1
|
Chemokine-like factor-like MARVEL transmembrane domain-containing family in autoimmune diseases. Chin Med J (Engl) 2021; 133:951-958. [PMID: 32195671 PMCID: PMC7176445 DOI: 10.1097/cm9.0000000000000747] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the immune system. Abnormal expression of CMTM is associated with the development of various diseases. This article summarizes the relevant research on the role of the CMTM family in immune disorders. This information will increase our understanding of pathogenesis and identify promising targets for the diagnosis and treatment of autoimmune diseases. The CMTM family is highly expressed in peripheral blood mononuclear cells. CKLF1 may be involved in the development of arthritis through its interaction with C-C chemokine receptor 4. CKLF1 is associated with the pathogenesis of lupus nephritis and psoriasis. Both CMTM4 and CMTM5 are associated with the pathogenesis of systemic lupus erythematosus. CMTM1, CMTM2, CMTM3, and CMTM6 play a role in rheumatoid arthritis, systemic sclerosis, Sjögren syndrome, and anti-phospholipid syndrome, respectively. The CMTM family has been implicated in various autoimmune diseases. Further research on the mechanism of the action of CMTM family members may lead to the development of new treatment strategies for autoimmune diseases.
Collapse
|
2
|
Liu DD, Song XY, Yang PF, Ai QD, Wang YY, Feng XY, He X, Chen NH. Progress in pharmacological research of chemokine like factor 1 (CKLF1). Cytokine 2018; 102:41-50. [DOI: 10.1016/j.cyto.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
|
3
|
Li H, Hao Z, Zhao L, Liu W, Han Y, Bai Y, Wang J. Comparison of molecular mechanisms of rheumatoid arthritis and osteoarthritis using gene microarrays. Mol Med Rep 2016; 13:4599-605. [PMID: 27082252 PMCID: PMC4878540 DOI: 10.3892/mmr.2016.5144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to compare the molecular mechanisms of rheumatoid arthritis (RA) and osteoarthritis (OA). The microarray dataset no. GSE29746 was downloaded from Gene Expression Omnibus. After data pre‑processing, differential expression analysis between the RA group and the control, as well as between the OA group and the control was performed using the LIMMA package in R and differentially expressed transcripts (DETs) with |log2fold change (FC)|>1 and P<0.01 were identified. DETs screened from each disease group were then subjected to functional annotation using DAVID. Next, DETs from each group were used to construct individual interaction networks using the BIND database, followed by sub‑network mining using clusterONE. Significant functions of nodes in each sub‑network were also investigated. In total, 19 and 281 DETs were screened from the RA and OA groups, respectively, with only six common DETs. DETs from the RA and OA groups were enriched in 8 and 130 gene ontology (GO) terms, respectively, with four common GO terms, of which to were associated with phospholipase C (PLC) activity. In addition, DETs screened from the OA group were enriched in immune response‑associated GO terms, and those screened from the RA group were largely associated with biological processes linked with the cell cycle and chromosomes. Genes involved in PLC activity and its regulation were indicated to be altered in RA as well as in OA. Alterations in the expression of cell cycle‑associated genes were indicated to be linked with the occurrence of OA, while genes participating in the immune response were involved in the occurrence of RA.
Collapse
Affiliation(s)
- Hongqiang Li
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Zhenyong Hao
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Liqiang Zhao
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Liu
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yanlong Han
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Yunxing Bai
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| | - Jian Wang
- Department of Orthopedics, The Harbin Fifth Hospital, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
4
|
Methods for Testing Immunological Factors. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016. [PMCID: PMC7122208 DOI: 10.1007/978-3-319-05392-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypersensitivity reactions can be elicited by various factors: either immunologically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or non-immunologically induced, i.e., activation of mediator release from cells through direct contact, without the induction of, or the mediation through immune responses. Mediators responsible for hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce release of histamine from mast cells. The histamine concentration can be determined with the o-phthalaldehyde reaction.
Collapse
|
5
|
Chakravarthy K, Faltus R, Robinson G, Sevilla R, Shin J, Zielstorff M, Byford A, Leccese E, Caniga MJ, Hseih S, Zhang S, Chiu CS, Zhang-Hoover J, Moy LY, McLeod RL, Stoffregen D, Zhang W, Murtaza A, Cicmil M. Etanercept ameliorates inflammation and pain in a novel mono-arthritic multi-flare model of streptococcal cell wall induced arthritis. BMC Musculoskelet Disord 2014; 15:409. [PMID: 25477192 PMCID: PMC4320526 DOI: 10.1186/1471-2474-15-409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023] Open
Abstract
Background The impact of anti-TNF, corticosteroid and analgesic therapy on inflammation and pain was evaluated in a novel mono-arthritic multi-flare rat Streptococcal Cell Wall (SCW) model using Etanercept, Dexamethasone and Buprenorphine. Methods Multiple flares of arthritis were induced with an intra-articular injection of SCW in the hind ankle on day 1, followed by intravenous challenges on days 21 and 42. Inflammation and pain were monitored in the hind paws. Cytokine profiling, cell phenotyping, bioluminescence imaging and histopathological evaluation were also performed. Results Local injection of SCW caused a rapid onset of inflammation and pain in the injected ankle which resolved within 4 days (Flare 1). Intravenous injection 20 days after sensitization resulted in an increase in ankle diameter and pain, which partially resolved in 8 days (Flare 2). The subsequent intra-venous injection in the same animals 14 days after resulted in a more chronic disease with inflammation and pain persisting over a period of 10 days (Flare 3). In Flare 2, therapeutic administration of Dexamethasone inhibited paw swelling (95%; P<0.001) and pain (55%; P<0.05). Therapeutic administration of Buprenorphine inhibited pain (80%; P<0.001) without affecting paw swelling (0%). Prophylactic administration of Etanercept in Flare 2 inhibited paw swelling (≥60%; P<0.001) and pain by ≥30%. Expression of IL-1β, IL-6, MCP-1 and CINC was reduced by >50% (P<0.001). Treatment with Etanercept in Flare 3 inhibited paw swelling by 60% (P<0.001) and pain by 25%. Prior treatment with Etanercept in Flare 2 followed by re-administration in Flare 3 led to a complete loss in the efficacy of Etanercept. Systemic exposure of Etanercept corroborated with lack of efficacy. Dexamethasone inhibited inflammation and pain in both Flares 2 and 3 (P<0.001). Conclusions We established a novel multi-flare SCW arthritis model enabling drug intervention in different stages of disease. We show for the first time the evaluation of inflammation and pain simultaneously in this model. Etanercept and Dexamethasone inhibited inflammation, pain and proinflammatory cytokines in this model. Taken together, this model facilitates the assessment of anti-rheumatic agents targeting inflammation and pain in the multiple flare paradigm and offers a powerful tool for drug discovery. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-409) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Milenko Cicmil
- Discovery Pharmacology, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Yang GY, Chen X, Sun YC, Ma CL, Qian G. Chemokine-like factor 1 (CLFK1) is over-expressed in patients with atopic dermatitis. Int J Biol Sci 2013; 9:759-65. [PMID: 23983609 PMCID: PMC3753440 DOI: 10.7150/ijbs.6291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Human chemokine-like factor 1 (CKLF1), a recently discovered chemokine, has a broad spectrum of biological functions in immune-mediated diseases. It is highly expressed on Th2 lymphocytes and is a functional ligand for human CCR4. CKLF1 has a major role in the recruitment and activation of leucocytes, which plays an important role in the pathogenesis of allergic diseases. The present study was designed to determine the expression of CKLF1 in skin and serum in patients with atopic dermatitis (AD). Methods: The CKLF1 protein expression in skin lesion was analyzed by immunohistochemistry and ELISA. The mRNA expression of CKLF1 in skin lesion was detected by Real-time PCR. The serum levels of CKLF1, IgE, eotaxin, IL-4, IL-5, and IL-13 were measured by ELISA. Results: Histopathological changes in the skin of AD patients showed local inflammation with epidermal thickening and significant inflammatory cellular infiltration. Immunohistochemistry results demonstrated that CKLF1-staining positive cells were located in the epidermal and dermis, and that the CKLF1 expression in AD patients was significantly higher than that in normal control. The CKLF1 mRNA expression in AD patients was significantly higher than that in healthy controls. Serum CKLF1 and IgE levels were significantly increased in AD patients, as were the serum levels of IL-4, IL-5, IL-13 and eotaxin. Conclusions: Both CKLF1 protien and mRNA levels are overexpressed in the skin lesion of AD patients, along with an increase in serum CKLF1 level, indicating that CKLF1 may play an important role in the development of atopic dermatitis.
Collapse
Affiliation(s)
- Gao-Yun Yang
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | | | | | | | | |
Collapse
|
7
|
Yu H, Lu C, Tan MT, Moudgil KD. Comparative antigen-induced gene expression profiles unveil novel aspects of susceptibility/resistance to adjuvant arthritis in rats. Mol Immunol 2013; 56:531-9. [PMID: 23911410 DOI: 10.1016/j.molimm.2013.05.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 11/20/2022]
Abstract
Lewis (LEW) and Wistar Kyoto (WKY) rats of the same major histocompatibility complex (MHC) haplotype (RT.1(l)) display differential susceptibility to adjuvant-induced arthritis (AIA). LEW are susceptible while WKY are resistant to AIA. To gain insights into the mechanistic basis of these disparate outcomes, we compared the gene expression profiles of the draining lymph node cells (LNC) of these two rat strains early (day 7) following a potentially arthritogenic challenge. LNC were tested both ex vivo and after restimulation with the disease-related antigen, mycobacterial heat-shock protein 65. Biotin-labeled fragment cRNA was generated from RNA of LNC and then hybridized with an oligonucleotide-based DNA microarray chip. The differentially expressed genes (DEG) were compared by limiting the false discovery rate to <5% and fold change ≥2.0, and their association with quantitative trait loci (QTL) was analyzed. This analysis revealed overall a more active immune response in WKY than LEW rats. Important differences were observed in the association of DEG with QTL in LEW vs. WKY rats. Both the number of upregulated DEG associated with rat arthritis-QTL and their level of expression were relatively higher in LEW when compared to WKY rat; however, the number of downregulated DEG-associated with rat arthritis-QTL as well as AIA-QTL were found to be higher in WKY than in LEW rats. In conclusion, distinct gene expression profiles define arthritis-susceptible versus resistant phenotype of MHC-compatible inbred rats. These results would advance our understanding of the pathogenesis of autoimmune arthritis and might also offer potential novel targets for therapeutic purposes.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
8
|
Yu H, Lu C, Tan MT, Moudgil KD. The gene expression profile of preclinical autoimmune arthritis and its modulation by a tolerogenic disease-protective antigenic challenge. Arthritis Res Ther 2011; 13:R143. [PMID: 21914168 PMCID: PMC3308071 DOI: 10.1186/ar3457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/29/2011] [Accepted: 09/13/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Autoimmune inflammation is a characteristic feature of rheumatoid arthritis (RA) and other autoimmune diseases. In the natural course of human autoimmune diseases, it is rather difficult to pinpoint the precise timing of the initial event that triggers the cascade of pathogenic events that later culminate into clinically overt disease. Therefore, it is a challenge to examine the early preclinical events in these disorders. Animal models are an invaluable resource in this regard. Furthermore, considering the complex nature of the pathogenic immune events in arthritis, microarray analysis offers a versatile tool to define the dynamic patterns of gene expression during the disease course. Methods In this study, we defined the profiles of gene expression at different phases of adjuvant arthritis (AA) in Lewis rats and compared them with those of antigen mycobacterial heat shock protein 65 (Bhsp65)-tolerized syngeneic rats. Purified total RNA (100 ng) extracted from the draining lymph node cells was used to generate biotin-labeled fragment cRNA, which was then hybridized with an oligonucleotide-based DNA microarray chip. Significance analysis of microarrays was used to compare gene expression levels between the two different groups by limiting the false discovery rate to < 5%. Some of the data were further analyzed using a fold change ≥2.0 as the cutoff. The gene expression of select genes was validated by quantitative real-time PCR. Results Intriguingly, the most dramatic changes in gene expression in the draining lymphoid tissue ex vivo were observed at the preclinical (incubation) phase of the disease. The affected genes represented many of the known proteins that participate in the cellular immune response. Interestingly, the preclinical gene expression profile was significantly altered by a disease-modulating, antigen-based tolerogenic regimen. The changes mostly included upregulation of several genes, suggesting that immune tolerance suppressed disease by activating disease-regulating pathways. We identified a molecular signature comprising at least 12 arthritis-related genes altered by Bhsp65-induced tolerance. Conclusions This is the first report of microarray analysis in the rat AA model. The results of this study not only advance our understanding of the early phase events in autoimmune arthritis but also help in identifying potential targets for the immunomodulation of RA.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
9
|
Aghazadeh S, Amini R, Yazdanparast R, Ghaffari SH. Anti-apoptotic and anti-inflammatory effects of Silybum marianum in treatment of experimental steatohepatitis. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2011; 63:569-74. [PMID: 20471811 DOI: 10.1016/j.etp.2010.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 04/07/2010] [Accepted: 04/18/2010] [Indexed: 01/06/2023]
Abstract
In this study, we were aimed to evaluate the probable effect of the crud extract of Silybum marianum, with high polyphenolic content, on experimental nonalcoholic steatohepatitis (NASH). To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into two groups: MCD groups received MCD diet and MCD+S group was fed MCD diet plus crude extract of S. marianum orally for 3 weeks. Control group was fed a normal diet for 11 weeks. Finally, all rats were sacrificed. Plasma alanine amino transferase (ALT) and aspartate amino transferase (AST) levels were evaluated. In addition, the following hepatic factors were also evaluated: liver histology, malondialdehyde (MDA) and reduced glutathione (GSH) contents, gene expressions of TNF-α and TGF-β and immunoblot evaluations of caspase-3, ERK/p-ERK, JNK/pJNK and p38/pp38. Histopathological evaluations of the liver samples revealed that treatment with the S. marianum extract has abated the severity of NASH among the MCD-fed rats. Also, a significant reduction was observed in the sera ALT and AST activities. In addition, the extract caused dramatic reduction in the elevated hepatic TNF-α and TGF-β mRNA and MDA levels along with an increase in the GSH content. Moreover, the plant extract treatments significantly lowered activation of procaspase-3 to active caspase-3 and also lowered the phosphorylated form of JNK among the same group of rats. These results suggest that the S. marianum crude extract beneficial effects on NASH are mainly due to its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Safiyeh Aghazadeh
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | | | | | |
Collapse
|
10
|
Amini R, Yazdanparast R, Aghazadeh S, Ghaffari SH. Teucrium polium reversed the MCD diet-induced liver injury in rats. Hum Exp Toxicol 2010; 30:1303-12. [PMID: 21056947 DOI: 10.1177/0960327110388961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the present study, we evaluated the ability of Teucrium polium ethyl acetate fraction, with high antioxidant activity, in the treatment of nonalcoholic steatohepatitis (NASH) in rats and its possible effect on factors involved in pathogenesis of the disease. To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into 2 groups: NASH group that received MCD diet and NASH + T group which was fed MCD diet plus ethyl acetate fraction of T. polium orally for 3 weeks. Histopathological evaluations revealed that treatment with the extract has abated the severity of NASH among the MCD-fed rats. In addition, the fraction reduced the elevated levels of hepatic tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) gene expression and also the elevated level of malondialdehyde (MDA). In addition, the extract increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and enhanced the level of hepatic glutathione (GSH). Moreover, the fraction treatments lowered caspase-3 level and the phosphorylated form of C-Jun N-terminal kinase (JNK) and augmented the phosphorylated level of extracellular regulated kinase1/2 (ERK1/2). These results indicate that the ethyl acetate fraction of T. poium effectively reversed NASH, mainly due to its strong antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Rahim Amini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Benedetti F. Interleukin-1β and interleukin-6 in arthritis animal models: roles in the early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med 2010; 16:552-7. [PMID: 20683549 DOI: 10.2119/molmed.2010.00067] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/30/2010] [Indexed: 02/01/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is the major target of the therapeutic approach in rheumatoid arthritis. A key issue in the approach to chronic arthritis is the understanding of the crucial molecules driving the transition from the acute phase to the chronic irreversible phase of the disease. In this review we analyzed five experimental arthritis animal models (antigen-induced arthritis, adjuvant-induced arthritis, streptococcal cell wall arthritis, collagen-induced arthritis and SKG) considered as possible scenarios to facilitate interpretation of the biology of human rheumatoid arthritis. The SKG model is strictly dependent on interleukin (IL)-6. In the other models, IL-1β and IL-6, more than TNF-α, appear to be relevant in driving the transition, which suggests that these should be the targets of an early intervention to stop the course toward the chronic form of the disease.
Collapse
Affiliation(s)
- Gianfranco Ferraccioli
- Division of Rheumatology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Scott I, Midha A, Rashid U, Ball S, Walding A, Kerry P, Delaney S, Cruwys S. Correlation of gene and mediator expression with clinical endpoints in an acute interleukin-1beta-driven model of joint pathology. Osteoarthritis Cartilage 2009; 17:790-7. [PMID: 19010066 DOI: 10.1016/j.joca.2008.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/30/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Interleukin-1beta (IL-1beta) plays a key role in the pathogenesis of chronic joint diseases, including osteoarthritis (OA), and drives a cascade of inflammatory and destructive responses within the synovial joint. Animal models of arthritis support the role of IL-1beta in joint pathology, however, the molecular changes downstream of IL-1beta are poorly understood in vivo. This study aimed to evaluate the intra-articular (i.a.) injection of IL-1beta in the rat joint as an acute model of joint disease and associate gene and mediator expression with clinical endpoints and pathological changes. METHODS The effects of i.a. administration of a pathologically relevant dose of IL-1beta on joint swelling, mechanical hyperalgesia, histopathology, gene expression and biochemical changes were measured from 2 to 24h. RESULTS IL-1beta-induced joint swelling and mechanical hyperalgesia. Gene expression analysis of joint tissue and biochemical analysis of joint lavage fluid identified pro-inflammatory and destructive mediators induced by IL-1beta. Histopathology of joint tissues showed evidence of synovitis and connective tissue inflammation, but not cartilage destruction. However, biochemical analysis of glucosaminoglycan levels in joint lavage fluids indicated cartilage breakdown and might be a sensitive marker of cartilage pathology. CONCLUSIONS Intra-articular injection of IL-1beta is a reproducible acute model of joint pathology that is potentially useful to evaluate IL-1 pathway inhibitors. The correlation of molecular events with clinical and pathological changes in this model has enhanced the understanding of the role of IL-1beta in joint disease. Methods developed for gene expression analysis using multi-gene microfluidics cards and for biochemical analysis of joint lavage fluid might have utility for characterisation of other arthritis models and corresponding human disease.
Collapse
Affiliation(s)
- I Scott
- Department of Molecular Biology, AstraZeneca Charnwood, Loughborough, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen G, Zhang Y, Lu D, Li NQ, Ross AC. Retinoids synergize with insulin to induce hepatic Gck expression. Biochem J 2009; 419:645-53. [PMID: 19173678 PMCID: PMC3789248 DOI: 10.1042/bj20082368] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic GK (glucokinase) plays a key role in maintaining glucose homoeostasis. Many stimuli regulate GK activity by controlling its gene transcription. We hypothesized that endogenous lipophilic molecules modulate hepatic Gck expression. Lipophilic molecules were extracted from rat livers, saponified and re-constituted as an LE (lipophilic extract). LE synergized with insulin to induce primary hepatocyte, but not beta-cell, Gck expression in an SREBP-1c (sterol-regulatory-element-binding protein-1c)-independent manner. The dramatic induction of Gck mRNA resulted in a significant increase in GK activity. Subsequently, the active molecules were identified as retinol and retinal by MS after the purification of the active LE fractions. Retinoids synergized with insulin to induce Gck expression by the activation of both RAR [RA (retinoic acid) receptor] and RXR (retinoid X receptor). Inhibition of RAR activation completely abolished the effect of retinal. The hepatic GK specific activity and Gck mRNA levels of Zucker lean rats fed with a VAD [VA (vitamin A)-deficient] diet were significantly lower than those of rats fed with VAS (VA-sufficient) diet. Additionally, the hepatic Gck mRNA expression of Sprague-Dawley rats fed with a VAD diet was lower than that of rats fed with VA-marginal, -adequate or -supplemented diets. The reduced expression of Gck mRNA was increased after an intraperitoneal dose of RA in VAD rats. Furthermore, an intravenous injection of RA rapidly raised hepatic Gck expression in rats fed with a VAS control diet. Understanding the underlying mechanism that mediates the synergy may be helpful for developing a treatment strategy for patients with diabetes.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, U.S.A.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Acute rheumatic fever is a major cause of heart disease in large parts of the world, but it remains unknown why only a small fraction of those who are infected with rheumatogenic group A streptococci develop an abnormal immune response that leads to acute rheumatic fever. An understanding of the mechanisms underlying host susceptibility can provide important insights into pathogenesis that in turn can inform new treatments. Extensive searches for susceptibility factors have been undertaken, including human leukocyte antigens, B-cell alloantigens, and cytokine genes. Although significant associations have been found between genetic factors and acute rheumatic fever, study results often conflict with each other. This review explores current understanding about host susceptibility to acute rheumatic fever and provides an overall perspective to the number of studies that have recently addressed this subject.
Collapse
Affiliation(s)
- Penelope A. Bryant
- From the Departments of Paediatrics (P.A.B., N.C.), and Microbiology and Immunology (R.R.-B.), University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Department of General Medicine (P.A.B., N.C.), and Infection, Immunity and Environment Theme, Murdoch Children’s Research Institute (P.A.B., R.R.-B., N.C.), Royal Children’s Hospital Melbourne, Parkville, Australia; and Menzies School of Health Research (J.R.C.), Charles Darwin University, Casuarina, Australia
| | - Roy Robins-Browne
- From the Departments of Paediatrics (P.A.B., N.C.), and Microbiology and Immunology (R.R.-B.), University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Department of General Medicine (P.A.B., N.C.), and Infection, Immunity and Environment Theme, Murdoch Children’s Research Institute (P.A.B., R.R.-B., N.C.), Royal Children’s Hospital Melbourne, Parkville, Australia; and Menzies School of Health Research (J.R.C.), Charles Darwin University, Casuarina, Australia
| | - Jonathan R. Carapetis
- From the Departments of Paediatrics (P.A.B., N.C.), and Microbiology and Immunology (R.R.-B.), University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Department of General Medicine (P.A.B., N.C.), and Infection, Immunity and Environment Theme, Murdoch Children’s Research Institute (P.A.B., R.R.-B., N.C.), Royal Children’s Hospital Melbourne, Parkville, Australia; and Menzies School of Health Research (J.R.C.), Charles Darwin University, Casuarina, Australia
| | - Nigel Curtis
- From the Departments of Paediatrics (P.A.B., N.C.), and Microbiology and Immunology (R.R.-B.), University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Department of General Medicine (P.A.B., N.C.), and Infection, Immunity and Environment Theme, Murdoch Children’s Research Institute (P.A.B., R.R.-B., N.C.), Royal Children’s Hospital Melbourne, Parkville, Australia; and Menzies School of Health Research (J.R.C.), Charles Darwin University, Casuarina, Australia
| |
Collapse
|
15
|
Takahashi N, de Jager VCL, Glück A, Letzkus M, Hartmann N, Staedtler F, Ribeiro-Dias F, Heuvelmans-Jacobs M, van den Berg WB, Joosten LAB. The molecular signature of oxidative metabolism and the mode of macrophage activation determine the shift from acute to chronic disease in experimental arthritis: Critical role of interleukin-12p40. ACTA ACUST UNITED AC 2008; 58:3471-84. [DOI: 10.1002/art.23956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Miller JC, Ma Y, Crandall H, Wang X, Weis JJ. Gene expression profiling provides insights into the pathways involved in inflammatory arthritis development: murine model of Lyme disease. Exp Mol Pathol 2008; 85:20-7. [PMID: 18462718 DOI: 10.1016/j.yexmp.2008.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 03/03/2008] [Indexed: 01/01/2023]
Abstract
The spirochete Borrelia burgdorferi, the etiologic agent of Lyme disease, causes severe subacute arthritis in susceptible inbred mouse strains, such as C3H/HeN, but only mild arthritis in resistant strains such as C57BL/6. The degree of Lyme arthritis severity is controlled in part by host genetics and several quantitative trait loci have been identified which contribute to this regulation. In addition, the anti-inflammatory cytokine IL-10 assumes an important role in the control of arthritis in C57BL/6 mice. However, the identification of genes and signaling pathways that dictate arthritis severity has remained elusive. In an attempt to elucidate such genes and pathways, the power of microarray analysis was combined with information gleaned from gene manipulation models. As a result of this approach, two novel gene profiles were identified: an IFN-inducible profile in arthritis-susceptible C3H and IL-10(-/-) mice, and an epidermal/differentiation profile in C57BL/6 mice. Application of this information to TLR2(-/-) mice, which also develop severe arthritis, indicated that they also upregulated IFN-responsive genes. These results provided new insight into the regulation of Lyme arthritis development and illustrated the utility of combining gene expression analyses with genetically manipulated mouse models in unraveling mechanisms underlying specific disease processes.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
17
|
Zhang F, Sha J, Wood TG, Galindo CL, Garner HR, Burkart MF, Suarez G, Sierra JC, Agar SL, Peterson JW, Chopra AK. Alteration in the activation state of new inflammation-associated targets by phospholipase A2-activating protein (PLAA). Cell Signal 2008; 20:844-61. [PMID: 18291623 DOI: 10.1016/j.cellsig.2008.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 12/29/2007] [Accepted: 01/01/2008] [Indexed: 01/08/2023]
Abstract
Phospholipase A(2) (PLA(2))-activating protein (PLAA) is a novel signaling molecule that regulates the production of prostaglandins (PGE(2)) and tumor necrosis factor (TNF)-alpha. To characterize the function of native PLAA in situ, we generated HeLa (Tet-off) cells overexpressing plaa (plaa(high)) and control (plaa(low)) cells, with the plaa gene in opposite orientation in the latter construct. The plaa(high) cells produced significantly more PGE(2) and interleukin (IL)-6 compared to plaa(low) cells in response to TNF-alpha. There was an increased activation and/or expression of cytosolic PLA(2), cyclooxgenase-2, and NF-kappaB after induction of plaa(high) cells with TNF-alpha compared to the respective plaa(low) cells. Microarray analysis of plaa(high) cells followed by functional assays revealed increased production of proinflammatory cytokine IL-32 and a decrease in the production of annexin A4 and clusterin compared to plaa(low) cells. We demonstrated the role of annexin A4 as an inhibitor of PLA(2) and showed that addition of exogeneous clusterin limited the production of PGE(2) from plaa(high) cells. To understand regulation of plaa gene expression, we used a luciferase reporter system in HeLa cells and identified one stimulatory element, with Sp1 binding sites, and one inhibitory element, in exon 1 of the plaa gene. By using decoy DNA oligonucleotides to Sp1 and competitive binding assays, we showed that Sp1 maintains basal expression of the plaa gene and binds to the above-mentioned stimulatory element. We demonstrated for the first time that the induction of native PLAA by TNF-alpha can perpetuate inflammation by enhancing activation of PLA(2) and NF-kappaB.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Monach PA, Verschoor A, Jacobs JP, Carroll MC, Wagers AJ, Benoist C, Mathis D. Circulating C3 is necessary and sufficient for induction of autoantibody-mediated arthritis in a mouse model. ACTA ACUST UNITED AC 2007; 56:2968-74. [PMID: 17763447 PMCID: PMC2559465 DOI: 10.1002/art.22859] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective For the inflammation characteristic of rheumatoid arthritis, the relative contribution of mediators produced locally in the synovium versus those circulating systemically is unknown. Complement factor C3 is made in rheumatoid synovium and has been proposed to be a crucial driver of inflammation. The aim of this study was to test, in a mouse model of rheumatoid arthritis, whether C3 synthesized within the synovium is important in promoting inflammation. Methods Radiation bone marrow chimeras between normal and C3−/− mice were constructed in order to generate animals that expressed or lacked expression of C3 only in hematopoietic cells. Parabiotic mice were made by surgically linking C3−/− mice to irradiated wild-type mice to obtain animals having C3 only in the circulation. Arthritis was induced by injection of serum from arthritic K/BxN mice. Results In bone marrow chimeras, synthesis of C3 by radioresistant cells was necessary and sufficient to confer susceptibility to serum-transferred arthritis. Parabionts having C3 only in the circulation remained sensitive to arthritis induction, and the cartilage of these arthritic mice contained deposits of C3. Conclusion In a mouse model in which the alternative pathway of complement activation is critical to the induction of arthritis by autoantibodies, circulating C3 was necessary and sufficient for arthritis induction.
Collapse
Affiliation(s)
- Paul A Monach
- Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen DT, Chen JJ, Cheng G, Lin SH, Soong SJ. A two-stage binomial test approach of gene identification in oligonucleotide arrays. J Biopharm Stat 2007; 17:903-18. [PMID: 17885873 DOI: 10.1080/10543400701514064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Most statistical approaches summarize the probe-level expression data into gene-level measures, which then are used for downstream statistical analyses. However, there are some limitations in using the gene level data for analysis, such as nonhomogeneous probe effects and the interaction effect (e.g., alternative splicing). In this paper, we consider a two-stage binomial test with a weighted probe rank approach to determine differentially expressed genes. Using a series of benchmark gene array datasets, we show the two-stage binomial test approach yielded a higher positive predictivity and a higher sensitivity than the conventional RMA, GCRMA, Dchip, and ANOVA approaches. In data application, the two-stage binomial test identified a subset of genes strongly related to cell proliferation in the prolactin study, and a subset of genes associated with lymph node metastasis in the breast cancer dataset. In addition, by exploring the proportion of probes with expression changes and the probe expression plot, the two-stage binomial test helped detect an alternative splicing form of the prolactin gene in the prolactin study. In the breast cancer dataset, the approach also identified one potential alternative splicing gene.
Collapse
Affiliation(s)
- Dung-Tsa Chen
- Biostatistics Division, Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida 12902, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Biomarkers have been a buzz word in drug development for the last 5 years. But where do we stand now? This perspective article will demonstrate to which extent biomarkers have impacted drug development and the use of drugs. In particular, the different types of biomarkers, their identification, validation and use in different phases of drug development from drug discovery, to approval, to clinical application will be discussed as well as the state-of-the-art biomarker technologies and promising future methods. The high interest in biomarkers has generated the need for development of new technologies and refinement of existing ones. Besides discussing their perspectives of applications, the present article also illustrates the future of biomarker development in terms of qualification for regulatory use and co-development.
Collapse
Affiliation(s)
- Estelle Marrer
- Novartis Pharma AG, Development, 4002 Basel, Switzerland.
| | | |
Collapse
|
21
|
Abstract
1. Microarrays, a recent development, provide a revolutionary platform to analyse thousands of genes at once. They have enormous potential in the study of biological processes in health and disease and, perhaps, microarrays have become crucial tools in diagnostic applications and drug discovery. 2. Microarray based studies have provided the essential impetus for biomedical experiments, such as identification of disease-causing genes in malignancies and regulatory genes in the cell cycle mechanism. Microarrays can identify genes for new and unique potential drug targets, predict drug responsiveness for individual patients and, finally, initiate gene therapy and prevention strategies. 3. The present article reviews the principles and technological concerns, as well as the steps involved in obtaining and analysing of data. Furthermore, applications of microarray based experiments in drug target identifications and validation strategies are discussed. 4. To exemplify how this tool can be useful, in the present review we provide an overview of some of the past and potential future aspects of microarray technology and present a broad overview of this rapidly growing field.
Collapse
Affiliation(s)
- Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
22
|
Li T, Zhong J, Chen Y, Qiu X, Zhang T, Ma D, Han W. Expression of chemokine-like factor 1 is upregulated during T lymphocyte activation. Life Sci 2006; 79:519-24. [PMID: 16522323 DOI: 10.1016/j.lfs.2006.01.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
Chemokine-like factor 1 (CKLF1) is a cytokine with chemotactic effects on leukocytes and a functional ligand of CCR4. This cytokine is widely expressed and the level of expression is reported to be upregulated in asthma and rheumatoid arthritis (RA), disease conditions in which T lymphocytes are over-activated. In order to determine the expression profile of CKLF1 in activated T lymphocytes, we first employed a PCR-based method on human blood fractions cDNA panels and found that CKLF1 was upregulated in activated CD4+ and CD8+ cells, with no obvious changes in CD19+ cells. We further performed kinetic analyses of CKLF1 expression in phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes (PBL) at both the mRNA and protein levels. In resting PBL, the constitutive expression of CKLF1 was low at mRNA level and barely detectable at the protein level; however, both were remarkably upregulated by PHA, appearing at 8h after PHA-stimulation and persisting up to 72h. These results suggest that CKLF1 may be involved in T lymphocyte activation and further study of CKLF1 function will prove valuable.
Collapse
Affiliation(s)
- Ting Li
- Lab of Medical Immunology, School of Basic Medical Science, Peking University, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 2006; 342:361-4. [PMID: 16483544 DOI: 10.1016/j.bbrc.2006.01.163] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. AIM OF THE STUDY We set out to characterize the transcriptional profile of regulators of the UPS during atrophy-, hypertrophy-, and hypoxia-induced remodeling of the heart. METHODS AND RESULTS Cardiac atrophy was induced by heterotopic transplantation of the rat heart. Left ventricular hypertrophy was induced by banding of the ascending aorta in rats. To study the effects of hypoxemia on the left ventricle, rats were exposed to hypobaric hypoxia. Transcript levels of six known regulators of the UPS, ubiquitin B (UbB), the ubiquitin conjugating enzymes UbcH2 and E2-14kDa, the ubiquitin ligases Mafbx/Atrogin-1 and MuRF-1, and the proteasomal subunit PSMB4 were measured using quantitative RT-PCR. Unloading-induced atrophy increased mRNA levels of UbB and decreased levels of both ubiquitin ligases. Transcript levels of all UPS genes investigated increased in the hypertrophied and hypoxic heart (with the exception of E2-14kDa). CONCLUSIONS Cardiac atrophy, hypertrophy, and hypoxemia all increase myocardial UbB expression, suggesting that UbB is a transcriptional marker for load-induced and hypoxia-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Peter Razeghi
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kannan K, Ortmann RA, Kimpel D. Animal models of rheumatoid arthritis and their relevance to human disease. ACTA ACUST UNITED AC 2006; 12:167-81. [PMID: 16171986 DOI: 10.1016/j.pathophys.2005.07.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rodent models of rheumatoid arthritis (RA) are useful tools to study the pathogenic process of RA. Among the most widely used models of RA are the streptococcal cell wall (SCW) arthritis model and the collagen-induced arthritis (CIA). Both innate and adaptive immune mechanisms are involved in these rodent models. While no models perfectly duplicate the condition of human RA, they are easily reproducible, well defined and have proven useful for development of new therapies for arthritis, as exemplified by cytokine blockade therapies. Besides SCW and CIA models, there are numerous others including transgenic models such as K/BxN, induced models such as adjuvant-induced and pristane models, and spontaneous models in certain mouse strains, that have been used to help understand some of the underlying mechanisms. This review provides an update and analysis of RA models in mice and rats. The array of models has provided rheumatologists and immunologists a means to understand the multifactorial disease in humans, to identify new drug targets, and to test new therapies.
Collapse
Affiliation(s)
- Krishnaswamy Kannan
- Department of Internal Medicine, Division of Rheumatology and Immunology, University of Virginia Health System, P.O. Box 800412, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
25
|
Shou J, Bull CM, Li L, Qian HR, Wei T, Luo S, Perkins D, Solenberg PJ, Tan SL, Chen XYC, Roehm NW, Wolos JA, Onyia JE. Identification of blood biomarkers of rheumatoid arthritis by transcript profiling of peripheral blood mononuclear cells from the rat collagen-induced arthritis model. Arthritis Res Ther 2006; 8:R28. [PMID: 16507131 PMCID: PMC1526586 DOI: 10.1186/ar1883] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease that results in joint destruction and subsequent loss of function. To better understand its pathogenesis and to facilitate the search for novel RA therapeutics, we profiled the rat model of collagen-induced arthritis (CIA) to discover and characterize blood biomarkers for RA. Peripheral blood mononuclear cells (PBMCs) were purified using a Ficoll gradient at various time points after type II collagen immunization for RNA preparation. Total RNA was processed for a microarray analysis using Affymetrix GeneChip technology. Statistical comparison analyses identified differentially expressed genes that distinguished CIA from control rats. Clustering analyses indicated that gene expression patterns correlated with laboratory indices of disease progression. A set of 28 probe sets showed significant differences in expression between blood from arthritic rats and that from controls at the earliest time after induction, and the difference persisted for the entire time course. Gene Ontology comparison of the present study with previous published murine microarray studies showed conserved Biological Processes during disease induction between the local joint and PBMC responses. Genes known to be involved in autoimmune response and arthritis, such as those encoding Galectin-3, Versican, and Socs3, were identified and validated by quantitative TaqMan RT-PCR analysis using independent blood samples. Finally, immunoblot analysis confirmed that Galectin-3 was secreted over time in plasma as well as in supernatant of cultured tissue synoviocytes of the arthritic rats, which is consistent with disease progression. Our data indicate that gene expression in PBMCs from the CIA model can be utilized to identify candidate blood biomarkers for RA.
Collapse
Affiliation(s)
- Jianyong Shou
- Integrative Biology, Lilly Research Laboratories, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fujikado N, Saijo S, Iwakura Y. Identification of arthritis-related gene clusters by microarray analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 2006; 8:R100. [PMID: 16805906 PMCID: PMC1779393 DOI: 10.1186/ar1985] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/11/2006] [Accepted: 06/02/2006] [Indexed: 11/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affecting approximately 1% of the population worldwide. Previously, we showed that human T-cell leukemia virus type I-transgenic mice and interleukin-1 receptor antagonist-knockout mice develop autoimmunity and joint-specific inflammation that resembles human RA. To identify genes involved in the pathogenesis of arthritis, we analyzed the gene expression profiles of these animal models by using high-density oligonucleotide arrays. We found 1,467 genes that were differentially expressed from the normal control mice by greater than threefold in one of these animal models. The gene expression profiles of the two models correlated well. We extracted 554 genes whose expression significantly changed in both models, assuming that pathogenically important genes at the effector phase would change in both models. Then, each of these commonly changed genes was mapped into the whole genome in a scale of the 1-megabase pairs. We found that the transcriptome map of these genes did not distribute evenly on the chromosome but formed clusters. These identified gene clusters include the major histocompatibility complex class I and class II genes, complement genes, and chemokine genes, which are well known to be involved in the pathogenesis of RA at the effector phase. The activation of these gene clusters suggests that antigen presentation and lymphocyte chemotaxis are important for the development of arthritis. Moreover, by searching for such clusters, we could detect genes with marginal expression changes. These gene clusters include schlafen and membrane-spanning four-domains subfamily A genes whose function in arthritis has not yet been determined. Thus, by combining two etiologically different RA models, we succeeded in efficiently extracting genes functioning in the development of arthritis at the effector phase. Furthermore, we demonstrated that identification of gene clusters by transcriptome mapping is a useful way to find potentially pathogenic genes among genes whose expression change is only marginal.
Collapse
Affiliation(s)
- Noriyuki Fujikado
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinobu Saijo
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoichiro Iwakura
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|