1
|
Lasalo M, Jauffrais T, Georgel P, Matsui M. Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Mar Drugs 2024; 22:405. [PMID: 39330286 PMCID: PMC11433570 DOI: 10.3390/md22090405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms.
Collapse
Affiliation(s)
- Malia Lasalo
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| | - Thierry Jauffrais
- Ifremer, Institut de Recherche pour le Développement (IRD), Centre Nationale de la Recherche Scientifique (CNRS), Université de la Réunion, Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia;
| | - Philippe Georgel
- Team Neuroimmunology and Peptide Therapy, Biotechnologie et Signalisation Cellulaire, UMR 7242, University of Strasbourg, 67085 Strasbourg, France;
| | - Mariko Matsui
- Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia;
| |
Collapse
|
2
|
Váradi G, Bende G, Borics A, Dán K, Rákhely G, Tóth GK, Galgóczy L. Rational Design of Antifungal Peptides Based on the γ-Core Motif of a Neosartorya ( Aspergillus) fischeri Antifungal Protein to Improve Structural Integrity, Efficacy, and Spectrum. ACS OMEGA 2024; 9:7206-7214. [PMID: 38371770 PMCID: PMC10870298 DOI: 10.1021/acsomega.3c09377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Antifungal peptides offer promising alternative compounds for the treatment of fungal infections, for which new antifungal compounds are urgently needed. Constant and broad antifungal spectra of these peptides play essential roles in their reliable therapeutic application. It has been observed that rationally designed peptides using the evolutionarily conserved γ-core region (GXC-X3-9-C) of an antifungal protein from Neosartorya (Aspergillus) fischeri highly inhibit the growth of fungi. The cysteines in these peptides have free sulfhydryl groups, which allow cyclization and dimerization under oxidative conditions, thereby impairing antifungal efficacy. To overcome this problem, one or two cysteine residues were substituted by serines or S-tert-butyl was applied as a cysteine-protecting group. Furthermore, structural integrity and antifungal efficacy investigations before and after oxidative exposure revealed that substituting both cysteines with serines and S-tert-butylation helped maintain the structural integrity. However, it slightly decreased the antifungal efficacy against a yeast, Candida albicans. Interestingly, S-tert-butylation maintained the efficacy and could extend the antifungal activity to a mold, Aspergillus fumigatus. Usually, cyclization and dimerization did not influence the antifungal efficacy of most peptides. Additionally, hemolysis tests and Galleria mellonella toxicity model experiments indicated that none of the applied modifications made the peptides harmful to animals.
Collapse
Affiliation(s)
- Györgyi Váradi
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
| | - Gábor Bende
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Doctoral
School of Biology, University of Szeged, Szeged 6720, Hungary
| | - Attila Borics
- Institute
of Biochemistry, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| | - Kinga Dán
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Doctoral
School of Biology, University of Szeged, Szeged 6720, Hungary
| | - Gábor Rákhely
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Institute
of Biophysics, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Szeged 6720, Hungary
- MTA-SZTE
Biomimetic Systems Research Group, University
of Szeged, Szeged 6720, Hungary
| | - László Galgóczy
- Department
of Biotechnology, University of Szeged, Szeged 6726, Hungary
- Institute
of Biochemistry, HUN-REN Biological Research
Centre, Szeged 6726, Hungary
| |
Collapse
|
3
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
4
|
Jiang M, Chen R, Zhang J, Chen F, Wang KJ. A Novel Antimicrobial Peptide Spampcin 56-86 from Scylla paramamosain Exerting Rapid Bactericidal and Anti-Biofilm Activity In Vitro and Anti-Infection In Vivo. Int J Mol Sci 2022; 23:ijms232113316. [PMID: 36362111 PMCID: PMC9653689 DOI: 10.3390/ijms232113316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.
Collapse
Affiliation(s)
- Manyu Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
5
|
V V, Achar RR, M.U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021; 2:329-340. [PMID: 34604795 PMCID: PMC8473576 DOI: 10.1016/j.crtox.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Venom peptides have been evolving complex therapeutic interventions that potently and selectively modulate a range of targets such as ion channels, receptors, and signaling pathways of physiological processes making it potential therapeutic. Several venom peptides were deduced in vivo for clinical development targeting pain management, diabetes, cardiovascular diseases, antimicrobial activity. Several contributions have been detailed for a clear perspective for a better understanding of venomous animals, their venom, and their pharmacological effects. Here we unravel and summarize the recent advances in wide venom peptides across varieties of species for their therapeutics prospects.
Collapse
Affiliation(s)
- Vidya V
- K. S Hegde Medical Academy, NITTE (Deemed to be) University, Mangalore 575015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Himathi M.U
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Akshita N
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Yogish Somayaji T
- Department of Post Graduate Studies and Research in Biochemistry, St. Aloysius College (Autonomous), Mangalore 575003, Karnataka, India
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara-571448, Nangamangala, Mandya, India
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
| | - K. Byrappa
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
- Center for Material Science and Technology, Vijnana Bhavan, University of Mysore, Mysuru, Karnataka, India
| | - Dinesha Ramadas
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, B.G. Nagara-571448, Nagamangala, Mandya, India
| |
Collapse
|
6
|
Hansen IKØ, Lövdahl T, Simonovic D, Hansen KØ, Andersen AJC, Devold H, Richard CSM, Andersen JH, Strøm MB, Haug T. Antimicrobial Activity of Small Synthetic Peptides Based on the Marine Peptide Turgencin A: Prediction of Antimicrobial Peptide Sequences in a Natural Peptide and Strategy for Optimization of Potency. Int J Mol Sci 2020; 21:ijms21155460. [PMID: 32751755 PMCID: PMC7432809 DOI: 10.3390/ijms21155460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence analysis and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico analysis of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 µg/mL against Staphylococcus aureus and 3.9 µg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.
Collapse
Affiliation(s)
- Ida K. Ø. Hansen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.J.C.A.); (H.D.); (C.S.M.R.)
- Correspondence: (I.K.Ø.H.); (T.H.)
| | - Tomas Lövdahl
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (T.L.); (D.S.); (M.B.S.)
| | - Danijela Simonovic
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (T.L.); (D.S.); (M.B.S.)
| | - Kine Ø. Hansen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (K.Ø.H.); (J.H.A.)
| | - Aaron J. C. Andersen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.J.C.A.); (H.D.); (C.S.M.R.)
| | - Hege Devold
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.J.C.A.); (H.D.); (C.S.M.R.)
| | - Céline S. M. Richard
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.J.C.A.); (H.D.); (C.S.M.R.)
| | - Jeanette H. Andersen
- Marbio, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (K.Ø.H.); (J.H.A.)
| | - Morten B. Strøm
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (T.L.); (D.S.); (M.B.S.)
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.J.C.A.); (H.D.); (C.S.M.R.)
- Correspondence: (I.K.Ø.H.); (T.H.)
| |
Collapse
|
7
|
Yang Y, Chen F, Chen HY, Peng H, Hao H, Wang KJ. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. Front Microbiol 2020; 11:1589. [PMID: 32849331 PMCID: PMC7396596 DOI: 10.3389/fmicb.2020.01589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Natural antimicrobial peptides (AMPs) are potential antibiotic alternatives. Marine crustaceans are thought to generate more powerful and various AMPs to protect themselves from infections caused by pathogenic microorganisms in their complex aquatic habitat, thus becoming one of the most promising sources of AMPs or other bioactive substances. In the study, a novel protein was identified as an interacting partner of male-specific AMP SCY2 in Scylla paramamosain and named scyreprocin. The recombinant product of scyreprocin (rScyreprocin) was successfully expressed in Escherichia coli. rScyreprocin exerted potent, broad-spectrum antifungal, antibacterial, and anti-biofilm activity (minimum inhibitory concentrations from 0.5 to 32 μM) through differential modes of action, including disruption of cell membrane integrity and induction of cell apoptosis, and has rapid bactericidal (in 0.5–2 h) and fungicidal (in 8–10 h) kinetics. In addition to its fungicidal activity against planktonic fungi, rScyreprocin also prevented the adhesion of fungal cells, inhibited biofilm formation, and eradicated the mature biofilms. Moreover, rScyreprocin showed a profound inhibitory effect on spore germination of Aspergillus spp. (minimum inhibitory concentrations from 4 to 8 μM). This peptide was not cytotoxic to murine and mammalian cells and could increase the survival rate of Oryzias melastigma under the challenge of Vibrio harveyi. Taken together, the novel AMP scyreprocin would be a promising alternative to antibiotics used in aquaculture and medicine.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Gangathraprabhu B, Kannan S, Santhanam G, Suryadevara N, Maruthamuthu M. A review on the origin of multidrug-resistant Salmonella and perspective of tailored phoP gene towards avirulence. Microb Pathog 2020; 147:104352. [PMID: 32592823 DOI: 10.1016/j.micpath.2020.104352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 06/14/2020] [Indexed: 01/21/2023]
Abstract
Salmonellosis continues to remain a health problem as the causative organism Salmonella spp. developed resistance to many of the antibiotics. As per World Health Organization (WHO), it is estimated that enteric fever, accounts for almost 16 million cases annually and over 600,000 deaths worldwide. Recent data revealed that the multi-drug resistance (MDR) rate of enteric fever was as high as 70% in Asian countries, as compared with the overall reported incidence of 50%. Emergence of MDR typhoid fever demands the use of newer antibiotics which also not offer promising effect in recent days. Effective antimicrobial therapy is required to control morbidity and prevent death from typhoid fever. The studies on PhoP/Q regulation revealed it as a best-characterized transcriptional regulation; a two-component system required for Salmonella pathogenesis which controls the expression of more than 40 genes. The PhoP DNA binding proteins possess positively charged amino acids such as arginine, lysine and histidine which present in the DNA binding site. Prevention of PhoP binding in phoP box may ultimately prevent the expression of many regulatory mechanism which plays vital role in Salmonella virulence. Deepness study of PhoP protein and various mutation swots may offer effectual controlling of MDR Salmonella.
Collapse
Affiliation(s)
- Balasubramani Gangathraprabhu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Suganya Kannan
- Central Research laboratory, Vinayaka Mission Research Foundation (Deemed to be University), Vinayaka Missions Medical College and Hospital, Karaikal, Puducherry, India
| | - Geethanjali Santhanam
- Department of Home Science, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India
| | - Nagaraja Suryadevara
- Department of Biomedical Sciences, MAHSA University, Jenjarom, 42610, Selangor Dahrul Ehsan, Malaysia
| | - Murugan Maruthamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India.
| |
Collapse
|
9
|
Cell-Free Coelomic Fluid Extracts of the Sea Urchin Arbacia lixula Impair Mitochondrial Potential and Cell Cycle Distribution and Stimulate Reactive Oxygen Species Production and Autophagic Activity in Triple-Negative MDA-MB231 Breast Cancer Cells. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly malignant tumor histotype which lacks effective targeted therapies, thereby being considered as the most aggressive form of breast carcinoma. To identify novel compounds which could counteract TNBC cell growth, we explored the in vitro effects of crude extracts and <10 kDa-filtered fractions of the coelomic fluid obtained from the sea urchin Arbacia lixula on TNBC MDA-MB231 cells. We examined cell viability, cycle distribution, apoptotic/autophagic activity, and mitochondrial polarization/cell redox status. Here, we report the first data demonstrating an anti-TNBC effect by A. lixula-derived coelomic fluid extracts. Thus, identification of the water-soluble bioactive component(s) contained in the extracts deserve(s) further investigation aimed to devise novel promising prevention and/or treatment agents effective against highly malignant breast tumors.
Collapse
|
10
|
Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? Front Microbiol 2020; 10:3097. [PMID: 32038544 PMCID: PMC6987251 DOI: 10.3389/fmicb.2019.03097] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the de novo design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Raquel Q Orozco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Samilla B Rezende
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Elizabete S Cândido
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Instituto de Ciências Biológicas, Departamento de Biologia, Programa de Pós-Graduação em Ciências Biológicas (Imunologia/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
11
|
Dolmatova LS, Dolmatov IY. Different Macrophage Type Triggering as Target of the Action of Biologically Active Substances from Marine Invertebrates. Mar Drugs 2020; 18:E37. [PMID: 31906518 PMCID: PMC7024355 DOI: 10.3390/md18010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophages play a fundamental role in the immune system. Depending on the microenvironment stimuli, macrophages can acquire distinct phenotypes characterized with different sets of the markers of their functional activities. Polarization of macrophages towards M1 type (classical activation) is involved in inflammation and the related progression of diseases, while, in contrast, alternatively activated M2 macrophages are associated with the anti-inflammatory mechanisms. Reprogramming macrophages to switch their phenotypes could provide a new therapeutic strategy, and targeting the M1/M2 macrophage balance is a promising current trend in pharmacology. Marine invertebrates are a vast source of the variety of structurally diverse compounds with potent pharmacological activities. For years, a large number of studies concerning the immunomodulatory properties of the marine substances have been run with using some intracellular markers of immune stimulation or suppression irrespective of the possible application of marine compounds in reprogramming of macrophage activation, and only few reports clearly demonstrated the macrophage-polarizing activities of some marine compounds during the last decade. In this review, the data on the immunomodulating effects of the extracts and pure compounds of a variety of chemical structure from species of different classes of marine invertebrates are described with focus on their potential in shifting M1/M2 macrophage balance towards M1 or M2 phenotype.
Collapse
Affiliation(s)
- Lyudmila S. Dolmatova
- V.I. Il‘ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Baltiyskaya 43, 690041 Vladivostok, Russia
| | - Igor Yu. Dolmatov
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia;
| |
Collapse
|
12
|
Shikov AN, Pozharitskaya ON, Faustova NM, Kosman VM, Makarov VG, Razzazi-Fazeli E, Novak J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Mar Drugs 2019; 17:E577. [PMID: 31614490 PMCID: PMC6835498 DOI: 10.3390/md17100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
A glycopeptide fraction (GPF) from internal organs of green sea urchins (Strongylocentrotus droebachiensis Müller, Strongylocentrotidae) has been reported to be an effective bronchitis treatment. In this study, we evaluated the pharmacokinetic and tissue distribution of GPF, following single and repeated intranasal (i/n) administration over the course of seven days in rats. The method measuring lactate dehydrogenase as biomarker was used to analyse the plasma and tissue concentrations of GPF. GPF appears in the plasma 15 min after single i/n administration (100 µg/kg) and reaches its maximum at 45 min. The area under the curve (AUC)0-24 and Cmax were similar using both i/n and intravenous administration, while mean residence time (MRT) and T1/2 after i/n administration were significantly higher compared with intravenous (i/v) administration. The absolute bioavailability of GPF after i/n administration was 89%. The values of tissue availability (ft) provided evidence about the highest concentration of GPF in the nose mucosa (ft = 34.9), followed by spleen (ft = 4.1), adrenal glands (ft = 3.8), striated muscle (ft = 1.8), kidneys (ft = 0.5), and liver (ft = 0.3). After repeated dose administration, GPF exhibited significantly higher AUC0-24 and MRT, indicating its accumulation in the plasma.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| | - Olga N. Pozharitskaya
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Natalia M. Faustova
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Valery G. Makarov
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Ebrahim Razzazi-Fazeli
- Vetcore facility for Research, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| |
Collapse
|
13
|
Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, Larsson PT, Mahlapuu M, Håkansson J, Andersson M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 2018; 134:60-67. [PMID: 30445164 DOI: 10.1016/j.ejpb.2018.11.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: (i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, (ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and (iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture. Particle size and size distribution were analyzed using dynamic light scattering (DLS), liquid crystalline structure by small angle x-ray scattering (SAXS) and release of LL-37 by a fluorescamine assay. Proteolytic protection of LL-37 as well as bactericidal effect after enzyme exposure was investigated. The skin irritation potential of cubosomes was examined by an in vitro epidermis model. Finally, the bacterial killing property of the cubosomes was examined by an ex vivo pig skin wound infection model with Staphylococcus aureus. Data showed that a high loading of LL-37 induced formation of vesicles in case of cubosomes prepared by sonication (pre-loading). No release of LL-37 was observed from the cubosomes, indicating strong association of the peptide to the particles. Proteolysis studies showed that LL-37 was fully protected against enzymatic attacks while associated with the cubosomes, also denoting strong association of the peptide to the particles. As a consequence, bactericidal effect after enzyme exposure remained, compared to pure LL-37 which was subjected to proteolysis. No skin irritation potential of the cubosomes was found, thus enabling for topical administration. The ex vivo wound infection model showed that LL-37 in pre-loaded cubosomes killed bacteria most efficient.
Collapse
Affiliation(s)
- Lukas Boge
- RISE Research Institutes of Sweden, Box 857 SE-50115, Borås, Sweden; Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Göteborg, Sweden.
| | | | - Lovisa Ringstad
- RISE Research Institutes of Sweden, Box 857 SE-50115, Borås, Sweden
| | - Jenny Johansson
- RISE Research Institutes of Sweden, Box 857 SE-50115, Borås, Sweden
| | | | - Mina Davoudi
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Sweden
| | | | - Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science Park, Solna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden, Box 857 SE-50115, Borås, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Applied Chemistry, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
14
|
Memariani H, Shahbazzadeh D, Sabatier JM, Pooshang Bagheri K. Membrane-active peptide PV3 efficiently eradicates multidrug-resistant Pseudomonas aeruginosa
in a mouse model of burn infection. APMIS 2018; 126:114-122. [DOI: 10.1111/apm.12791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Hamed Memariani
- Venom and Biotherapeutics Molecules Lab.; Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Lab.; Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - Jean-Marc Sabatier
- INSERM; Aix Marseille Université; UMRs 1097; Parc scientifique et technologique de Luminy; Marseille France
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab.; Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
15
|
Han R, Blencke HM, Cheng H, Li C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptides 2018; 99:36-43. [PMID: 29108811 DOI: 10.1016/j.peptides.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Propionibacterium acnes is a commensal bacterium, which is involved in acne inflammation. An antimicrobial peptide named CEN1HC-Br, which was isolated and characterized form the green sea urchin, has been shown to possess broad-spectrum antibacterial activity. Little is known concerning the potential effects of its antibacterial and anti-inflammatory properties against P. acnes. To examine the potency of CEN1HC-Br in acne treatment, we conducted experiments to analyze the antibacterial and anti-inflammatory activities of CEN1HC-Br both in vitro and in vivo. The antimicrobial activity of CEN1HC-Br was evaluated by minimal inhibitory concentration (MIC) assays using the broth dilution method. To elucidate the in vitro anti-inflammatory effect, HaCaT cells and human monocytes were treated with different concentration of CEN1HC-Br after stimulation by P. acnes. The expression of TLR2 and the secretion of the pro-inflammatory cytokines IL-6, IL-8, IL-1β, TNF-α, IL-12, respectively, were measured by enzyme immunoassays. An evaluation of P. acnes-induced ear edema in rat ear was conducted to compare the in vivo antibacterial and anti-inflammatory effect of CEN1HC-Br, the expression of IL-8, TNF-α, MMP-2 and TLR2 was evaluated by immunohistochemistry and real time-PCR. CEN1HC-Br showed stronger antimicrobial activity against P. acnes than clindamycin. CEN1HC-Br significantly reduced the expression of interleukin IL-12p40, IL-6, IL-1β, TNF-α and TLR2 in monocytes, but they were not influenced by clindamycin. Both CEN1HC-Br and Clindamycin attenuated P. acnes-induced ear swelling in rat along with pro-inflammatory cytokines IL-8, TNF-α, MMP-2 and TLR2. Our data demonstrates that CEN1HC-Br is bactericidal against P. acnes and that it has an anti-inflammatory effect on monocytes. The anti-inflammatory effect may partially occur through TLR2 down-regulation, triggering an innate immune response and the inhibition of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Rui Han
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun Road, Hangzhou 310016, China
| | - Hans-Matti Blencke
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun Road, Hangzhou 310016, China.
| | - Chun Li
- Marbio, Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
16
|
López Y, Cepas V, Soto SM. The Marine Ecosystem as a Source of Antibiotics. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Dosunmu EF, Emeh RO, Dixit S, Bakeer MK, Coats MT, Owen DR, Pillai SR, Singh SR, Dennis VA. The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways. PLoS One 2017; 12:e0176640. [PMID: 28467446 PMCID: PMC5415104 DOI: 10.1371/journal.pone.0176640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa infection induces vigorous inflammatory mediators secreted by epithelial cells, which do not necessarily eradicate the pathogen. Nonetheless, it reduces lung function due to significant airway damage, most importantly in cystic fibrosis patients. Recently, we published that TP359, a proprietary cationic peptide had potent bactericidal effects against P. aeruginosa, which were mediated by down-regulating its outer membrane biogenesis genes. Herein, we hypothesized that TP359 bactericidal effects could also serve to regulate P. aeruginosa-induced lung inflammation. We explored this hypothesis by infecting human A549 lung cells with live P. aeruginosa non-isogenic, mucoid and non-mucoid strains and assessed the capacity of TP359 to regulate the levels of elicited TNFα, IL-6 and IL-8 inflammatory cytokines. In all instances, the mucoid strain elicited higher concentrations of cytokines in comparison to the non-mucoid strain, and TP359 dose-dependently down-regulated their respective levels, suggesting its regulation of lung inflammation. Surprisingly, P. aeruginosa flagellin, and not its lipopolysaccharide moiety, was the primary inducer of inflammatory cytokines in lung cells, which were similarly down-regulated by TP359. Blocking of TLR5, the putative flagellin receptor, completely abrogated the capacity of infected lung cells to secrete cytokines, underscoring that TP359 regulates inflammation via the TLR5-dependent signaling pathway. Downstream pathway-specific inhibition studies further revealed that the MAPK pathway, essentially p38 and JNK are necessary for induction of P. aeruginosa elicited inflammatory cytokines and their down-regulation by TP359. Collectively, our data provides evidence to support exploring the relevancy of TP359 as an anti-microbial and anti-inflammatory agent against P. aeruginosa for clinical applications.
Collapse
Affiliation(s)
- Ejovwoke F. Dosunmu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Robert O. Emeh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Mona K. Bakeer
- Lousiana State University Health Sciences Center, School of Allied Health Professions, New Orleans, Louisiana, United States of America
| | - Mamie T. Coats
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Donald R. Owen
- Therapeutic Peptides Inc., Baton Rouge, Louisiana, United States of America
| | - Shreekumar R. Pillai
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama, United States of America
- * E-mail:
| |
Collapse
|
18
|
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol 2016; 6:194. [PMID: 28083516 PMCID: PMC5186781 DOI: 10.3389/fcimb.2016.00194] [Citation(s) in RCA: 1164] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science ParkSolna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| | - Joakim Håkansson
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Lovisa Ringstad
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Camilla Björn
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden; SP Technical Research Institute of Sweden, Chemistry, Materials, and SurfacesBorås, Sweden
| |
Collapse
|
19
|
Shan Z, Zhu K, Peng H, Chen B, Liu J, Chen F, Ma X, Wang S, Qiao K, Wang K. The New Antimicrobial Peptide SpHyastatin from the Mud Crab Scylla paramamosain with Multiple Antimicrobial Mechanisms and High Effect on Bacterial Infection. Front Microbiol 2016; 7:1140. [PMID: 27493644 PMCID: PMC4954822 DOI: 10.3389/fmicb.2016.01140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
SpHyastatin was first identified as a new cationic antimicrobial peptide in hemocytes of the mud crab Scylla paramamosain. Based on the amino acid sequences deduced, it was predicted that this peptide was composed of two different functional domains, a proline-rich domain (PRD) and a cysteine-rich domain (CRD). The recombinant product of SpHyastatin displayed potent antimicrobial activities against the human pathogen Staphylococcus aureus and the aquatic animal pathogens Aeromonas hydrophila and Pseudomonas fluorescens. Compared with the CRD of SpHyastatin, the PRD presented better antimicrobial and chitin binding activities, but both regions were essential for allowing SpHyastatin complete antimicrobial activity. The binding properties of SpHyastatin to different microbial surface molecules suggested that this might be an initial and crucial step for performing its antimicrobial activities. Evaluated using propidium iodide uptake assays and scanning electron microscopy images, the antimicrobial mechanism of SpHyastatin was found to be prone to disrupt cell membrane integrity. Interestingly, SpHyastatin exerted its role specifically on the surface of S. aureus and Pichia pastoris whereas it directly killed P. fluorescens through simultaneous targeting the membrane and the cytoplasm, indicating that SpHyastatin could use different antimicrobial mechanisms to kill different species of microbes. As expected, the recombinant SpHyastatin increased the survival rate of crabs challenged with Vibrio parahaemolyticus. In addition, SpHyastatin could modulate some V. parahaemolyticus-responsive genes in S. paramamosain.
Collapse
Affiliation(s)
- Zhongguo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kexin Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Hui Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| | - Bei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| | - Xiaowan Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Shuping Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kun Qiao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University Xiamen, China
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen UniversityXiamen, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen UniversityXiamen, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen UniversityXiamen, China
| |
Collapse
|
20
|
Björn C, Mahlapuu M, Mattsby-Baltzer I, Håkansson J. Anti-infective efficacy of the lactoferrin-derived antimicrobial peptide HLR1r. Peptides 2016; 81:21-8. [PMID: 27155369 DOI: 10.1016/j.peptides.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) have emerged as a new class of drug candidates for the treatment of infectious diseases. Here we describe a novel AMP, HLR1r, which is structurally derived from the human milk protein lactoferrin and demonstrates a broad spectrum microbicidal action in vitro. The minimum concentration of HLR1r needed for killing ≥99% of microorganisms in vitro, was in the range of 3-50μg/ml for common Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and for the yeast Candida albicans, when assessed in diluted brain-heart infusion medium. We found that HLR1r also possesses anti-inflammatory properties as evidenced by inhibition of tumor necrosis factor alpha (TNF-α) secretion from human monocyte-derived macrophages and by repression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) secretion from human mesothelial cells, without any cytotoxic effect observed at the concentration range tested (up to 400μg/ml). HLR1r demonstrated pronounced anti-infectious effect in in vivo experimental models of cutaneous candidiasis in mice and of excision wounds infected with MRSA in rats as well as in an ex vivo model of pig skin infected with S. aureus. In conclusion, HLR1r may constitute a new therapeutic alternative for local treatment of skin infections.
Collapse
Affiliation(s)
- Camilla Björn
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Margit Mahlapuu
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Inger Mattsby-Baltzer
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Joakim Håkansson
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden.
| |
Collapse
|
21
|
Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MMDC, Teixeira JA, Balcão VM. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol Res 2016; 191:51-80. [PMID: 27524653 DOI: 10.1016/j.micres.2016.04.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/28/2016] [Accepted: 04/21/2016] [Indexed: 12/23/2022]
Abstract
Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies promises to be extremely safe and effective. Additionally, vaccination emerges as one of the most promising preventive strategies. All these will be tackled in detail in this review paper.
Collapse
Affiliation(s)
- Alessandra C Rios
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Carla G Moutinho
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal; University Fernando Pessoa, Porto, Portugal
| | | | - Fernando S Del Fiol
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Angela Jozala
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marco V Chaud
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marta M D C Vila
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil
| | - José A Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Victor M Balcão
- LaBNUS-Biomaterials and Nanotechnology Laboratory, i(bs)2i(bs)(2)-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba/SP, Brazil; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
22
|
Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvåg K, Haug T. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications. PLoS One 2016; 11:e0151820. [PMID: 27007817 PMCID: PMC4805251 DOI: 10.1371/journal.pone.0151820] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635) was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring.
Collapse
Affiliation(s)
- Runar Gjerp Solstad
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chun Li
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jostein Johansen
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
23
|
Haney EF, Mansour SC, Hilchie AL, de la Fuente-Núñez C, Hancock REW. High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 2015; 71:276-85. [PMID: 25836992 PMCID: PMC4581888 DOI: 10.1016/j.peptides.2015.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
The recent observation that certain cationic peptides possess potent antibiofilm activity demonstrated that small peptides could be used to treat biofilm-associated infections. Other so-called innate defense regulator peptides possess potent immunomodulatory properties such as leukocyte recruitment and suppression of harmful inflammation. A peptide that directly targets biofilm cells while favorably modulating the immune response would be particularly advantageous for treating serious skin infections caused by Staphylococcus aureus. In the present work, using SPOT-synthesized peptide arrays on cellulose membranes, we outline a strategy for systematically assessing the antibiofilm activity of hundreds of IDR-1002 (VQRWLIVWRIRK-NH2) and IDR-HH2 (VQLRIRVAVIRA-NH2) peptide variants against MRSA biofilms. In addition, the ability of these peptides to stimulate production of a monocyte chemoattractant protein (MCP-1) and suppress LPS-induced interleukin (IL)-1β production in human peripheral blood mononuclear cells (PBMCs) was evaluated. These results informed the synthesis of second-generation peptides resulting in a new peptide, IDR-2009 (KWRLLIRWRIQK-NH2), with enhanced MCP-1 stimulatory activity, favorable IL-1β suppression characteristics and strong antibiofilm activity against MRSA and Pseudomonas aeruginosa biofilms. This work provides a proof-of-concept that multiple peptide activities can be optimized simultaneously to generate novel sequences that possess a variety of biological properties.
Collapse
Affiliation(s)
- Evan F Haney
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah C Mansour
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashley L Hilchie
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - César de la Fuente-Núñez
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Center for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Li C, Blencke HM, Haug T, Stensvåg K. Antimicrobial peptides in echinoderm host defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:190-197. [PMID: 25445901 DOI: 10.1016/j.dci.2014.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads.
Collapse
Affiliation(s)
- Chun Li
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway.
| | - Hans-Matti Blencke
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Tor Haug
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Klara Stensvåg
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; Centre for Research-based Innovation on Marine Bioactives and Drug Discovery (MabCent-SFI), UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
25
|
Björn C, Noppa L, Näslund Salomonsson E, Johansson AL, Nilsson E, Mahlapuu M, Håkansson J. Efficacy and safety profile of the novel antimicrobial peptide PXL150 in a mouse model of infected burn wounds. Int J Antimicrob Agents 2015; 45:519-24. [PMID: 25649371 DOI: 10.1016/j.ijantimicag.2014.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022]
Abstract
The urgent need to develop novel antimicrobial therapies has stimulated interest in antimicrobial peptides as therapeutic candidates for the treatment of infectious diseases. The aim of this study was to evaluate the anti-infectious effect of the synthetic antimicrobial peptide PXL150, formulated in hydroxypropyl cellulose (HPC) gel, on Pseudomonas aeruginosa in vitro and in an in vivo mouse model of infected burn wounds as well as to assess the in vivo safety profile of PXL150 in rats and rabbits. Minimal microbicidal concentration analysis showed prominent efficacy of PXL150 against P. aeruginosa in vitro, which was further enhanced in formulating the peptide in HPC gel. Application of 1.25, 2.5, 5, 10 and 20mg/g PXL150 in HPC gel twice daily for four consecutive days significantly reduced bacterial counts in the burn wounds compared with non-treated or placebo-treated controls. Continuous bioluminescence measurements of the bacteria revealed a pronounced anti-infective effect already at the first day post infection by PXL150 in concentrations of ≥2.5mg/g. In the non-clinical safety studies, PXL150 showed a favourable safety profile following repeated administration systemically and locally in rats and rabbits, respectively. In conclusion, these data support that PXL150 has the potential to be an effective and safe drug candidate for the treatment of infected burn wounds. The findings encourage the progression of PXL150 as a novel topical treatment of microbial infections.
Collapse
Affiliation(s)
- Camilla Björn
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Laila Noppa
- FOI Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
| | | | | | - Elin Nilsson
- FOI Swedish Defence Research Agency, SE-901 82 Umeå, Sweden
| | - Margit Mahlapuu
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of Gothenburg, Blå stråket 5, SE-413 45 Gothenburg, Sweden
| | - Joakim Håkansson
- Pergamum AB, Karolinska Institutet Science Park, Fogdevreten 2, SE-171 65 Solna, Sweden; SP Technical Research Institute of Sweden, Medical Device Technology, Box 857, SE-501 15 Borås, Sweden.
| |
Collapse
|
26
|
Development of an Analytical Method for the Rapid Quantitation of Peptides Used in Microbicide Formulations. Chromatographia 2014; 77:1713-1720. [PMID: 25477555 PMCID: PMC4244548 DOI: 10.1007/s10337-014-2777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/25/2014] [Indexed: 01/21/2023]
Abstract
Recently, a growing number of macromolecules such as peptides and proteins have been formulated into various microbicide formulations for the prevention of sexually transmitted infections. However, a fast and reliable high-throughput method for quantitating peptide/protein in polymer-based microbicide formulations is still lacking. As a result, we developed and validated a reversed-phase high-performance liquid chromatography method for the quantitation of gp120 fragment and LL-37 simultaneously in various microbicide gel formulations. This method was capable of detecting a limit of linearity (regression coefficient of 0.999) for gp120 fragment and LL-37 within a range of 0.625-80 and 1.25-80 µg mL-1, respectively. The lower limit of quantification for gp120 fragment and LL-37 was 1.14 and 0.31 µg mL-1, respectively. Method validation demonstrated acceptable intra- and inter-day RSD % (<5 %) and accuracy (95.67-100.5 %). Formulating both peptides into polymeric pharmaceutical gel formulations showed high extraction efficiency (in the range of 95.90 ± 3.03 to 111.45 ± 2.51 %). Using this method, we were able to separate and identify the forced degraded products from both peptides simultaneously without affecting the quantitation of both peptides in the polymeric dosage forms. Furthermore, this method was able to detect and separate degradants that were unable to be revealed using gel eletrophoresis.
Collapse
|
27
|
Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 2013; 34:10319-27. [DOI: 10.1016/j.biomaterials.2013.09.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/11/2013] [Indexed: 01/30/2023]
|