1
|
Hoffmann C, Evcüman S, Neumaier F, Zlatopolskiy BD, Humpert S, Bier D, Holschbach M, Schulze A, Endepols H, Neumaier B. [ 18F]ALX5406: A Brain-Penetrating Prodrug for GlyT1-Specific PET Imaging. ACS Chem Neurosci 2021; 12:3335-3346. [PMID: 34449193 DOI: 10.1021/acschemneuro.1c00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Selective inhibition of glycine transporter 1 (GlyT1) has emerged as a potential approach to alleviate N-methyl-d-aspartate receptor (NMDAR) hypofunction in patients with schizophrenia and cognitive decline. ALX5407 is a potent and selective inhibitor of GlyT1 derived from the metabolic intermediate sarcosine (N-methylglycine) that showed antipsychotic potential in a number of animal models. Whereas clinical application of ALX5407 is limited by adverse effects on motor performance and respiratory function, a suitably radiolabeled drug could represent a promising PET tracer for the visualization of GlyT1 in the brain. Herein, [18F]ALX5407 and the corresponding methyl ester, [18F]ALX5406, were prepared by alcohol-enhanced copper mediated radiofluorination and studied in vitro in rat brain slices and in vivo in normal rats. [18F]ALX5407 demonstrated accumulation consistent with the distribution of GlyT1 in in vitro autoradiographic studies but no brain uptake in μPET experiments in naı̈ve rats. In contrast, the methyl ester [18F]ALX5406 rapidly entered the brain and was enzymatically transformed into [18F]ALX5407, resulting in a regional accumulation pattern consistent with GlyT1 specific binding. We conclude that [18F]ALX5406 is a promising and easily accessible PET probe for preclinical in vivo imaging of GlyT1 in the brain.
Collapse
Affiliation(s)
- Chris Hoffmann
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Sibel Evcüman
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Felix Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Swen Humpert
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dirk Bier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marcus Holschbach
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Annette Schulze
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Heike Endepols
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Nuclear Medicine Department, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Max Planck Institute of Metabolism Research, 50931 Cologne, Germany
| |
Collapse
|
2
|
Khodaii J, Araj-Khodaei M, Vafaee MS, Wong DF, Gjedde A. Relative strengths of three linearizations of receptor availability: Saturation, Inhibition, and Occupancy plots. J Nucl Med 2021; 63:294-301. [PMID: 34088774 DOI: 10.2967/jnumed.117.204453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
We derived three widely used linearizations from the definition of receptor availability in molecular imaging with Positron Emission Tomography. The purpose of the present research was to determine the convergence of the results of the three methods in terms of three parameters, occupancy (s), distribution volume of the non-displaceable binding compartment (VND), and binding potential of the radioligand (BPND), in the absence of a gold standard. We tested 104 cases culled from the literature and calculated the goodness of fit of each of the Least Squares (LSM) and Deming II (DM) methods of linear regression when applied to the determination of the three main parameters, s, VND, and BPND, using the goodness of fit parameters R2, coefficient of variation (RMSE), and ‖X‖_∞ with both regression methods. We observed superior convergence among the values of s, VND, and BPND for the Inhibition and Occupancy plots. The Inhibition Plot emerged as the plot with a slightly higher degree of convergence (based on R2, RMSE and ‖X‖_∞ value). With two regression methods, Least Squares (LSM) and Deming II (DM), the estimated values of s, VND, and BPND generally converged. The Inhibition and Occupancy plots yielded the best fits to the data, according to the goodness of fit parameters, due primarily to the absent commingling of the dependent and independent variables tested with the Saturation (original Lassen) plot. In the presence of noise, the Inhibition and Occupancy plots yielded higher convergence.
Collapse
Affiliation(s)
- Javad Khodaii
- Amirkabir university of technology (Tehran Polytechnic), Iran, Islamic Republic of
| | - Mostafa Araj-Khodaei
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences ,Tabriz, Iran, Iran, Islamic Republic of
| | - Manouchehr S Vafaee
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| | - Dean F Wong
- Section of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins Medical, United States
| | - Albert Gjedde
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| |
Collapse
|
3
|
Zheng MQ, Lin SF, Holden D, Naganawa M, Ropchan JR, Najafzaden S, Kapinos M, Tabriz M, Carson RE, Hamill TG, Huang Y. Comparative evaluation of two glycine transporter 1 radiotracers [11C]GSK931145 and [18F]MK-6577 in baboons. Synapse 2015; 70:112-20. [PMID: 26671330 DOI: 10.1002/syn.21879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/24/2023]
Abstract
Glycine transporter type-1 (GlyT1) has been proposed as a target for drug development for schizophrenia. PET imaging with a GlyT1 specific radiotracer will allow for the measurement of target occupancy of GlyT1 inhibitors, and for in vivo investigation of GlyT1 alterations in schizophrenia. We conducted a comparative evaluation of two GlyT1 radiotracers, [(11) C]GSK931145, and [(18) F]MK-6577, in baboons. Two baboons were imaged with [(11) C]GSK931145 and [(18) F]MK-6577. Blocking studies with GSK931145 (0.3 or 0.2 mg/kg) were conducted to determine the level of tracer specific binding. [(11) C]GSK931145 and [(18) F]MK-6577 were synthesized in good yield and high specific activity. Moderately fast metabolism was observed for both tracers, with ∼ 30% of parent at 30 min post-injection. In the brain, both radiotracers showed good uptake and distribution profiles consistent with regional GlyT1 densities. [(18) F]MK-6577 displayed higher uptake and faster kinetics than [(11) C]GSK931145. Time activity curves were well described by the two-tissue compartment model. Regional volume of distribution (VT ) values were higher for [(18) F]MK-6577 than [(11) C]GSK931145. Pretreatment with GSK931145 reduced tracer uptake to a homogeneous level throughout the brain, indicating in vivo binding specificity and lack of a reference region for both radiotracers. Linear regression analysis of VT estimates between tracers indicated higher specific binding for [(18) F]MK-6577 than [(11) C]GSK931145, consistent with higher regional binding potential (BPND ) values of [(18) F]MK-6577 calculated using VT from the baseline scans and non-displaceable distribution volume (VND ) derived from blocking studies. [(18) F]MK-6577 appears to be a superior radiotracer with higher brain uptake, faster kinetics, and higher specific binding signals than [(11) C]GSK931145.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Daniel Holden
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Jim R Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Soheila Najafzaden
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Mike Tabriz
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| | - Terence G Hamill
- Discovery Imaging, Merck Research Laboratories, West Point, Pennsylvania
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, PET Center, New Haven, Connecticut
| |
Collapse
|