1
|
Lanave G, Catella C, Catalano A, Lucente MS, Pellegrini F, Fracchiolla G, Diakoudi G, Palmisani J, Trombetta CM, Martella V, Camero M. Assessing the virucidal activity of essential oils against feline calicivirus, a non-enveloped virus used as surrogate of norovirus. Heliyon 2024; 10:e30492. [PMID: 38711631 PMCID: PMC11070907 DOI: 10.1016/j.heliyon.2024.e30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 μg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 μl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Jolanda Palmisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| |
Collapse
|
2
|
Etim IIN, Njoku DI, Uzoma PC, Kolawole SK, Olanrele OS, Ekarenem OO, Okonkwo BO, Ikeuba AI, Udoh II, Njoku CN, Etim IP, Emori W. Microbiologically Influenced Corrosion: A Concern for Oil and Gas Sector in Africa. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Efficacy of 405 nm Light-Emitting Diode Illumination and Citral Used Alone and in Combination for Inactivation of Vibrio parahaemolyticus on Shrimp. Foods 2022; 11:foods11142008. [PMID: 35885251 PMCID: PMC9324625 DOI: 10.3390/foods11142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Vibrio parahaemolyticus is a widely distributed pathogen, which is frequently the lead cause of infections related to seafood consumption. The objective of the present study was to investigate the antimicrobial effect of the combination of 405 nm light-emitting diode (LED) and citral on V. parahaemolyticus. The antimicrobial effect of LED illumination and citral was evaluated on V. parahaemolyticus not only in phosphate-buffered saline (PBS) but also on shrimp. Quality changes of shrimp were determined by sensory evaluation. Changes in bacteria cell membrane morphology, cell membrane permeability, cell lipid oxidation level, and DNA degradation were examined to provide insights into the antimicrobial mechanism. The combination of LED treatments and citral had better antimicrobial effects than either treatment alone. LED combined with 0.1 mg/mL of citral effectively reduced V. parahaemolyticus from 6.5 log CFU/mL to below the detection limit in PBS. Combined treatment caused a 3.5 log reduction of the pathogen on shrimp within 20 min and a 6 log reduction within 2 h without significant changes in the sensory score. Furthermore, combined LED and citral treatment affected V. parahaemolyticus cellular morphology and outer membrane integrity. The profile of the comet assay and DNA fragmentation analysis revealed that combination treatment did not cause a breakdown of bacterial genomic DNA. In conclusion, LED may act synergistically with citral. They have the potential to be developed as novel microbial intervention strategies.
Collapse
|
4
|
Pamplona Pagnossa J, Rocchetti G, Bezerra JDP, Batiha GES, El-Masry EA, Mahmoud MH, Alsayegh AA, Mashraqi A, Cocconcelli PS, Santos C, Lucini L, Hilsdorf Piccoli R. Untargeted Metabolomics Approach of Cross-Adaptation in Salmonella Enterica Induced by Major Compounds of Essential Oils. Front Microbiol 2022; 13:769110. [PMID: 35694295 PMCID: PMC9174793 DOI: 10.3389/fmicb.2022.769110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cross-adaptation phenomena in bacterial populations, induced by sublethal doses of antibacterial solutions, are a major problem in the field of food safety. In this regard, essential oils and their major compounds appear as an effective alternative to common sanitizers in food industry environments. The present study aimed to evaluate the untargeted metabolomics perturbations of Salmonella enterica serovar Enteritidis that has been previously exposed to the sublethal doses of the major components of essential oils: cinnamaldehyde, citral, and linalool (CIN, CIT, and LIN, respectively). Cinnamaldehyde appeared to be the most efficient compound in the assays evaluating the inhibitory effects [0.06% (v/v) as MBC]. Also, preliminary tests exhibited a phenotype of adaptation in planktonic and sessile cells of S. Enteritidis when exposed to sublethal doses of linalool, resulting in tolerance to previously lethal concentrations of citral. A metabolomics approach on S. Enteritidis provided an important insight into the phenomenon of cross-adaptation induced by sublethal doses of major compounds of some essential oils. In addition, according to the results obtained, when single molecules were used, many pathways may be involved in bacterial tolerance, which could be different from the findings revealed in previous studies regarding the use of phytocomplex of essential oils. Orthogonal projection to latent structures (OPLS) proved to be an interesting predictive model to demonstrate the adaptation events in pathogenic bacteria because of the global engagement to prevent and control foodborne outbreaks.
Collapse
Affiliation(s)
- Jorge Pamplona Pagnossa
- Health and Biological Sciences Institute, Pontifical Catholic University–PUC Minas, Poços de Caldas, Brazil
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Eman A. El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Mashraqi
- Biology Department, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
- *Correspondence: Cledir Santos,
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | |
Collapse
|
5
|
Gambino E, Maione A, Guida M, Albarano L, Carraturo F, Galdiero E, Di Onofrio V. Evaluation of the Pathogenic-Mixed Biofilm Formation of Pseudomonas aeruginosa/ Staphylococcus aureus and Treatment with Limonene on Three Different Materials by a Dynamic Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063741. [PMID: 35329426 PMCID: PMC8955688 DOI: 10.3390/ijerph19063741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023]
Abstract
Background: Biofilms have been found growing on implantable medical devices. This can lead to persistent clinical infections. The highly antibiotic-resistant property of biofilms necessitates the search for both potent antimicrobial agents and novel antibiofilm strategies. Natural product-based anti-biofilm agents were found to be as efficient as chemically synthesized counterparts with fewer side effects. In the present study, the effects of limonene as an antibiofilm agent were evaluated on Pseudomonas aeruginosa and Staphylococcus aureus biofilm formed on different surfaces using the CDC model system in continuous flow. The flgK gene and the pilA gene expression in P. aeruginosa, and the icaA gene and eno gene in S. aureus, which could be considered as efficient resistance markers, were studied. Methods: Mono- and dual-species biofilms were grown on polycarbonate, polypropylene, and stainless-steel coupons in a CDC biofilm reactor (Biosurface Technologies, Bozeman, MT, USA). To evaluate the ability of limonene to inhibit and eradicate biofilm, a sub-MIC concentration (10 mL/L) was tested. The gene expression of P. aeruginosa and S. aureus was detected by SYBR Green quantitative Real-Time PCR assay (Meridiana Bioline, Brisbane, Australia). Results: The limonene added during the formation of biofilms at sub-MIC concentrations works very well in inhibiting biofilms on all three materials, reducing their growth by about 2 logs. Of the same order of magnitude is the ability of limonene to eradicate both mono- and polymicrobial mature biofilms on all three materials. Greater efficacy was observed in the polymicrobial biofilm on steel coupons. The expression of some genes related to the virulence of the two microorganisms was differently detected in mono- and polymicrobial biofilm. Conclusions: These data showed that the limonene treatment expressed different levels of biofilm-forming genes, especially when both types of strains alone and together grew on different surfaces. Our findings showed that limonene treatment is also very efficient when biofilm has been grown under shear stress causing significant and irreversible damage to the biofilm structure. The effectiveness of the sanitation procedures can be optimized by applying antimicrobial combinations with natural compounds (e.g., limonene).
Collapse
Affiliation(s)
- Edvige Gambino
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Angela Maione
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Marco Guida
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Luisa Albarano
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Federica Carraturo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (E.G.); (A.M.); (M.G.); (L.A.); (F.C.)
- Correspondence: ; Tel.: +39-081-679182
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy;
| |
Collapse
|
6
|
Tripathi AK, Thakur P, Saxena P, Rauniyar S, Gopalakrishnan V, Singh RN, Gadhamshetty V, Gnimpieba EZ, Jasthi BK, Sani RK. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion. Front Microbiol 2021; 12:754140. [PMID: 34777309 PMCID: PMC8586430 DOI: 10.3389/fmicb.2021.754140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) have a unique ability to respire under anaerobic conditions using sulfate as a terminal electron acceptor, reducing it to hydrogen sulfide. SRB thrives in many natural environments (freshwater sediments and salty marshes), deep subsurface environments (oil wells and hydrothermal vents), and processing facilities in an industrial setting. Owing to their ability to alter the physicochemical properties of underlying metals, SRB can induce fouling, corrosion, and pipeline clogging challenges. Indigenous SRB causes oil souring and associated product loss and, subsequently, the abandonment of impacted oil wells. The sessile cells in biofilms are 1,000 times more resistant to biocides and induce 100-fold greater corrosion than their planktonic counterparts. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation and corrosion. Here, we examine the critical genes involved in biofilm formation and microbiologically influenced corrosion and categorize them into various functional categories. The current effort also discusses chemical and biological methods for controlling the SRB biofilms. Finally, we highlight the importance of surface engineering approaches for controlling biofilm formation on underlying metal surfaces.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Etienne Z Gnimpieba
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Biomedical Engineering Program, University of South Dakota, Sioux Falls, SD, United States
| | - Bharat K Jasthi
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States.,2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States.,BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States.,Composite and Nanocomposite Advanced Manufacturing Centre-Biomaterials, Rapid City, SD, United States
| |
Collapse
|
7
|
Morris JB. Review of Antimicrobial and Other Health Effects in 5 Essential Oil Producing Grass Species. J Diet Suppl 2021; 20:118-131. [PMID: 34219586 DOI: 10.1080/19390211.2021.1944422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The warm season essential oil producing grass species including lemongrass (Cymbopogon citratus), palmarosa grass (C. martini), geranium grass (C. schoenanthus), vetiver grass (Chrysopogon zizanioides), and scented top grass (Capillipedium parviflorum) are used worldwide for their cosmetic and health properties. A discussion providing evidence from literature reviews about the potential uses of these grass species for antimicrobial and other health uses are presented. These species could be used as new therapies for treating microbial infections. The purpose of this study is to discuss in detail, evidence from literature reviews supporting potential health uses and to provide some discussion regarding some agronomic traits for these essential oil producing species.
Collapse
Affiliation(s)
- John Bradley Morris
- United States Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| |
Collapse
|
8
|
|
9
|
Spectral characterization, antioxidant, antimicrobial, cytotoxic, and cyclooxygenase inhibitory activities of Aloysia citriodora essential oils collected from two Palestinian regions. BMC Complement Med Ther 2021; 21:143. [PMID: 34001110 PMCID: PMC8130314 DOI: 10.1186/s12906-021-03314-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Aloysia citriodora Palau (AC) is commonly known as Lemon Verbena and has been utilized as a medicinal tea in folkloric medicine for the treatment of abdominal spasm, anxiety, and fever. The present investigation aimed to identify the chemical ingredients of AC essential oil (EO) collected from two different locations in Palestine and to assess their antioxidant, antimicrobial, cytotoxic, and cyclooxygenase (COX) inhibitory effects. Methods Gas chromatography/mass spectroscopy (GC/MS) technique was used to identify the chemical components of the hydro-distilled EO from both regions, while DPPH, MTS, and COX assays were utilized to estimate the antioxidant, cytotoxic, and COX inhibitory activities of the EOs, respectively. Moreover, a broth microdilution assay was used to assess antimicrobial potentials against seven microbial strains. Results The GC/MS technique revealed the presence of 17 compounds from the AC collected from the Umm al-Fahm region and 13 compounds from the sample from the Baqa al-Gharbiyye region, while α-citral was the major component of both EOs, representing 47.62 and 43.46%, respectively. The Baqa al-Gharbiyye AC EO exerted more potent antioxidant activity than the Umm al-Fahm EO, with IC50 values of 11.74 ± 0.18 and 35.48 ± 0.14 μg/mL, respectively, while the positive control Trolox had antioxidant IC50 values of 2.45 ± 0.01 μg/mL. Interestingly, both EOs inhibited more potential activity against Methicillin-Resistant Staphylococcus aureus (MRSA) and Proteus vulgaris than Ciprofloxacin and Ampicillin antibiotics and also showed more potent antifungal activity against Candida albicans than Fluconazole. Moreover, the Baqa al-Gharbiyye AC EO had a more potent cytotoxic effect than the Umm al-Fahm EO, with IC50 values of 84.5 ± 0.24 and 33.31 ± 0.01 μg/mL, respectively, compared with Doxorubicin, which had an IC50 dose of 22.01 ± 1.4 μg/mL. The EOs from Baqa al-Gharbiyye showed potent activity against both COX-1 and COX-2 enzymes, with IC50 of 52.93 ± 0.13 and 89.31 ± 0.21 μg/mL, respectively, while the EOs from the Umm al-Fahm region showed weaker activity against these enzymes, with IC50 of 349.99 ± 0.33 and 1326.37 ± 1.13 μg/mL, respectively. Conclusion Both characterized EOs have a huge variety of chemical components. The Baqa al-Gharbiyye AC EO has more potent antioxidant and cytotoxic activities than the Umm al-Fahm EO, but both have potential antimicrobial activity against MRSA, P. vulgaris, and C. albicans. These results suggest the use of AC EOs as promising sources of active ingredients in the food, cosmetic, and pharmaceutical industries. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03314-1.
Collapse
|
10
|
Godzieba M, Ciesielski S. Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases. Curr Cancer Drug Targets 2021; 20:19-32. [PMID: 31589125 DOI: 10.2174/1568009619666191007112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.
Collapse
Affiliation(s)
- Martyna Godzieba
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| |
Collapse
|
11
|
Lemon Grass Essential Oil Does not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound. Foods 2020; 9:foods9050585. [PMID: 32380674 PMCID: PMC7278871 DOI: 10.3390/foods9050585] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
With strong antimicrobial properties, citral has been repeatedly reported to be the dominant component of lemongrass essential oil. Here, we report on a comparison of the antimicrobial and anticancer activity of citral and lemongrass essential oil. The lemongrass essential oil was prepared by the vacuum distillation of fresh Cymbopogon leaves, with a yield of 0.5% (w/w). Citral content was measured by gas chromatography/high-resolution mass spectrometry (GC-HRMS) and determined to be 63%. Antimicrobial activity was tested by the broth dilution method, showing strong activity against all tested bacteria and fungi. Citral was up to 100 times more active than the lemongrass essential oil. Similarly, both citral and essential oils inhibited bacterial communication and adhesion during P. aeruginosa and S. aureus biofilm formation; however, the biofilm prevention activity of citral was significantly higher. Both the essential oil and citral disrupted the maturated P. aeruginosa biofilm with the IC50 7.3 ± 0.4 and 0.1 ± 0.01 mL/L, respectively. Although it may seem that the citral is the main biologically active compound of lemongrass essential oil and the accompanying components have instead antagonistic effects, we determined that the lemongrass essential oil-sensitized methicillin-resistant S. aureus (MRSA) and doxorubicin-resistant ovarian carcinoma cells and that this activity was not caused by citral. A 1 mL/L dose of oil-sensitized MRSA to methicillin up to 9.6 times and a dose of 10 µL/L-sensitized ovarian carcinoma to doxorubicin up to 1.8 times. The mode of multidrug resistance modulation could be due to P-glycoprotein efflux pump inhibition. Therefore, the natural mixture of compounds present in the lemongrass essential oil provides beneficial effects and its direct use may be preferred to its use as a template for citral isolation.
Collapse
|
12
|
Ituen E, Ekemini E, Yuanhua L, Singh A. Green synthesis of Citrus reticulata peels extract silver nanoparticles and characterization of structural, biocide and anticorrosion properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hossain SMZ, Razzak SA, Hossain MM. Application of Essential Oils as Green Corrosion Inhibitors. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04305-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Thielmann J, Muranyi P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1611671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. Thielmann
- Retention of Food Quality, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, German
- Chair of food packaging technology, Technical University of Munich TUM, Munich, Germany
| | - P. Muranyi
- Chair of food packaging technology, Technical University of Munich TUM, Munich, Germany
| |
Collapse
|
15
|
Basera P, Lavania M, Agnihotri A, Lal B. Analytical Investigation of Cymbopogon citratus and Exploiting the Potential of Developed Silver Nanoparticle Against the Dominating Species of Pathogenic Bacteria. Front Microbiol 2019; 10:282. [PMID: 30873133 PMCID: PMC6400849 DOI: 10.3389/fmicb.2019.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Indian biodiversity is a hub for medicinal plants. Extensive research has been carried out to select plants with numerous properties which can be used for human welfare. Present research is about Cymbopogon citratus, an economically valuable medicinal plant. In this study Cymbopogon citratus was elected as a subject plant over the five selected plants (Azadirachta indica, Plumeria obtuse, Sapindus mukorossi, Capsicum annuum and Phyllanthus emblica) on the basis of antibacterial effect against dominating pathogenic species of gram positive (Bacillus cereus, Bacillus licheniformis) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Further, bioactive agents behind antibacterial potential of Cymbopogon citratus was analyzed using analytical method (Phyto-chemical, FTIR, NMR and GC-MS). Due to the broad antimicrobial spectrum, silver nanoparticles have turned into a noteworthy decision for the improvement of new medication. Therefore, this investigation further elaborated in the development of Cymbopogon citratus silver nano-particles (CNPs). Antibacterial potential of CNPs examine in a range of C25–C150 (μg/ml) through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) where, C25 (μg/ml) concentration of CNPs were recorded as the MIC for all bacterial species and C25 (μg/ml) and C50 (μg/ml) noted as the MBC for Pseudomonas aeruginosa, Escherichia coli and Bacillus cereus, Bacillus licheniformis, respectively. In agar disk diffusion assay of CNPs, maximum diameter of zone of inhibition was observed for C150 (μg/ml) concentration Bacillus cereus (20.12 ± 0.42), Bacillus licheniformis (22.34 ± 0.4), Pseudomonas aeruginosa (35.23 ± 0.46) and Escherichia coli (31.87 ± 0.24). Involvement of bioactive component as a reducing and capping agent can be confirmed through FTIR spectrum of CNPs. Moreover XRD, EDXRF and SEM showed crystalline and cuboidal nature of CNPs with ∼35 nm sizes. Prominently, cytotoxic analysis was conducted to understand the toxic effect of CNPs. This research highlights the potential of CNPs due to the bioactive components present in Cymbopogon citratus extract: Polyphenols (phenol; 1584.56 ± 16.32 mg/L, Flavanoids) and mixture of terpenoids (Citral, Myrcene, Farnesol, β-myrcene and β –Pinene)
Collapse
Affiliation(s)
| | - Meeta Lavania
- The Energy and Resources Institute, New Delhi, India
| | | | - Banwari Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
16
|
Abstract
Lemongrass is a plant that contains aromatic compounds (myrcene and limonene), powerful deodorants, and antimicrobial compounds (citral and geraniol). Identifying a suitable drying model for the material is crucial for establishing an initial step for the development of dried products. Convection drying is a commonly used drying method that could extend the shelf life of the product. In this study, a suitable kinetic model for the drying process was determined by fitting moisture data corresponding to four different temperature levels: 50, 55, 60 and 65 °C. In addition, the effect of drying temperature on the moisture removal rate, the effective diffusion coefficient and activation energy were also estimated. The results showed that time for moisture removal increases proportionally with the air-drying temperature, and that the Weibull model is the most suitable model for describing the drying process. The effective diffusion coefficient ranges from 7.64 × 10−11 m2/s to 1.48 × 10−10 m2/s and the activation energy was 38.34 kJ/mol. The activation energy for lemongrass evaporation is relatively high, suggesting that more energy is needed to separate moisture from the material by drying.
Collapse
|
17
|
Ngome MT, Alves JGLF, de Oliveira ACF, da Silva Machado P, Mondragón-Bernal OL, Piccoli RH. Linalool, citral, eugenol and thymol: control of planktonic and sessile cells of Shigella flexneri. AMB Express 2018; 8:105. [PMID: 29943167 PMCID: PMC6020087 DOI: 10.1186/s13568-018-0634-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022] Open
Abstract
The antimicrobial activity of linalool, citral, eugenol and thymol was determined in growth studies of both planktonic (PC) and biofilm cells (BC) Shigella flexneri. These components were evaluated either in isolation or in combinations using a sequential experimental strategy with Plackett & Burman and central composite rotational designs totaling 47 treatments. The minimum inhibitory concentration for PC was 0.125% (v v−1) for linalool and 0.5% (v v−1) for citral, eugenol and thymol. The biofilm minimum bactericidal concentration was 3 and 1% (v v−1) for linalool and citral, respectively, and 2% (v v−1) for eugenol and thymol. In the mixtures, the minimum concentrations in the efficient assays for PC growth inhibition were 0.0003, 0.0443 and 0.0443% (v v−1), for linalool, citral and thymol, respectively. In the BC, only two assays with concentrations of 0.0558, 0.0558 and 0.319% (v v−1) and 0.035, 0.035 and 0.3999% (v v−1) for linalool, citral and thymol, respectively, inhibited Shigella growth. Synergism was observed among the components, where PC and BC growth inhibition occurred at lower concentrations than those noted individually. The bactericidal effect of the components in microplate was different from the observed in stain steel coupons. Therefore, the obtained model can describe and predict the PC count of S. flexneri in medium with the tested compounds and they could be an alternative for the use in microbiological control in food industry.
Collapse
|
18
|
Costa S, Cavadas C, Cavaleiro C, Salgueiro L, do Céu Sousa M. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components. Exp Parasitol 2018; 190:34-40. [PMID: 29778466 DOI: 10.1016/j.exppara.2018.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 02/16/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC50 < 10 μg/mL): Juniperus oxycedrus (IC50 of 0.9 μg/mL), Cymbopogon citratus (IC50 of 3.2 μg/mL) and Lavandula luisieri (IC50 of 5.7 μg/mL). These oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC50 of 2.9 μg/mL) and citral (IC50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment.
Collapse
Affiliation(s)
- Sonya Costa
- Programme in Experimental Biology and Biomedicine, Centre for Neurosciences and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal; CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.
| | - Cláudia Cavadas
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| | - Carlos Cavaleiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| | - Lígia Salgueiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| | - Maria do Céu Sousa
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
19
|
Ekpenyong CE, Akpan EE. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives. Crit Rev Food Sci Nutr 2017; 57:2541-2559. [DOI: 10.1080/10408398.2015.1016140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Ernest E. Akpan
- Department of Physiology, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| |
Collapse
|
20
|
Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils. Molecules 2017; 22:molecules22040648. [PMID: 28422054 PMCID: PMC6153933 DOI: 10.3390/molecules22040648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 11/17/2022] Open
Abstract
Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.
Collapse
|
21
|
Hadjilouka A, Mavrogiannis G, Mallouchos A, Paramithiotis S, Mataragas M, Drosinos EH. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017; 22:molecules22010070. [PMID: 28045446 PMCID: PMC6155610 DOI: 10.3390/molecules22010070] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/25/2016] [Indexed: 02/06/2023] Open
Abstract
Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.
Collapse
|
23
|
Deyab MA, Osman M, Elkholy AE, El-Taib Heakal F. Green approach towards corrosion inhibition of carbon steel in produced oilfield water using lemongrass extract. RSC Adv 2017. [DOI: 10.1039/c7ra07979f] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anti-corrosion action of lemongrass (cymbopogon citratus) extract (LGE) was evaluated for carbon steel in produced oilfield water using weight loss method and electrochemical impedance spectroscopy (EIS).
Collapse
Affiliation(s)
- M. A. Deyab
- Egyptian Petroleum Research Institute (EPRI)
- Cairo
- Egypt
| | - M. M. Osman
- Egyptian Petroleum Research Institute (EPRI)
- Cairo
- Egypt
| | - A. E. Elkholy
- Egyptian Petroleum Research Institute (EPRI)
- Cairo
- Egypt
| | | |
Collapse
|
24
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
25
|
Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, Jia Z, Sun H, Sun Z, Xia X. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS One 2016; 11:e0159006. [PMID: 27415761 PMCID: PMC4945043 DOI: 10.1371/journal.pone.0159006] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
Citral is a flavor component that is commonly used in food, beverage and fragrance industries. Cronobacter sakazakii is a food-borne pathogen associated with severe illness and high mortality in neonates and infants. The objective of the present study was to evaluate antimicrobial effect of citral against C. sakazakii strains. The minimum inhibitory concentration (MIC) of citral against C. sakazakii was determined via agar dilution method, then Gompertz models were used to quantitate the effect of citral on microbial growth kinetics. Changes in intracellular pH (pHin), membrane potential, intracellular ATP concentration, and membrane integrity were measured to elucidate the possible antimicrobial mechanism. Cell morphology changes were also examined using a field emission scanning electron microscope. The MICs of citral against C. sakazakii strains ranged from 0.27 to 0.54 mg/mL, and citral resulted in a longer lag phase and lower growth rate of C. sakazakii compared to the control. Citral affected the cell membrane of C. sakazakii, as evidenced by decreased intracellular ATP concentration, reduced pHin, and cell membrane hyperpolarization. Scanning electron microscopy analysis further confirmed that C. sakazakii cell membranes were damaged by citral. These findings suggest that citral exhibits antimicrobial effect against C. sakazakii strains and could be potentially used to control C. sakazakii in foods. However, how it works in food systems where many other components may interfere with its efficacy should be tested in future research before its real application.
Collapse
Affiliation(s)
- Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaikuo Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Sui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenyu Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Huihui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Sino-US Joint Research Center for Food Safety, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
26
|
Madeira PLB, Carvalho LT, Paschoal MAB, de Sousa EM, Moffa EB, da Silva MADS, Tavarez RDJR, Gonçalves LM. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface. Front Cell Infect Microbiol 2016; 6:71. [PMID: 27446818 PMCID: PMC4923188 DOI: 10.3389/fcimb.2016.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use.
Collapse
Affiliation(s)
| | | | | | - Eduardo M de Sousa
- Post-Graduate Program in Parasite Biology, CEUMA University São Luis, Brazil
| | - Eduardo B Moffa
- Post-Graduate Program in Dentistry, CEUMA University São Luis, Brazil
| | | | | | | |
Collapse
|
27
|
Lee JH, Yang HJ, Lee KY, Song KB. Preparation and application of a flaxseed meal protein film containing lemongrass (Cymbopogon citratus
) oil. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ji-Hyeon Lee
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| | - Hyun-Ju Yang
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| | - Ka-Yeon Lee
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| | - Kyung Bin Song
- Department of Food Science and Technology; Chungnam National University; Daejeon 34134 Korea
| |
Collapse
|
28
|
Rosa JPD, Tibúrcio SRG, Marques JM, Seldin L, Coelho RRR. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Braz J Microbiol 2016; 47:603-9. [PMID: 27266627 PMCID: PMC4927686 DOI: 10.1016/j.bjm.2016.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022] Open
Abstract
Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.
Collapse
Affiliation(s)
- Juliana Pacheco da Rosa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joana Montezano Marques
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
29
|
Tak JH, Jovel E, Isman MB. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2016; 72:474-480. [PMID: 25809531 DOI: 10.1007/s10340-016-0827-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/14/2015] [Accepted: 03/19/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Plant essential oils are usually complex mixtures, and many factors can affect their chemical composition. To identify relationships between the composition and bioactivity of the constituents, comparative and synergistic interactions of the major constituents of rosemary essential oil were evaluated against third-instar larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni, via different methods of application. RESULTS The major constituents of the rosemary oil we used were 1,8-cineole, (±)-camphor, (+)-α-pinene and camphene. Via topical application to larvae, 1,8-cineole was identified as the major active compound, whereas via fumigation, 1,8-cineole and (±)-camphor, and in a cytotoxicity assay, (+)-α-pinene, were determined to be the major active principles. Several combinations of these constituents exhibited synergistic insecticidal activities when topically applied, particularly among combinations of three major constituents, (±)-camphor, (+)-α-pinene and camphene. A binary mixture of 1,8-cineole and (±)-camphor showed enhanced activity, with a synergy ratio of 1.72. CONCLUSION Based on our results, the insecticidal activity of rosemary oil appears to be a consequence of the synergistic interaction between 1,8-cineole and (±)-camphor, and (±)-camphor should be considered a promising synergizing agent.
Collapse
Affiliation(s)
- Jun-Hyung Tak
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eduardo Jovel
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray B Isman
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Ahmad A, Viljoen A. The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:657-665. [PMID: 26055131 DOI: 10.1016/j.phymed.2015.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/28/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND It is well known that Cymbopogon (lemon grass) essential oil exhibits antimicrobial activity while the efficacy of silver ions as a disinfectant is equally well reported. HYPOTHESIS The antimicrobial activity of CEO and Ag(+) and their synergistic combinations will be useful in improving the current treatment strategies for various infections. STUDY DESIGN In the present study, we determined the chemical composition and in vitro antimicrobial activity of six different Cymbopogon essential oils (CEO's) alone and in combination with silver ions (Ag(+)) against two Gram-positive (Staphylococcus aureus and Enterococcus faecalis), two Gram-negative (Escherichia coli and Moraxella catarrhalis) and two yeast species (Candida albicans and Candida tropicalis). The nature of potential interactions was determined by fractional inhibitory concentration indices (FICIs) for CEO's and Ag(+) calculated from microdilution assays and time-kill curves. RESULTS Gas chromatography-mass spectrometry results confirmed the presence of nerol, geranial and geraniol as major volatile compounds. Minimum inhibitory concentration (MIC) values confirmed that all the tested pathogens are variably susceptible to both CEO's as well as Ag(+). The MIC of CEO's and Ag(+) against all the tested pathogens ranged from 0.032 mg/ml to 1 mg/ml and 0.004 and 0.064 mg/ml respectively, whereas when assayed in combination the FICI values were drastically reduced to range between 0.258 and 2.186, indicating synergy, additive and indifferent interactions. The most prominent interaction was observed between Cymbopogon flexuosus essential oil and Ag(+) against C. albicans with ∑FIC = 0.254. The synergistic interactions were further confirmed through the construction of isobolograms and time-kill plots. Transmission electron microscopy showed disturbance in the cell envelope upon the concomitant treatment of CEO's and Ag(+), which ultimately leads to cell death. CONCLUSION Results suggest that CEO's and Ag(+) when used in combination offers an opportunity to the formulation scientist to produce novel combinations acting synergistically in the continued quest to control important infectious pathogens.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
31
|
Zeng S, Kapur A, Patankar MS, Xiong MP. Formulation, Characterization, and Antitumor Properties of Trans- and Cis-Citral in the 4T1 Breast Cancer Xenograft Mouse Model. Pharm Res 2015; 32:2548-58. [PMID: 25673043 DOI: 10.1007/s11095-015-1643-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/27/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Citral is composed of a random mixture of two geometric stereoisomers geranial (trans-citral) and neral (cis-citral) yet few studies have directly compared their in vivo antitumor properties. A micelle formulation was therefore developed. METHODS Geranial and neral were synthesized. Commercially-purchased citral, geranial, and neral were formulated in PEG-b-PCL (block sizes of 5000:10,000, Mw/Mn 1.26) micelles. In vitro degradation, drug release, cytotoxicity, flow cytometry, and western blot studies were conducted. The antitumor properties of drug formulations (40 and 80 mg/kg based on MTD studies) were evaluated on the 4T1 xenograft mouse model and tumor tissues were analyzed by western blot. RESULTS Micelles encapsulated drugs with >50% LE at 5-40% drug to polymer (w/w), displayed sustained release (t1/2 of 8-9 h), and improved drug stability at pH 5.0. The IC50 of drug formulations against 4T1 cells ranged from 1.4 to 9.9 μM. Western blot revealed that autophagy was the main cause of cytotoxicity. Geranial at 80 mg/kg was most effective at inhibiting tumor growth. CONCLUSIONS Geranial is significantly more potent than neral and citral at 80 mg/kg (p < 0.001) and western blot of tumor tissues confirms that autophagy and not apoptosis is the major mechanism of tumor growth inhibition in p53-null 4T1 cells.
Collapse
Affiliation(s)
- San Zeng
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705-2222, USA
| | | | | | | |
Collapse
|