1
|
Mirmajlessi M, Najdabbasi N, Sigillo L, Haesaert G. An implementation framework for evaluating the biocidal potential of essential oils in controlling Fusarium wilt in spinach: from in vitro to in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1444195. [PMID: 39239191 PMCID: PMC11376204 DOI: 10.3389/fpls.2024.1444195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae, causes a significant challenge on vegetative spinach and seed production. Addressing this issue necessitates continuous research focused on innovative treatments and protocols through comprehensive bioassays. Recent studies have highlighted the potential of plant-based compounds in controlling fungal diseases. The present work aims to conduct a series of experiments, encompassing both in vitro and in planta assessments, to investigate the biocontrol capabilities of different essential oils (EOs) at various application rates, with the ultimate goal of reducing the incidence of Fusarium wilt in spinach. The inhibitory effect of four plant EOs (marjoram, thyme, oregano, and tea tree) was initially assessed on the spore germination of five unknown Fusarium strains. The outcomes revealed diverse sensitivities of Fusarium strains to EOs, with thyme exhibiting the broadest inhibition, followed by oregano at the highest concentration (6.66 μL/mL) in most strains. The tested compounds displayed a diverse range of median effective dose (ED50) values (0.69 to 7.53 µL/mL), with thyme and oregano consistently showing lower ED50 values. The direct and indirect inhibitory impact of these compounds on Fusarium mycelial growth ranged from ~14% to ~100%, wherein thyme and oregano consistently exhibiting the highest effectiveness. Following the results of five distinct inoculation approaches and molecular identification, the highly pathogenic strain F-17536 (F. oxysporum f.sp. spinaciae) was chosen for Fusarium wilt assessment in spinach seedlings, employing two promising EO candidates through seed and soil treatments. Our findings indicate that colonized grain (CG) proved to be a convenient and optimal inoculation method for consistent Fusarium wilt assessment under greenhouse conditions. Seed treatments with thyme and oregano EOs consistently resulted in significantly better disease reduction rates, approximately 54% and 36% respectively, compared to soil treatments (P > 0.05). Notably, thyme, applied at 6.66 µL/mL, exhibited a favorable emergence rate (ERI), exceeding seven, in both treatments, emphasizing its potential for effective disease control in spinach seedlings without inducing phytotoxic effects. This study successfully transitions from in vitro to in planta experiments, highlighting the potential incorporation of EOs into integrated disease management for Fusarium wilt in spinach production.
Collapse
Affiliation(s)
- Mahyar Mirmajlessi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Neda Najdabbasi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Loredana Sigillo
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| |
Collapse
|
2
|
Rosskopf E, Gioia FD, Vincent I, Hong J, Zhao X. Impacts of the Ban on the Soil-Applied Fumigant Methyl Bromide. PHYTOPATHOLOGY 2024; 114:1161-1175. [PMID: 38427594 DOI: 10.1094/phyto-09-23-0345-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The loss of the soil fumigant methyl bromide (MeBr) and adoption of soil fumigant alternatives has been challenging for farmers, particularly for those crops in which pathogens previously controlled by MeBr have emerged as significant problems, but it has resulted in some unanticipated benefits for the scientific community and the environment. Applauded as one of the most effective environmental agreements to date, the universally accepted Montreal Protocol on Ozone Depleting Substances has had a significant impact on the environment, reducing the release of halogenated compounds from anthropogenic sources enough to mitigate global warming by an estimated 1.1°C by 2021. The funding associated with various MeBr transition programs has increased collaboration across scientific disciplines, commodity groups, industry, and regulatory agencies. Chemical alternatives and improved application strategies, including the development of gas-retentive agricultural films, coupled with sound efficacy data and grower ingenuity have resulted in the sustained production of many of the impacted crops; although there has been some loss of acreage and value, particularly for Florida fumigated crops, for some, value has continued to increase, allowing production to continue. The loss of a single, broad-spectrum tool for pest control has led to a deeper understanding of the specific pest complexes impacting these at-risk crops, as well as the development of new, biologically based management tools for their control while increasing our understanding of the role of the soil microbiome in pest control and crop production.
Collapse
Affiliation(s)
- Erin Rosskopf
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802
| | - Isaac Vincent
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| | - Jason Hong
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945
| | - Xin Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
| |
Collapse
|
3
|
Zhan Y, Zhou Y, Wang E, Miao X, Zhou T, Yan N, Chen C, Li Q. Effects of reductive soil disinfestation combined with different types of organic materials on the microbial community and functions. Microbiol Spectr 2024; 12:e0080223. [PMID: 38230941 PMCID: PMC10846035 DOI: 10.1128/spectrum.00802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Reductive soil disinfestation (RSD) is an effective method to inhibit soilborne pathogens. However, it remains unclear how RSD combined with different types of organic materials affects the soil ecosystems of perennial plants. Pot experiments were conducted to investigate the effects of RSD incorporated with perilla (PF), alfalfa (MS), ethanol, and acetic acid on soil properties, enzyme activities, microbial communities and functions, and seedling growth. Results showed that RSD-related treatments improved soil properties and enzyme activities, changed microbial community composition and structure, enhanced microbial interactions and functions, and facilitated seedling growth. Compared with CK, RSD-related treatments increased soil pH, available nitrogen, and available potassium contents, sucrase and catalase activities, and decreased soil electric conductivity values. Meanwhile, RSD-related treatment also significantly reduced the relative abundance of Fusarium while increasing the relative abundance of Arthrobacter, Terrabacter, and Gemmatimonas. The reduction was more evident in PF and MS treatment, suggesting the potential for RSD combined with solid agricultural wastes to suppress pathogens. Furthermore, the microbial network of RSD-related treatment was more complex and interconnected, and the functions related to carbon, nitrogen, sulfur, and hydrogen cycling were significantly increased, while the functions of bacterial and fungal plant pathogens were decreased. Importantly, RSD-related treatments also significantly promoted seed germination and seedling growth. In summary, RSD combined with solid agricultural wastes is better than liquid easily degradable compounds by regulating the composition and function of microbial communities to improve soil quality and promote plant growth.IMPORTANCEReductive soil disinfestation (RSD) is an effective agricultural practice. We found that RSD combined with solid agricultural wastes is better than that of liquid easily degradable compounds, may improve soil quality and microbial community structure, inhibit the proliferation of pathogenic bacteria, and contribute to the growth of replanted crops. Thus, RSD combined with solid agricultural wastes is more effective than liquid easily degradable compounds.
Collapse
Affiliation(s)
- Yu Zhan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ergang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ning Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
5
|
Zhu W, Lu X, Hong C, Hong L, Zhu F, Zhang S, Yao Y. Contributions of carbon source, crop cultivation, and chemical property on microbial community assemblage in soil subjected to reductive disinfestation. Front Microbiol 2023; 14:1146207. [PMID: 37032903 PMCID: PMC10081160 DOI: 10.3389/fmicb.2023.1146207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
In agricultural practice, reductive soil disinfestation (RSD) is an effective method for eliminating soil-borne pathogens that depends heavily on carbon source. However, knowledge regarding the assembly of soil microbial communities in RDS-treated soils amended with different carbon sources after continuous crop cultivation is still not well-characterized. RSD treatments were performed on greenhouse soil with six different carbon sources (ethanol, glucose, alfalfa, wheat bran, rice bran, and sugarcane residue), which have different C:N ratios (Org C/N) and easily oxidized carbon contents (Org EOC). After RSD, two consecutive seasons of pepper pot experiments were conducted. Then, the effects of carbon source property, crop cultivation, and soil chemical property on soil microbial community reestablishment, pathogen reproduction, and crop performance were investigated in the RSD-cropping system. Variation partition analysis indicated that carbon source property, crop cultivation, and soil chemical property explained 66.2 and 39.0% of bacterial and fungal community variation, respectively. Specifically, Mantel tests showed that Org C/N, crop cultivation, soil available phosphorus and potassium were the most important factors shaping bacterial community composition, while Org C/N, Org EOC, and crop cultivation were the most important factors shaping fungal community composition. After two planting seasons, the number of cultivable Fusarium was positively correlated with Org EOC, and negatively correlated with soil total organic carbon, Fungal Chao1, and Fungal PC1. Crop yield of complex-carbon soils (Al, Wh, Ri and Su) was negatively affected by Org C/N after the first season, and it was highest in Al, and lower in Et and Su after the second season. Overall, Org EOC and Org C/N of carbon source were vitally important for soil microbe reestablishment, Fusarium reproduction and crop performance. Our findings further broaden the important role of carbon source in the RSD-cropping system, and provide a theoretical basis for organic carbon selection in RSD practice.
Collapse
Affiliation(s)
- Weijing Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaolin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chunlai Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Leidong Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fengxiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuo Zhang
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Yanlai Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yanlai Yao,
| |
Collapse
|
6
|
Yan Y, Xie Y, Zhang J, Li R, Ali A, Cai Z, Huang X, Liu L. Effects of Reductive Soil Disinfestation Combined with Liquid-Readily Decomposable Compounds and Solid Plant Residues on the Bacterial Community and Functional Composition. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02139-w. [PMID: 36374338 DOI: 10.1007/s00248-022-02139-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Reductive soil disinfestation (RSD) incorporated with sole plant residues or liquid-readily decomposable compounds is an effective management strategy to improve soil health. However, the synthetic effects of RSD incorporated with liquid-readily decomposable compounds and solid plant residues on soil ecosystem services remain unclear. Field experiments were carried out to investigate the effects of untreated soil (CK), RSD incorporated with sawdust (SA), molasses (MO), and their combinations (SA + MO) on the bacterial community and functional composition. The results showed that RSD treatments significantly altered soil bacterial community structure compared to CK treatment. The bacterial community structure and composition in MO and SA + MO treatments were clustered compared to SA treatment. This was mainly attributed to the readily decomposable carbon sources in molasses having a stronger driving force to reshape the soil microbial community during the RSD process. Furthermore, the functional compositions, such as the disinfestation efficiency of F. oxysporum (96.4 - 99.1%), abundances of nitrogen functional genes, soil metabolic activity, and functional diversity, were significantly increased in all of the RSD treatments. The highest disinfestation efficiency and abundances of denitrification (nirS and nrfA) and nitrogen fixation (nifH) genes were observed in SA + MO treatment. Specifically, SA + MO treatment enriched more abundant beneficial genera, e.g., Oxobacter, Paenibacillus, Cohnella, Rummeliibacillus, and Streptomyces, which were significantly and positively linked to disinfestation efficiency, soil metabolic activity, and denitrification processes. Our results indicated that combining RSD practices with liquid-readily decomposable compounds and solid plant residues could effectively improve soil microbial community and functional composition.
Collapse
Affiliation(s)
- Yuanyuan Yan
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Xie
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Jingqing Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ruimin Li
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Ahmad Ali
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wang C, Liu J, Wang C, Zhao X, Wu K, Yang B, Yin F, Zhang W. Biogas slurry application alters soil properties, reshapes the soil microbial community, and alleviates root rot of Panax notoginseng. PeerJ 2022; 10:e13770. [PMID: 35910762 PMCID: PMC9336633 DOI: 10.7717/peerj.13770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Background Panax notoginseng is an important herbal medicine in China, where this crop is cultivated by replanting of seedlings. Root rot disease threatens the sustainability of P. notoginseng cultivation. Water flooding (WF) is widely used to control numerous soilborne diseases, and biogas slurry shows positive effects on the soil physiochemical properties and microbial community structure and has the potential to suppress soilborne pathogens. Hence, biogas slurry flooding (BSF) may be an effective approach for alleviating root rot disease of P. notoginseng; however, the underlying mechanism needs to be elucidated. Methods In this study, we conducted a microcosm experiment to determine if BSF can reduce the abundance of pathogens in soil and, alleviate root rot of P. notoginseng. Microcosms, containing soil collected from a patch of P. notoginseng showing symptoms of root rot disease, were subjected to WF or BSF at two concentrations for two durations (15 and 30 days), after which the changes in their physicochemical properties were investigated. Culturable microorganisms and the root rot ratio were also estimated. We next compared changes in the microbial community structure of soils under BSF with changes in WF and untreated soils through high-throughput sequencing of bacterial 16S rRNA (16S) and fungal internal transcribed spacer (ITS) genes amplicon. Results WF treatment did not obviously change the soil microbiota. In contrast, BSF treatment significantly altered the physicochemical properties and reshaped the bacterial and fungal communities, reduced the relative abundance of potential fungal pathogens (Fusarium, Cylindrocarpon, Alternaria, and Phoma), and suppressed culturable fungi and Fusarium. The changes in the microbial community structure corresponded to decreased root rot ratios. The mechanisms of fungal pathogen suppression by BSF involved several factors, including inducing anaerobic/conductive conditions, altering the soil physicochemical properties, enriching the anaerobic and culturable bacteria, and increasing the phylogenetic relatedness of the bacterial community. Conclusions BSF application can reshape the soil microbial community, reduce the abundance of potential pathogens, and alleviate root rot in P. notoginseng. Thus, it is a promising practice for controlling root rot disease in P. notoginseng.
Collapse
Affiliation(s)
- Chengxian Wang
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Jianfeng Liu
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| | - Changmei Wang
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| | - Xingling Zhao
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| | - Kai Wu
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| | - Bin Yang
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Graduate School, Yunnan Normal University, Kunming, China
| | - Fang Yin
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| | - Wudi Zhang
- Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming, China,Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming, China,Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua, China
| |
Collapse
|
8
|
Insights into Pyrroloquinoline Quinone (PQQ) Effects on Soil Nutrients and Pathogens from Pepper Monocropping Soil under Anaerobic and Aerobic Conditions. Microbiol Spectr 2022; 10:e0093322. [PMID: 35852313 PMCID: PMC9430733 DOI: 10.1128/spectrum.00933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Imbalances of soil available nutrients and soilborne diseases have seriously restricted the productivity of crops and jeopardized food security worldwide. Pyrroloquinoline quinone (PQQ), a redox cofactor in some bacteria involved in glucose metabolism and phosphorus mineralization, could be anticipated to alter soil ecosystems to a certain extent. However, there is limited information on PQQ defending soilborne pathogens and regulating soil main nutrients. Here, a pot experiment based on mono-cropping soils of pepper was conducted to examine the effects of PQQ amendment on reconstructing soil microbial communities and soil nutrients under aerobic/anaerobic conditions comprising three treatments, namely, control, PQQ (aerobic), and FL-PQQ (anaerobic). The results revealed that soil microbial community composition and soil nutrients were distinctly altered by PQQ regimes. Compared to control, PQQ treatment significantly increased the content of soil available phosphorus (AP), while FL_PQQ treatment strongly improved the content of soil available nitrogen (AN). In terms of pathogens, relative to control, both PQQ treatments suppressed the abundances of pathogens, of which FL_PQQ treatment significantly decreased the abundance of the pathotrophic fungal by 64% and the abundance of Fusarium oxysporum by 57%, largely attributed to the increase of organic acid generators (Oxobacter, Hydrogenispora) and potential antagonists (Bacillus, Talaromyces). Structural equation modeling (SEM) showed that PQQ regimes suppressed pathogens by indirectly regulating soil physicochemical properties and microbial communities. Overall, we proposed that PQQ application both in aerobic/anaerobic conditions could improve soil available nutrients and suppress soil pathogens in pepper monocropping soils. IMPORTANCE The attention to PQQ (pyrroloquinoline quinone) effect on soil nutrients and pathogens was less paid in monocropping soils. However, the underlying microbial interacting mechanism remains unclear. Adopting a novel external bio-additive, the effects of PQQ on soil main nutrients and the pathotrophic fungal under aerobic and anaerobic regimes will be investigated, which would help to improve soil quality health. Our main conclusion was that PQQ would help to remediate monocropping obstacle soils in terms of soil nutrients and soil pathogens by associating with the microbial community, and anaerobic PQQ application more favored amelioration of continuous obstacle soils. These results will benefit the health and sustainable development of pepper production as well as other greenhouse vegetable production.
Collapse
|
9
|
Li Z, Di Gioia F, Paudel B, Zhao X, Hong J, Pisani C, Rosskopf E, Wilson P. Quantifying the effects of anaerobic soil disinfestation and other biological soil management strategies on nitrous oxide emissions from raised bed plasticulture tomato production. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:162-180. [PMID: 34997770 DOI: 10.1002/jeq2.20324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Soilborne pests are a major obstacle that must be overcome for the production of horticultural crops. Methyl bromide (MBr) was an effective preplanting soil broad-spectrum biocide, but its use has been banned due to its role in depleting the ozone layer. As a result, sustainable alternative methods for controlling soilborne pathogens and pests are needed. Nitrous oxide (N2 O) emissions are of concern in crop production due to the role of N2 O as a greenhouse gas. Agricultural lands are known sources for emission of N2 O into the atmosphere. Emissions are related to many environmental factors as well as fertilization and fumigation practices. This study evaluated the influence of different alternatives to MBr on N2 O emissions throughout a tomato production season in two locations representative of southern and northern Florida. We evaluated eight soil management practices, including (a) untreated controls; (b) chemical soil fumigation; (c) anaerobic soil disinfestation using molasses (M) + composted poultry litter and (d and e) M + composted yard waste (CYW, at two rates); (f) Soil Symphony Amendment (SSA), a commercially available mix of microbes and nutrients; (g) CYW alone; and (h) CYW + SSA. Nitrous oxide emissions were measured throughout the cropping season. Emissions were highest on the day of planting (Day 21), ranging from 213 to 1,878 μg m-2 h-1 , likely due to the release of N2 O that had accumulated under the totally impermeable film when it was punctured for planting. However, statistical significance varied between sites. Estimated cumulative emissions of N2 O throughout the production season ranged from 1.3 to 4.8 kg N2 O-N ha-1 .
Collapse
Affiliation(s)
- Zhuona Li
- Soil and Water Sciences Dep., Univ. of Florida/IFAS, P.O. Box 110290, Gainesville, FL, 32611-0290, USA
| | - Francesco Di Gioia
- Dep. of Plant Pathology, Univ. of Florida/IFAS, P.O. Box 110680, Gainesville, FL, 32611-0680, USA
- Dep. of Plant Science, Pennsylvania State Univ., 207 Tyson Building, University Park, PA, 16802, USA
| | - Bodh Paudel
- Dep. of Horticultural Sciences, Univ. of Florida/IFAS, P.O. Box 110690, Gainesville, FL, 32611-0690, USA
| | - Xin Zhao
- Dep. of Horticultural Sciences, Univ. of Florida/IFAS, P.O. Box 110690, Gainesville, FL, 32611-0690, USA
| | - Jason Hong
- USDA-ARS, U.S. Horticultural Research Lab., 2001 S. Rock Road, Fort Pierce, FL, 34945, USA
| | - Cristina Pisani
- USDA-ARS, Southeastern Fruit & Tree Nut Research Lab., 21 Dunbar Road, Byron, GA, 31008, USA
| | - Erin Rosskopf
- USDA-ARS, U.S. Horticultural Research Lab., 2001 S. Rock Road, Fort Pierce, FL, 34945, USA
| | - Patrick Wilson
- Soil and Water Sciences Dep., Univ. of Florida/IFAS, P.O. Box 110290, Gainesville, FL, 32611-0290, USA
| |
Collapse
|
10
|
Stavridou E, Giannakis I, Karamichali I, Kamou NN, Lagiotis G, Madesis P, Emmanouil C, Kungolos A, Nianiou-Obeidat I, Lagopodi AL. Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2789. [PMID: 34961260 PMCID: PMC8709368 DOI: 10.3390/plants10122789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Herein, we aimed at elucidating the effect of biosolid application on the plant-microbiome response mechanisms for tomato resistance against Forl at a molecular level. More specifically, plant-microbiome interactions in the presence of biosolid application and the biocontrol mechanism against Forl in tomato were investigated. We examined whether biosolids application in vitro could act as an inhibitor of growth and sporulation of Forl. The effect of biosolid application on the biocontrol of Forl was investigated based on the enhanced plant resistance, measured as expression of pathogen-response genes, and pathogen suppression in the context of soil microbiome diversity, abundance, and predicted functions. The expression of the pathogen-response genes was variably induced in tomato plants in different time points between 12 and 72 h post inoculation in the biosolid-enriched treatments, in the presence or absence of pathogens, indicating activation of defense responses in the plant. This further suggests that biosolid application resulted in a successful priming of tomato plants inducing resistance mechanisms against Forl. Our results have also demonstrated that biosolid application alters microbial diversity and the predicted soil functioning, along with the relative abundance of specific phyla and classes, as a proxy for disease suppression. Overall, the use of biosolid as a sustainable soil amendment had positive effects not only on plant health and protection, but also on growth of non-pathogenic antagonistic microorganisms against Forl in the tomato rhizosphere and thus, on plant-soil microbiome interactions, toward biocontrol of Forl.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Giannakis
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Ioanna Karamichali
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Nathalie N. Kamou
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Lagiotis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38221 Volos, Greece
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Kungolos
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia L. Lagopodi
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Clostridium fungisolvens sp. nov., a new β-1,3-glucan-decomposing bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2021; 71. [PMID: 33734959 DOI: 10.1099/ijsem.0.004761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological soil disinfestation (BSD) or reductive soil disinfestation (RSD) is a bioremediation method used to suppress or eliminate soil-borne plant pathogens by stimulating activities of indigenous anaerobic bacteria of the soil. An anaerobic bacterial strain (TW1T) was isolated from an anoxic soil sample subjected to the BSD treatment and comprehensively characterized. Cells of the strain were Gram-stain-positive, slightly curved and motile rods producing terminal spores. The strain was aerotolerant. Strain TW1T was saccharolytic and produced acetate, butyrate, H2 and CO2 as fermentation end products. Strain TW1T decomposed β-1,3-glucan (curdlan and laminarin) and degraded mycelial cells of an ascomycete Fusarium plant pathogen. Major cellular fatty acids of strain TW1T were C14 : 0, C14 : 0 dimethylacetal (DMA), C16 : 0 aldehyde and C16 : 0 DMA. Strain TW1T made a group on the phylogenetic tree constructed based on 16S rRNA gene sequences with species such as Clostridium fallax (96.3 %) and Clostridium polyendosporum (96.0 %). Whole genome analysis of strain TW1T showed that the total length of the genome was 5.28 Mb with the DNA G+C content of 31.3 mol%. The average nucleotide identity (ANIb) between strain TW1T and C. fallax was 71.2 %. Presence of the genes encoding laminarinase or GH16 β-glucosidase was confirmed from the genome analysis of strain TW1T. Based on the genomic, phylogenetic and phenotypic properties obtained, we propose strain TW1T should be assigned in the genus Clostridium in the family Clostridiaceae as Clostridium fungisolvens sp. nov. The type strain TW1T (=NBRC 112097T=DSM 110791T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
12
|
Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens 2021; 10:pathogens10020133. [PMID: 33525615 PMCID: PMC7911048 DOI: 10.3390/pathogens10020133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anaerobic soil disinfection (ASD) has been identified as an alternative soil-borne pathogen control strategy to chemical fumigation. ASD involves the application of an easily liable carbon source followed by irrigation to field capacity and maintenance of an anaerobic condition for a certain period. A literature search undertaken on ASD found that more than 50 comprehensive research projects have been conducted since its first discovery in 2000. Most of these studies were conducted in the USA and in the Netherlands. Though the exact mechanism of ASD in pathogen control is unknown, promising results have been reported against a wide range of pathogens such as fungi, nematodes, protists, and oomycetes. However, it is interesting to note that, except for a few studies, ASD research in the developing world and in the tropical countries has lagged behind. Nevertheless, with soil quality depletion, reduction in arable lands, and exponential population growth, a drastic change to the current agricultural practices should be adapted since yield gain has reached a plateau for major staple crops. Under such circumstances, we identified the gaps and the potentials of ASD in tropical agricultural systems and proposed promising biodegradable materials.
Collapse
|
13
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. β-1,3-Glucanase production as an anti-fungal enzyme by phylogenetically different strains of the genus Clostridium isolated from anoxic soil that underwent biological disinfestation. Appl Microbiol Biotechnol 2020; 104:5563-5578. [PMID: 32328681 PMCID: PMC7275012 DOI: 10.1007/s00253-020-10626-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Biological (or reductive) soil disinfestation (BSD or RSD) is a bioremediation process to control soil-borne plant pathogens using activities of indigenous bacteria in the soil. Three obligate anaerobic bacterial strains (TW1, TW10, and TB10), which were isolated from anoxic soil subjected to BSD treatments, were examined for their abilities to produce anti-fungal enzymes. All strains were affiliated with the different lineages of the genus Clostridium. The three strains decomposed β-1,3-glucans (curdlan and laminarin), and β-1,3-glucanase activities were detected from their culture supernatants with these glucans. The three strains also produced the enzyme with wheat bran as a growth substrate and killed the Fusarium pathogen (Fusarium oxysporum f. sp. spinaciae) in the anaerobic co-incubation conditions. Observation by fluorescence microscopy of the pathogen cells showed that the three strains had degraded the fungal cells in different manners upon co-incubation with wheat bran. When the three strains were cultivated with the dead cells or the cell wall samples prepared from the Fusarium pathogen, strain TW1 utilized these materials as easily decomposable substrates by releasing β-1,3-glucanase. When observed by fluorescence microscopy, it appeared that strain TW1 degraded the mycelial cell wall nearly thoroughly, with the septa remaining as undecomposed luminous rings. In contrast, the other two strains decomposed neither the dead cells nor the cell wall samples directly. The results indicate that the various anaerobic bacteria proliferated in the soil under the BSD treatments should play key roles as an organized bacterial community to eliminate fungal pathogens, namely by release of anti-fungal enzymes with different properties.Key points •Three clostridial strains isolated from BSD-treated soils produced β-1,3-glucanase. •All strains killed the Fusarium pathogen in the anaerobic co-incubation conditions. •One of the strains produced β-1,3-glucanase with the fungal cell wall as a substrate. •The strain degraded the cell wall almost completely, except for the mycelial septa. |
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Toshiaki Takehara
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan.,NARO Technical Support Center of Central Region, Ibaraki, 305-8517, Japan
| | - Gen Ishioka
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
14
|
Hewavitharana SS, Klarer E, Reed AJ, Leisso R, Poirier B, Honaas L, Rudell DR, Mazzola M. Temporal Dynamics of the Soil Metabolome and Microbiome During Simulated Anaerobic Soil Disinfestation. Front Microbiol 2019; 10:2365. [PMID: 31681226 PMCID: PMC6803440 DOI: 10.3389/fmicb.2019.02365] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Significant interest exists in engineering the soil microbiome to attain suppression of soil-borne plant diseases. Anaerobic soil disinfestation (ASD) has potential as a biologically regulated disease control method; however, the role of specific metabolites and microbial community dynamics contributing to ASD mediated disease control is mostly uncharacterized. Understanding the trajectory of co-evolutionary processes leading to syntrophic generation of functional metabolites during ASD is a necessary prelude to the predictive utilization of this disease management approach. Consequently, metabolic and microbial community profiling were used to generate highly dimensional datasets and network analysis to identify sequential transformations through aerobic, facultatively anaerobic, and anaerobic soil phases of the ASD process and distinct groups of metabolites and microorganisms linked with those stages. Transient alterations in abundance of specific microbial groups, not consistently accounted for in previous studies of the ASD process, were documented in this time-course study. Such events initially were associated with increases and subsequent diminution in highly labile metabolites conferred by the carbon input. Proliferation and dynamic compositional changes in the Firmicutes community continued throughout the anaerobic phase and was linked to temporal changes in metabolite abundance including accumulation of small chain organic acids, methyl sulfide compounds, hydrocarbons, and p-cresol with antimicrobial properties. Novel potential modes of disease control during ASD were identified and the importance of the amendment and "community metabolism" for temporally supplying specific classes of labile compounds were revealed.
Collapse
Affiliation(s)
| | - Emmi Klarer
- Department of Plant Pathology, Washington State University, Wenatchee, WA, United States
| | - Andrew J. Reed
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| | - Rachel Leisso
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| | - Brenton Poirier
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| | - Loren Honaas
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| | - David R. Rudell
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| | - Mark Mazzola
- United States Department of Agriculture-Agricultural Research Service, Physiology and Pathology of Tree Fruits Research, Wenatchee, WA, United States
| |
Collapse
|
15
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. Production of β-1,3-glucanase and chitosanase from clostridial strains isolated from the soil subjected to biological disinfestation. AMB Express 2019; 9:114. [PMID: 31338622 PMCID: PMC6650511 DOI: 10.1186/s13568-019-0842-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
Biological soil disinfestation (BSD) or anaerobic (reductive) soil disinfestation (ASD/RSD) is a bioremediation method used to eliminate soil-borne plant pathogens by exploiting the activities of anaerobic bacteria in soil. In this study, two obligate anaerobic bacterial strains isolated from BSD-treated soil and identified as Clostridium beijerinckii were examined for their abilities to suppress the spinach wilt disease pathogen (Fusarium oxysporum f. sp. spinaciae) as a representative soil-borne fungal plant pathogen. Both strains degraded β-1,3-glucan and chitosan, two major polysaccharide components of ascomycetes fungal cell wall, supplemented in the medium. β-1,3-Glucanase was detected in the supernatants of cultures supplemented with different types of glucan. Similarly, chitosanase was detected in cultures supplemented with chitosan. Both the enzyme activities were also detected in cultures containing glucose as a substrate. Live cells of F. oxysporum f. sp. spinaciae that were co-incubated with each anaerobic strain under anaerobic conditions using glucose as a substrate died during incubation. Freeze-dried dead fungal biomass of the pathogen, when added to the culture, supported good growth of both anaerobes and production of both enzymes. Severe and nearly complete degradation of both live and dead fungal cells during incubation with anaerobic bacteria was observed by fluorescence microscopy. When individual anaerobic bacterial strain was co-incubated with live pathogenic fungal cells in wheat bran, a popular material for BSD-treatment, both the strains grew well and killed the fungal pathogen promptly by producing both enzymes. These results indicate that both the bacterial strains attack the fungal cells by releasing extracellular fungal cell wall-degrading enzymes, thereby eliminating the pathogen.
Collapse
|
16
|
Meng T, Ren G, Wang G, Ma Y. Impacts on soil microbial characteristics and their restorability with different soil disinfestation approaches in intensively cropped greenhouse soils. Appl Microbiol Biotechnol 2019; 103:6369-6383. [PMID: 31203419 DOI: 10.1007/s00253-019-09964-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 01/04/2023]
Abstract
The different impacts, especially on soil physicochemical and microbial characteristics, among disinfestation methods based on different principles (including physical, chemical, and biological) have not been illustrated well. Here, we used steam sterilization, dazomet fumigation, and reductive soil disinfestation (RSD) methods representative of physical, chemical, and biological soil disinfestation, respectively, to disinfest seriously degraded greenhouse soils before watermelon cultivation in one season. Compared with the control, RSD significantly decreased the soil nitrate content by 85.9% and the electrical conductivity by 52.0% and increased the soil pH to 7.44. Although all three soil disinfestations significantly decreased the abundance of the pathogen Fusarium oxysporum by 83.0-99.2%, their impacts on soil microbial characteristics were variable. Briefly, steam sterilization significantly changed multiple bacterial and fungal properties. Dazomet fumigation impacted mainly fungal properties, such as abundance, diversity, and community structure, but RSD significantly decreased bacterial diversity and altered the bacterial community structure. Although the differences mentioned above got smaller after watermelon cultivation, the plant performances differed dramatically in different soils. The largest plant biomass, fruit ratio, and yield were found in the RSD-treated soil, whereas the lowest fruit ratio and yield were found in the steam-sterilized soil. The soil nitrate content, electrical conductivity, bacterial diversity and community structure, and some specific microbial agents, such as Aspergillus, Cladosporium, and Pseudomonas, were correlated with plant performance. RSD is a promising soil disinfestation strategy to support plant growth in intensively cultivated greenhouse soils with serious problems, such as acidification, salinization, and pathogen accumulation.
Collapse
Affiliation(s)
- Tianzhu Meng
- Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture, Nanjing, 210014, China. .,Institute of Agricultural Sciences and Environments, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Gaidi Ren
- Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture, Nanjing, 210014, China
| | - Guangfei Wang
- Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture, Nanjing, 210014, China
| | - Yan Ma
- Institute of Agricultural Resource and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. .,Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
17
|
Control of Fusarium wilt of lisianthus by reassembling the microbial community in infested soil through reductive soil disinfestation. Microbiol Res 2019; 220:1-11. [DOI: 10.1016/j.micres.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 12/06/2018] [Indexed: 11/18/2022]
|
18
|
Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 2018; 13:e0199291. [PMID: 30020939 PMCID: PMC6051574 DOI: 10.1371/journal.pone.0199291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO2) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO2) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO2, samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO2 treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO2 treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO2 concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO2 as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - María Isabel Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Trevor Suslow
- Department of Plant Science, University of California, One Shields Avenue, Mann Laboratory, Davis, CA, United States of America
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
19
|
Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships. Appl Microbiol Biotechnol 2018; 102:7623-7634. [PMID: 29931599 DOI: 10.1007/s00253-018-9107-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 05/08/2018] [Indexed: 01/12/2023]
Abstract
Soil disinfestation is an important agricultural practice to conquer soil-borne diseases and thereby ensure crop productivity. Reductive soil disinfestation (RSD) had been developed as an environmentally friendly alternative to chemical soil disinfestation (CSD). However, the differences between CSD and RSD on soil-borne pathogen suppression and fungal community structure remain poorly understood. In this work, five treatments, i.e., untreated soil (CK), CSD with 0.5 t ha-1 dazomet (DZ), RSD with 10 t ha-1 ethanol (ET), 15 t ha-1 sugarcane bagasse (SB), and 15 t ha-1 bean dregs (BD), were performed to investigate their influences on disinfestation efficiency, fungal abundance, diversity, and community structure via quantitative PCR and high-throughput sequencing. RSD-related treatments, especially the BD treatment, effectively alleviated soil acidification and salinization. The fungal abundance and microbial activity considerably increased in the BD treatment and significantly declined in the DZ treatment as compared to the CK treatment. Moreover, both CSD and RSD-related treatments significantly inhibited the population of Fusarium oxysporum and the relative abundance of genus Fusarium. Fungal community structure was notably altered by CSD and RSD practices. Furthermore, both CSD and RSD harbored a distinct unique microbiome, with the DZ treatment dominated by the genus Mortierella and BD treatment predominated by the genera Zopfiella, Chaetomium, and Penicillium. Taken together, these results indicate that the BD treatment could considerably alleviate the soil deterioration, improve soil microbial activity, and reassemble a non-pathogen unique microbiome that have more disease-suppressive agents and thus might be a promising disinfestation practice to control soil-borne disease in monoculture system.
Collapse
|
20
|
Ueki A, Kaku N, Ueki K. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl Microbiol Biotechnol 2018; 102:6309-6318. [DOI: 10.1007/s00253-018-9119-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
|
21
|
Degradation of the fungal cell wall by clostridial strains isolated from soil subjected to biological soil disinfestation and biocontrol of Fusarium wilt disease of spinach. Appl Microbiol Biotechnol 2017; 101:8267-8277. [DOI: 10.1007/s00253-017-8543-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022]
|
22
|
Abat C, Kerbaj J, Dubourg G, Garcia V, Rolain JM. Human Infection with Sporolactobacillus laevolacticus, Marseille, France. Emerg Infect Dis 2016; 21:2106-8. [PMID: 26488681 PMCID: PMC4622267 DOI: 10.3201/eid2111.151197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Huang X, Liu L, Wen T, Zhang J, Wang F, Cai Z. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Appl Microbiol Biotechnol 2016; 100:5581-93. [PMID: 26875875 DOI: 10.1007/s00253-016-7362-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 11/26/2022]
Abstract
Reductive soil disinfestation (RSD) has been proven to be an effective and environmentally friendly way to control many soilborne pathogens and diseases. In this study, the RSDs using ethanol (Et-RSD) and alfalfa (Al-RSD) as organic carbons were performed in a Rhizoctonia solani-infected soil, and the dissimilarities of microbial communities during the RSDs and after planting two seasons of cucumber seedlings in the RSDs-treated soil were respectively investigated by MiSeq pyrosequencing. The results showed that, as for bacteria, Coprococcus, Flavisolibacter, Rhodanobacter, Symbiobacterium, and UC-Ruminococcaceae became the dominant bacterial genera at the end of Al-RSD. In contrast, Et-RSD soil involved more bacteria belonging to Firmicutes, such as Sedimentibacter, UC-Gracilibacteraceae, and Desulfosporosinus. For fungi, Chaetomium significantly increased at the end of RSDs, while Rhizoctonia and Aspergillus significantly decreased. After planting two seasons of cucumber seedlings, those bacteria belonging to Firmicutes significantly decreased, but Lysobacter and Rhodanobacter belonging to the phylum Proteobacteria as well as UC-Sordariales and Humicola belonging to Ascomycota alternatively increased in Al- and Et-RSD-treated soils. Besides, some nitrification, denitrification, and nitrogen fixation genes were apparently increased in the RSD-treated soils, but the effect was more profound in Al-RSD than Et-RSD. Overall, Et-RSD could induced more antagonists belonging to Firmicutes under anaerobic condition, whereas Al-RSD could continuously stimulate some functional microorganisms (Lysobacter and Rhodanobacter) and further improve nitrogen transformation activities in the soil at the coming cropping season.
Collapse
Affiliation(s)
- Xinqi Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
- Key Laboratory of Virtual Geographical Environment (VGE), Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
| | - Liangliang Liu
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
| | - Teng Wen
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinbo Zhang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
- Key Laboratory of Virtual Geographical Environment (VGE), Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
| | - Fenghe Wang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zucong Cai
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Virtual Geographical Environment (VGE), Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res 2015; 181:33-42. [PMID: 26640050 DOI: 10.1016/j.micres.2015.08.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Although reductive soil disinfestation (RSD) is increasingly used for the control of soil-borne diseases, its impact on the soil microbial community during and after RSD remains poorly understood. MiSeq pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis were performed to investigate the changes of microbial community in the Fusarium oxysporum f. sp. cubense (FOC) infected soil during RSD and at the simulative banana cultivation after RSD. The results showed that RSD significantly increased soil microbial populations and a different microbial community with the pathogenic soil was established after RSD. Specifically, the number of Firmicutes mainly containing Ruminococcus and Coprococcus followed by a small part of Clostridium which were the dominant bacterial genera significantly increased during RSD. In contrast, Symbiobacterium and Flavisolibacter were the dominant genera in the flooding soil. When the soils were recovered under aerobic condition, the relative abundances of the bacteria belonging to the phylum Bacteroidetes, Acidobacteria, Planctomycetes increased as alternatives to the reducing Firmicutes. For fungi, the population of F. oxysporum significantly decreased during RSD accompanied with the pH decline, which resulted in the significant decrease of relative abundance in the phylum Ascomycota. Alternatively, the relative abundances of some other fungal species increased, such as Chaetomium spp. and Penicillium spp. belonging to Ascomycota and the family Clavulinaceae belonging to Basidiomycota. Then, the relative abundance of Ascomycota re-increased after RSD with Podospora and Zopfiella as dominant genera, whereas the relative abundance of Fusarium further decreased. Overall, the microbial populations and community re-established by RSD made the soil more disease-suppressive and beneficial to the soil nutrient cycling and plant growth compared with the previous pathogenic soil.
Collapse
Affiliation(s)
- Xinqi Huang
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Key Laboratory of Vitual Geographical Environment(VGE), Ministry of Education, Nanjing Normal University, Nanjing 210023, China
| | - Liangliang Liu
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Teng Wen
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Rui Zhu
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Key Laboratory of Vitual Geographical Environment(VGE), Ministry of Education, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Key Laboratory of Vitual Geographical Environment(VGE), Ministry of Education, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
25
|
van Agtmaal M, van Os GJ, Hol WHG, Hundscheid MPJ, Runia WT, Hordijk CA, de Boer W. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Front Microbiol 2015. [PMID: 26217330 PMCID: PMC4498103 DOI: 10.3389/fmicb.2015.00701] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence that microbial volatiles (VOCs) play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD), a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi, and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs) and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are supporting the suggested importance of microbial VOCs in the natural buffer of soils against diseases caused by soil-borne pathogens.
Collapse
Affiliation(s)
- Maaike van Agtmaal
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW Wageningen, Netherlands
| | - Gera J van Os
- Applied Plant Research, Flowerbulbs, Nursery Stock and Fruit, Wageningen University and Research Centre Lisse, Netherlands
| | - W H Gera Hol
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW Wageningen, Netherlands
| | - Maria P J Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW Wageningen, Netherlands
| | - Willemien T Runia
- Applied Plant Research, Subdivision Arable Farming, Multifunctional Agriculture and Field Production of Vegetables, Wageningen University and Research Centre Lelystad, Netherlands
| | - Cornelis A Hordijk
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW Wageningen, Netherlands ; Department of Soil Quality, Wageningen University and Research Centre Wageningen, Netherlands
| |
Collapse
|