazine, and naphthalene ring formation. These compounds were further degraded into lower-molecular-weight products. From this, the degradation pathway of the azo dye X-3B was proposed in BERs. The relative abundances of the microbial community at the phylum and genus levels were affected by temperature, the presence of electrons, and an anaerobic environment in the BERs. To achieve better removal efficiencies, further studies on the functions of the microorganisms are needed.
Collapse
Affiliation(s)
- Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan.
| | - Hui Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Shuai Zhang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
16
|
Tahon G, Tytgat B, Lebbe L, Carlier A, Willems A. Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Syst Appl Microbiol 2018; 41:279-290. [DOI: 10.1016/j.syapm.2018.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
17
|
Mei X, Xing D, Yang Y, Liu Q, Zhou H, Guo C, Ren N. Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature. Bioelectrochemistry 2017; 117:29-33. [DOI: 10.1016/j.bioelechem.2017.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
|
18
|
Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME JOURNAL 2017; 11:1087-1101. [PMID: 28169988 DOI: 10.1038/ismej.2016.187] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/17/2016] [Accepted: 12/09/2016] [Indexed: 02/04/2023]
Abstract
Biochar and mineral-enriched biochar (MEB) have been used as soil amendments to improve soil fertility, sequester carbon and mitigate greenhouse gas emissions. Such beneficial outcomes could be partially mediated by soil bacteria, however little is known about how they directly interact with biochar or MEB. We therefore analyzed the diversity and functions of bacterial communities on the surfaces of one biochar and two different MEBs after a 140-day incubation in soil. The results show that the biochar and the MEBs harbor distinct bacterial communities to the bulk soil. Communities on biochar and MEBs were dominated by a novel Gammaproteobacterium. Genome reconstruction combined with electron microscopy and high-resolution elemental analysis revealed that the bacterium generates energy from the oxidation of iron that is present on the surface. Two other bacteria belonging to the genus Thiobacillus and a novel group within the Oxalbacteraceae were enriched only on the MEBs and they had the genetic capacity for thiosulfate oxidation. All three surface-enriched bacteria also had the capacity to fix carbon dioxide, either in a potentially strictly autotrophic or mixotrophic manner. Our results show the dominance of chemolithotrophic processes on the surface of biochar and MEB that can contribute to carbon sequestration in soil.
Collapse
|
19
|
Li S, Cheng C, Thomas A. Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602547. [PMID: 27991684 DOI: 10.1002/adma.201602547] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Microbial fuel cells (MFCs) have attracted considerable interest due to their potential in renewable electrical power generation using the broad diversity of biomass and organic substrates. However, the difficulties in achieving high power densities and commercially affordable electrode materials have limited their industrial applications to date. Carbon materials, which can exhibit a wide range of different morphologies and structures, usually possess physiological activity to interact with microorganisms and are therefore fast-emerging electrode materials. As the anode, carbon materials can significantly promote interfacial microbial colonization and accelerate the formation of extracellular biofilms, which eventually promotes the electrical power density by providing a conductive microenvironment for extracellular electron transfer. As the cathode, carbon-based materials can function as catalysts for the oxygen-reduction reaction, showing satisfying activities and efficiencies nowadays even reaching the performance of Pt catalysts. Here, first, recent advancements on the design of carbon materials for anodes in MFCs are summarized, and the influence of structure and surface functionalization of different types of carbon materials on microorganism immobilization and electrochemical performance is elucidated. Then, synthetic strategies and structures of typical carbon-based cathodes in MFCs are briefly presented. Furthermore, future applications of carbon-electrode-based MFC devices in the energy, environmental, and biological fields are discussed, and the emerging challenges in transferring them from laboratory to industrial scale are described.
Collapse
Affiliation(s)
- Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Chong Cheng
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Arne Thomas
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany
| |
Collapse
|
20
|
Tursun H, Liu R, Li J, Abro R, Wang X, Gao Y, Li Y. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance. Front Microbiol 2016; 7:6. [PMID: 26858695 PMCID: PMC4726804 DOI: 10.3389/fmicb.2016.00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency.
Collapse
Affiliation(s)
- Hairti Tursun
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Jing Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Rashid Abro
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yanmei Gao
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
21
|
Rimboud M, Desmond-Le Quemener E, Erable B, Bouchez T, Bergel A. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. Bioelectrochemistry 2015; 102:42-9. [DOI: 10.1016/j.bioelechem.2014.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
|
22
|
Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 2014; 25:615-32. [DOI: 10.1007/s10532-014-9686-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
23
|
Park TJ, Ding W, Cheng S, Brar MS, Ma APY, Tun HM, Leung FC. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp.). AMB Express 2014; 4:22. [PMID: 24949257 PMCID: PMC4052673 DOI: 10.1186/s13568-014-0022-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/20/2014] [Indexed: 12/24/2022] Open
Abstract
High power densities have been obtained from MFC reactors having a purple color characteristic of Rhodopseudomonas. We investigated the microbial community structure and population in developed purple MFC medium (DPMM) and MFC effluent (DPME) using 16S rRNA pyrosequencing. In DPMM, dominant bacteria were Comamonas (44.6%), Rhodopseudomonas (19.5%) and Pseudomonas (17.2%). The bacterial community of DPME mainly consisted of bacteria related to Rhodopseudomonas (72.2%). Hydrogen oxidizing bacteria were identified in both purple-colored samples: Hydrogenophaga and Sphaerochaeta in the DPMM, and Arcobacter, unclassified Ignavibacteriaceae, Acinetobacter, Desulfovibrio and Wolinella in the DPME. The methanogenic community of both purple-colored samples was dominated by hydrogenotrophic methanogens including Methanobacterium, Methanobrevibacter and Methanocorpusculum with significantly lower numbers of Methanosarcina. These results suggeste that hydrogen is actively produced by Rhodopseudomonas that leads to the dominance of hydrogen consuming microorganisms in both purple-colored samples. The syntrophic relationship between Rhodopseudomonas and hydrogenotrophic microbes might be important for producing high power density in the acetate-fed MFC under light conditions.
Collapse
|
24
|
Kokabian B, Gude VG. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:2178-2185. [PMID: 24154718 DOI: 10.1039/c3em00415e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.
Collapse
Affiliation(s)
- Bahareh Kokabian
- Civil and Environmental Engineering Department, Mississippi State University, Mississippi State MS 39762, USA.
| | | |
Collapse
|
25
|
Sharma M, Jain P, Varanasi JL, Lal B, Rodríguez J, Lema JM, Sarma PM. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. BIORESOURCE TECHNOLOGY 2013; 150:172-180. [PMID: 24161648 DOI: 10.1016/j.biortech.2013.09.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
An anoxic biocathode was developed using sulfate-reducing bacteria (SRB) consortium on activated carbon fabric (ACF) and the effect of stainless steel (SS) mesh as additional current collector was investigated. Improved performance of biocathode was observed with SS mesh leading to nearly five folds increase in power density (from 4.79 to 23.11 mW/m(2)) and threefolds increase in current density (from 75 to 250 mA/m(2)). Enhanced redox currents and lower Tafel slopes observed from cyclic voltammograms of ACF with SS mesh indicated the positive role of uniform electron collecting points. Differential pulse voltammetry technique was employed as an additional tool to assess the redox carriers involved in bioelectrochemical reactions. SRB biocathode was also tested for reduction of volatile fatty acids (VFA) present in the fermentation effluent stream and the results indicated the possibility of integration of this system with anaerobic fermentation for efficient product recovery.
Collapse
Affiliation(s)
- Mohita Sharma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; TERI, Darbari Seth Block, India Habitat Centre, New Delhi 110 003, India
| | | | | | | | | | | | | |
Collapse
|