1
|
Patt YS, Ben-Shabat N, Fisher L, Sharif K, Arow M, Lassman S, Watad A, Skuja V, Shtewe AH, McGonagle D, Amital H. Increased risk of osteoporosis and femoral neck fractures in patients with familial Mediterranean fever-a large retrospective cohort study. Rheumatology (Oxford) 2024; 63:2128-2134. [PMID: 37769238 DOI: 10.1093/rheumatology/kead526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES The direct impact of inflammatory conditions and their therapy with corticosteroids contribute to an increased risk of osteoporosis with associated fractures. Familial Mediterranean fever (FMF) is an autoinflammatory disorder not commonly treated with corticosteroids. Evidence regarding FMF association with osteoporosis and femur fractures is anecdotal. We aimed to evaluate the incidence and risk of osteoporosis and femoral neck fracture in FMF patients compared with the general population. METHODS A retrospective cohort study using the electronic database of Clalit Health Services of all FMF patients first diagnosed between 2000 and 2016 and controls was conducted including age- and sex-matched controls in a 1:1 ratio. Follow-up continued until the first diagnosis of osteoporosis or fracture. Risk for these conditions was compared using univariate and multivariate Cox regression models. RESULTS A total of 9769 FMF patients were followed for a median period of 12.5 years. Of these, 304 FMF patients were diagnosed with osteoporosis compared with 191 controls, resulting in an incidence rate (per 10 000 persons-years) of 28.8 and 17.8, respectively, and a crude hazard ratio of 1.62 (95% CI 1.35, 1.93; P < 0.001). Patients were diagnosed with osteoporosis at a considerably younger age than controls [60.1 (s.d. 12.4) vs 62.5 (s.d. 11.0) years; P = 0.028]. A total of 56 FMF patients were diagnosed with femoral neck fracture compared with 35 controls, resulting in an incidence rate of 5.3 and 3.3, respectively, and a crude HR of 1.60 (95% CI 1.05, 2.44; P < 0.05). CONCLUSION FMF patients are at increased risk for osteoporosis and consequently femur fracture. Our findings emphasize the importance of considering bone health in the management of FMF patients.
Collapse
Affiliation(s)
- Yonatan Shneor Patt
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Niv Ben-Shabat
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Fisher
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Gastroenterology, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mohamad Arow
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Simon Lassman
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- St George's Hospital, University of London, London, UK
| | - Abdulla Watad
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Vita Skuja
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
- Anti-Aging Institute, Health Center 4, Riga, Latvia
| | - Anan H Shtewe
- Department of Orthopedic Surgery, Spine Surgery Service, Sheba Medical Center, Tel-Hashomer, Israel
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| | - Howard Amital
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Brance ML, Razzini A, Pons-Estel BA, Quagliato NJ, Jorfen M, Berbotto G, Brun LR. Whole-hand and regional bone mineral density involvement in rheumatoid arthritis. REUMATOLOGIA CLINICA 2023; 19:555-559. [PMID: 38056980 DOI: 10.1016/j.reumae.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/22/2023] [Indexed: 12/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by symmetric polyarthritis that can lead to joint deformity, disability, and osteoporosis. We aimed to evaluate whole hand and regional BMD in RA patients compared to controls. In addition, we evaluated the BMD of dominant versus non-dominant hands in healthy subjects. We included adult female and male RA patients and control subjects matched by age, sex, and BMI. BMD (g/cm2) was measured by DXA in lumbar spine (LS), whole hand, and three regions of interest: carpus, metacarpal bones, and phalanges. Results: 44 control subjects (49.5±11.8 y) and 60 with RA (52.7±12.7 y) were included. Significant lower BMD in RA patients was found in LS (-8.7%), dominant whole hand (-9.5%), carpus, metacarpal bones, and phalanges, and non-dominant whole hand (-8.7%), metacarpal bones, and phalanges compared to controls. A significant positive correlation was found between LS and whole-hand BMD (dominant r=.63, non-dominant r=.67). Finally, the whole hand, metacarpal bones, and carpus BMD measurements were significantly higher in the dominant hand compared to the non-dominant hand without differences in the phalangeal ROI. In conclusion, hand BMD was significantly lower in RA patients compared to control subjects and there was a significant correlation with LS BMD. We demonstrated that BMD measurements of the whole-hand, and different ROI (carpus, metacarpal bones, and phalanges) by DXA would be an easily reproducible technique to evaluate bone loss. In addition, the whole hand, metacarpal bones and carpus BMD measurements were significantly higher in the dominant hand compared to the non-dominant hand without differences in the phalanges.
Collapse
Affiliation(s)
- María Lorena Brance
- Reumatología y Enfermedades Óseas, Rosario, Argentina; Laboratorio de Biología Ósea, Universidad Nacional de Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Agustín Razzini
- Reumatología y Enfermedades Óseas, Rosario, Argentina; Laboratorio de Biología Ósea, Universidad Nacional de Rosario, Argentina
| | - Bernardo A Pons-Estel
- Centro Regional de Enfermedades Autoinmunes y Reumáticas (CREAR), Rosario, Argentina
| | | | | | | | - Lucas R Brun
- Laboratorio de Biología Ósea, Universidad Nacional de Rosario, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Wu C, Hu Y, Schafer P, Connolly SE, Wong R, Nielsen SH, Bay-Jensen AC, Emery P, Tanaka Y, Bykerk VP, Bingham CO, Huizinga TW, Fleischmann R, Liu J. Baseline serum levels of cross-linked carboxy-terminal telopeptide of type I collagen predict abatacept treatment response in methotrexate-naive, anticitrullinated protein antibody-positive patients with early rheumatoid arthritis. RMD Open 2022; 8:e002683. [PMID: 36585217 PMCID: PMC9809248 DOI: 10.1136/rmdopen-2022-002683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To investigate correlations between biomarkers of bone remodelling and extracellular matrix turnover with baseline disease activity and treatment response in patients with early rheumatoid arthritis (RA). METHODS Assessing Very Early Rheumatoid arthritis Treatment-2 (AVERT-2; NCT02504268) included disease-modifying antirheumatic drug-naive, anti-citrullinated protein antibody (ACPA)-positive patients randomised to weekly subcutaneous abatacept+methotrexate (MTX) or abatacept placebo+MTX for 56 weeks. This post hoc exploratory subanalysis assessed the association between baseline disease activity and eight biomarkers (Spearman's correlation coefficient), and whether baseline biomarkers (continuous or categorical variables) could predict treatment response at weeks 24 and 52 (logistic regression). RESULTS Patient characteristics were similar between overall (n=752) and biomarker subgroup (n=535) populations and across treatments. At baseline, neoepitopes of matrix metalloproteinase-mediated degradation products of types III and IV collagen and of C reactive protein (CRP) showed the greatest correlations with disease activity; cross-linked carboxy-terminal telopeptide of type I collagen (CTX-I) showed weak correlation. Only CTX-I predicted treatment response; baseline CTX-I levels were significantly associated with achieving Simplified Disease Activity Index remission and Disease Activity Score in 28 joints (DAS28 (CRP)) <2.6 (weeks 24 and 52), and American College of Rheumatology 70 response (week 52), in patients treated with abatacept+MTX but not abatacept placebo+MTX. CTX-I predicted significant differential response between arms for DAS28 (CRP) <2.6 (week 24). Treatment differences were greater for abatacept+MTX in patients with medium/high versus low baseline CTX-I. CONCLUSION In MTX-naive, ACPA-positive patients with early RA, baseline CTX-I predicted treatment response to abatacept+MTX but not abatacept placebo+MTX.
Collapse
Affiliation(s)
- Chun Wu
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Yanhua Hu
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Robert Wong
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Paul Emery
- University of Leeds and Leeds NIHR Biomedical Research Centre, Leeds, UK
| | - Yoshiya Tanaka
- University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | - Roy Fleischmann
- University of Texas Southwestern Medical Center, Metroplex Clinical Research Center, Dallas, Texas, USA
| | - Jinqi Liu
- Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Wang Y, Wang Q, Xu Q, Li J, Zhao F. Single-cell RNA sequencing analysis dissected the osteo-immunology microenvironment and revealed key regulators in osteoporosis. Int Immunopharmacol 2022; 113:109302. [DOI: 10.1016/j.intimp.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
5
|
Guo F, Yuan C, Huang H, Deng X, Bian Z, Wang D, Dou K, Mei L, Zhou Q. Regulation of T Cell Responses by Nano-Hydroxyapatite to Mediate the Osteogenesis. Front Bioeng Biotechnol 2022; 10:884291. [PMID: 35445004 PMCID: PMC9013933 DOI: 10.3389/fbioe.2022.884291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Nano-hydroxyapatite (nHA) has been widely applied as a tissue-engineering biomaterial and interacted with osteoblasts/stem cells to repair bone defects. In addition, T cells that coexist with osteoblasts/stem cells in the bone modulate the regulation of osteoimmunology by cytokine formation. However, the effects of nHA on T cells and the following regulatory interplay on osteogenic differentiation have been rarely examined. In this work, the physicochemical properties of needle-like nHA are characterized by field emission scanning electron microscopy, zeta potential, Fourier transform-infrared and X-ray diffraction. It is found that as the concentration of nHA increases, the proliferation of T cells gradually increases, and the proportion of apoptotic T cells decreases. The percentage of CD4+ T cells is higher than that of CD8+ T cells under the regulation of needle-like nHA. Furthermore, the supernatant of T cells co-cultured with nHA significantly inhibits the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with the supernatant of nHA. Thus, our findings provide new insight into the nHA-mediated T cell and osteoblast interactions.
Collapse
Affiliation(s)
- Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| | - Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zirui Bian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Keke Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Li Mei
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| |
Collapse
|
6
|
Lafuente-Gracia L, Borgiani E, Nasello G, Geris L. Towards in silico Models of the Inflammatory Response in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:703725. [PMID: 34660547 PMCID: PMC8514728 DOI: 10.3389/fbioe.2021.703725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
In silico modeling is a powerful strategy to investigate the biological events occurring at tissue, cellular and subcellular level during bone fracture healing. However, most current models do not consider the impact of the inflammatory response on the later stages of bone repair. Indeed, as initiator of the healing process, this early phase can alter the regenerative outcome: if the inflammatory response is too strongly down- or upregulated, the fracture can result in a non-union. This review covers the fundamental information on fracture healing, in silico modeling and experimental validation. It starts with a description of the biology of fracture healing, paying particular attention to the inflammatory phase and its cellular and subcellular components. We then discuss the current state-of-the-art regarding in silico models of the immune response in different tissues as well as the bone regeneration process at the later stages of fracture healing. Combining the aforementioned biological and computational state-of-the-art, continuous, discrete and hybrid modeling technologies are discussed in light of their suitability to capture adequately the multiscale course of the inflammatory phase and its overall role in the healing outcome. Both in the establishment of models as in their validation step, experimental data is required. Hence, this review provides an overview of the different in vitro and in vivo set-ups that can be used to quantify cell- and tissue-scale properties and provide necessary input for model credibility assessment. In conclusion, this review aims to provide hands-on guidance for scientists interested in building in silico models as an additional tool to investigate the critical role of the inflammatory phase in bone regeneration.
Collapse
Affiliation(s)
- Laura Lafuente-Gracia
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Edoardo Borgiani
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Gabriele Nasello
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
8
|
Brance ML, Pons-Estel BA, Quagliato NJ, Jorfen M, Berbotto G, Cortese N, Raggio JC, Palatnik M, Chavero I, Soldano J, Dieguez C, Sánchez A, Del Rio L, Di Gregorio S, Brun LR. Trabecular and cortical bone involvement in rheumatoid arthritis by DXA and DXA-based 3D modelling. Osteoporos Int 2021; 32:705-714. [PMID: 32974730 DOI: 10.1007/s00198-020-05641-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
UNLABELLED Rheumatoid arthritis (RA) patients had a higher risk of developing low bone mineral density (BMD) or osteoporosis. RA patients on classic disease-modifying antirheumatic drug (c-DMARD) therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving biological disease-modifying antirheumatic drugs (b-DMARDs) and controls. The 3D analysis allowed us to find changes in the trabecular and cortical compartments. INTRODUCTION To evaluate cortical and trabecular bone involvement of the hip in RA patients by dual-energy X-ray absorptiometry (DXA) and 3D analysis. The secondary end-point was to evaluate bone involvement in patients treated with classic (c-DMARD) or biological (b-DMARD) disease-modifying antirheumatic drug therapies and the effect of the duration of the disease and corticosteroid therapy on 3D parameters. METHODS A cross-sectional study of 105 RA patients and 100 subjects as a control group (CG) matched by age, sex, and BMI was carried out. BMD was measured by DXA of the bilateral femoral neck (FN) and total hip (TH). The 3D analyses including trabecular and cortical BMD were performed on hip scans with the 3D-Shaper software. RESULTS FN and TH BMD and trabecular and cortical vBMD were significantly lower in RA patients. The c-DMARD (n = 75) group showed significantly lower trabecular and cortical vBMD than the CG. Despite the lower values, the b-DMARD group (n = 30) showed no significant differences in most parameters compared with the CG. The trabecular and cortical 3D parameters were significantly lower in the group with an RA disease duration of 1 to 5 years than in the CG, and the trabecular vBMD was significantly lower in the group with a duration of corticosteroid therapy of 1 to 5 years than in the CG, while no significant differences were found by standard DXA in the same period. CONCLUSIONS RA patients had a higher risk of developing low BMD or osteoporosis than controls. RA patients receiving c-DMARD therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving b-DMARDs and controls. 3D-DXA allowed us to find changes in trabecular and cortical bone compartments in RA patients.
Collapse
Affiliation(s)
- M L Brance
- Reumatología y Enfermedades Óseas, Rosario, Argentina
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - B A Pons-Estel
- Centro Regional de Enfermedades Autoinmunes y Reumáticas (GO-CREAR), Rosario, Argentina
| | | | - M Jorfen
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - G Berbotto
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - N Cortese
- School of Medicine, Rosario National University, Rosario, Argentina
| | - J C Raggio
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - M Palatnik
- Centro de Reumatología, Rosario, Argentina
| | - I Chavero
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - J Soldano
- School of Medicine, Rosario National University, Rosario, Argentina
| | - C Dieguez
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - A Sánchez
- Centro de Endocrinología, Rosario, Argentina
| | | | | | - L R Brun
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina.
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Wojdas M, Dąbkowska K, Winsz-Szczotka K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites 2021; 11:132. [PMID: 33668781 PMCID: PMC7996267 DOI: 10.3390/metabo11030132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common group of chronic connective tissue diseases in children that is accompanied by joint structure and function disorders. Inflammation underlying the pathogenic changes in JIA, caused by hypersecretion of proinflammatory cytokines, leads to the destruction of articular cartilage. The degradation which progresses with the duration of JIA is not compensated by the extent of repair processes. These disorders are attributed in particular to changes in homeostasis of extracellular matrix (ECM) components, including proteoglycans, that forms articular cartilage. Changes in metabolism of matrix components, associated with the disturbance of their degradation and biosynthesis processes, are the basis of the progressive wear of joint structures observed in the course of JIA. Clinical evaluation and radiographic imaging are current methods to identify the destruction. The aim of this paper is to review enzymatic and non-enzymatic factors involved in catabolism of matrix components and molecules stimulating their biosynthesis. Therefore, we discuss the changes in these factors in body fluids of children with JIA and their potential diagnostic use in the assessment of disease activity. Understanding the changes in ECM components in the course of the child-hood arthritis may provide the introduction of both new diagnostic tools and new therapeutic strategies in children with JIA.
Collapse
Affiliation(s)
- Magdalena Wojdas
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland; (K.D.); (K.W.-S.)
| | | | | |
Collapse
|
10
|
Li X, Wang Y, Li L, Zhou S, Zhao F. Sclareol inhibits RANKL-induced osteoclastogenesis and promotes osteoblastogenesis through promoting CCN1 expression via repressing the MAPK pathway. Cell Biol Toxicol 2021; 37:849-871. [PMID: 33423118 DOI: 10.1007/s10565-020-09578-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022]
Abstract
Osteoclasts are crucial cellular components of bone and are the cause of various bone problems like osteoporosis. Various biological activities such as anti-tumorous, anti-inflammatory, antibacterial, and immunomodulatory function are influenced by Sclareol, as a natural diterpene compound. However, studies on the effect and mechanism of Sclareol on osteoporosis are rare. In the current research, the influence of Sclareol on osteoclastogenesis and osteoblastogenesis was targeted to be discovered in ovariectomy (OVX)-induced animal models and in vitro. The expression levels of osteoclast-related genes such as c-Fos, NFATc1, and CTSK were detected by RT-qPCR and western blotting to understand the inhibition of Sclareol on the creation of osteoclast. The influence of Sclareol on osteoblastogenesis and the expression of osteoblastogenic markers were also examined. Sclareol inhibited the osteoclastogenesis caused by receptor activator of nuclear factor-κB ligand (RANKL) which promoted osteoblastogenesis through upregulating the expression of cysteine-rich protein 61 (CYR61/CCN1), which is a matricellular protein of the CCN family. The p-ERK and p-P38 protein expression levels were considerably downregulated by Sclareol. Furthermore, CCN1 overexpression partially mimicked the inhibitory effect of Sclareol, while the opposite results were obtained after CCN1 silencing. Additionally, Sclareol protected against loss of bones in an osteoporosis mouse model generated by OVX. The acquired results indicated that Sclareol represses RANKL-induced osteoclastogenesis and promotes osteoblastogenesis via promoting the expression of CCN1 by constraining the mitogen-activated protein kinase (MAPK) pathway. Our findings proposed that for the avoidance and treatment of osteoclast-linked disorders, Sclareol is a potentially effective drug. A proposed model for mediated regulation of osteoclastogenesis and osteoblastogenesis by Sclareol. The basic model of the process by which Sclareol prevents osteoclastogenesis and promotes osteoblastogenesis. Sclareol may increase the expression of CCN1 through inhibiting the MAPK pathway, thereby inhibiting osteoclast differentiation and attenuating bone resorption. Sclareol represses the expression of c-Fos, which stimulates the formation of osteoclast. In contrast, Sclareol promotes osteoblast differentiation by upregulating Runx2 expression, thereby improving the formation of bones. Consequently, Sclareol protects against loss of bones by regulating the stability of bone makeover via inhibition of bone formation and stimulation of bone resorption. Graphical Headlights 1. Sclareol represses RANKL-induced osteoclastogenesis. 2. Sclareol promotes osteoblast differentiation. 3. Sclareol inhibits the MAPK pathway through induction of CCN1. 4. Sclareol protects against bone loss by regulating the balance of bone remodeling via inhibition of bone formation and stimulation of bone resorption.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
11
|
Napimoga MH, Dantas Formiga WD, Abdalla HB, Trindade-da-Silva CA, Venturin CM, Martinez EF, Rossaneis AC, Verri WA, Clemente-Napimoga JT. Secreted Osteoclastogenic Factor of Activated T Cells (SOFAT) Is Associated With Rheumatoid Arthritis and Joint Pain: Initial Evidences of a New Pathway. Front Immunol 2020; 11:1442. [PMID: 32849501 PMCID: PMC7399082 DOI: 10.3389/fimmu.2020.01442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) has an inflammatory milieu in the synovial compartment, which is regulated by a complex cytokine and chemokine network that induces continuously degenerative and inflammatory reactions. The secreted osteoclastogenic factor of activated T cells (SOFAT) is a unique cytokine and represents an alternative pathway for osteoclast activation. In this study, we examined whether SOFAT is able to induce joint pain and investigated the presence of SOFAT in a Collagen-induced Arthritis (CIA) model and in human subjects. Here, we found that an intra-articular stimulation with SOFAT (1, 10, 100, or 1,000 ng/10 μl) in the knee joint significantly decreases the mechanical threshold in the hind paw of mice (p < 0.05). Moreover, after a second injection of SOFAT, the mechanical threshold decrease was sustained for up to 8 days (p < 0.05). In the CIA model, the immunohistochemical assay of knee joint showed positivity stained for SOFAT, and the mRNA and protein expression of SOFAT were significantly higher in the affected-group (p < 0.05). Besides, the mRNA of RANKL, IL-1β, IL-6, and IL-15 were significantly higher in the affected-group (p < 0.05). Finally, SOFAT was detected in the synovial fluid of RA patients, but not in OA patients (p < 0.05). In conclusion, SOFAT is up regulated in inflammatory milieu such as RA but not in non-inflammatory OA. SOFAT may be a novel molecule in the complex inflammatory phenotype of RA.
Collapse
Affiliation(s)
- Marcelo Henrique Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | - Weslley Danny Dantas Formiga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | - Henrique Ballassini Abdalla
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | - Carlos Antônio Trindade-da-Silva
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| | | | | | - Ana Carolina Rossaneis
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Campinas, Brazil
| |
Collapse
|
12
|
Zheng R, Tan Y, Gu M, Kang T, Zhang H, Guo L. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling. Medicine (Baltimore) 2019; 98:e17126. [PMID: 31577702 PMCID: PMC6783161 DOI: 10.1097/md.0000000000017126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of n-acetyl cysteine (NAC) in the lipopolysaccharide (LPS)-mediated induction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) synthesis by human periodontal ligament fibroblast cells (hPDLFs). In addition, we aimed to determine the involvement of the nuclear factor-kappa B (NF-κB) pathway in any changes in IL-1β and TNF-α expression observed in response to LPS and NAC. METHODS HPDLFs were obtained by primary culture. The culture medium used in this experiment was Dulbecco's Modified Eagle Medium (DMEM low-glucose). Cells were stimulated with various concentrations of NAC or LPS. Cell proliferation was measured at various time-points with the cell Counting Kit 8 (CCK-8) assay. mRNA levels of IL-1β and TNF-α were determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Protein levels of IL-1β and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expression levels of NF-κB were measured by western blot and RT-qPCR. RESULTS The results showed that LPS treatment in hPDLFs induced mRNA and protein expression of IL-1β, TNF-α, and NF-κB. However, these effects were eliminated by pretreatment with NAC. Pretreatment with both NAC (1 mmol/L) and BAY11-7082 (10 μmol/L) significantly inhibited the NF-κB activity induced by LPS. CONCLUSION NAC inhibits the LPS-mediated synthesis of tumor TNF-α and IL-1β in hPDLFs, through the NF-κB pathway.
Collapse
|
13
|
Tilkeridis K, Kiziridis G, Ververidis A, Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G, Kapetanou A, Rechova KV, Kazakos K, Spanoudakis E. Immunoporosis: A New Role for Invariant Natural Killer T (NKT) Cells Through Overexpression of Nuclear Factor-κB Ligand (RANKL). Med Sci Monit 2019; 25:2151-2158. [PMID: 30903656 PMCID: PMC6441308 DOI: 10.12659/msm.912119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Osteoporosis affects millions of postmenopausal women worldwide. Invariant natural killer T cells (iNKT) are important cells for bone homeostasis. The sim of this study was to investigate the contribution of invariant natural killer T cells (iNKT) in the increased receptor activator of the nuclear factor-κB ligand (RANKL) pool and bone resorption, a characteristic of patients with osteoporosis. Material/Methods Whole blood was collected from 79 female patients. The dual energy x-absorptiometry scan was performed in all patients, and the T-score was calculated in order to classify our patients according to the World Human Organization (WHO) criteria for diagnosis and classification of osteoporosis. Eleven patients had a T-score <−1.0 and were encompassed in our normal donors (ND) group, 46 patients had a T-score between −1 and −2.5 and were included in the osteopenia group, while 22 patients had a T-score > −2.5 and were included in the osteoporosis group. We performed a-galactosylceramide activation of iNKT cells in vitro. Surface RANKL expression was detected by multicolor flow cytometry in naive and activated lymphocytes. Beta-Crosslaps (β-CTx) levels were measured in whole blood plasma by ELISA (enzyme-linked immunosorbent assay). Results Although iNKT cells were not clonally expanded in patients with osteoporosis, iNKT cells from osteoporotic patients overexpressed RANKL compared to ND and osteopenic patients. This is a distinctive feature of iNKT cells and is not seen in conventional T-lymphocytes. RANKL expression in iNKT cells was not related to β-CTx levels in the blood. Finally, iNKT cell activation by the prototypal glycolipid ligand α-galactosylceramide increased by 8 times their RANKL expression. Conclusions In patients with osteoporosis, iNKT cells specifically overexpress RANKL, a cytokine that regulates osteoclast activity. It seems that iNKT cells have a long-standing effect of on the bone physiology, which plays an important role in the bone loss of patients with osteoporosis.
Collapse
Affiliation(s)
- Konstantinos Tilkeridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Georgios Kiziridis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Athanasios Ververidis
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Gesthimani Kitsikidou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Georgios Drosos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Artemis Kapetanou
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | | | - Konstantinos Kazakos
- Department of Orthopaedics, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Emmanouil Spanoudakis
- Department of Haematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| |
Collapse
|
14
|
Gao Y, Wang B, Shen C, Xin W. Overexpression of miR‑146a blocks the effect of LPS on RANKL‑induced osteoclast differentiation. Mol Med Rep 2018; 18:5481-5488. [PMID: 30387844 PMCID: PMC6236290 DOI: 10.3892/mmr.2018.9610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/09/2018] [Indexed: 01/23/2023] Open
Abstract
The concept that inflammation serves a leading role in osteoclast-induced bone loss under pathological circumstances is now widely accepted. In the present study, it was observed that lipopolysaccharides (LPSs) demonstrated a synergic effect on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclast differentiation in Raw264.7 cells, with increasing levels of multiple pro-inflammatory cytokines including interleukin (IL)-6, tumor necrosis factor-α and IL-1β. Furthermore, microRNA (miR)-146a was highly induced by LPS and RANKL co-stimulation during the process of osteoclast differentiation. Overexpression of miR-146a inhibited osteoclast transformation by targeting the key regulators of nuclear factor (NF)-κβ signaling, TNF receptor-associated factor 6 and interleukin-1 receptor-associated kinase 1. The downstream activation of NF-κβ signaling was also inhibited by transfection with a miR-146a mimic. Altogether, the results of the present study demonstrated that miR-146a prevents osteoclast differentiation induced by LPS and RANKL co-stimulation, suggesting that miR-146a may be a promising therapeutic target for treatment of inflammation mediated bone loss.
Collapse
Affiliation(s)
- Yingjian Gao
- Department of Orthopedics, Renji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai 201100, P.R. China
| | - Bo Wang
- Second Department of Orthopaedics, Baoding No. 1 Central Hospital, Baoding, Hebei 300000, P.R. China
| | - Conghuan Shen
- General Surgery Department, Affiliated Huashan Hospital of Fudan University, Jingan, Shanghai 200040, P.R. China
| | - Weiwei Xin
- Department of Orthopedics, Renji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai 201100, P.R. China
| |
Collapse
|
15
|
Wijarnpreecha K, Thongprayoon C, Panjawatanan P, Ungprasert P. Hepatitis C virus infection and risk of osteoporotic fracture: A systematic review and meta-analysis. J Evid Based Med 2018; 11:20-25. [PMID: 29322660 DOI: 10.1111/jebm.12286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND/OBJECTIVES Hepatitis C virus (HCV) infection is one of the most common causes of chronic liver disease. Several epidemiologic studies have suggested that patients with HCV infection might have a higher risk of osteoporotic fracture. However, the data are inconclusive. This systematic review and meta-analysis was conducted with the aims to summarize all available evidence. METHODS A literature search was performed using MEDLINE and EMBASE database from inception to June 2016. Studies that reported relative risks, odd ratios, or hazard ratios comparing the risk of osteoporotic fracture among HCV-infected patients versus subjects without HCV infection were included. Pooled risk ratio (RR) and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. RESULTS Three studies with 362,285 participants met our eligibility criteria and were included in analysis. We found a significantly higher risk of osteoporotic fracture among patients with HCV infection with RR of 1.53 (95% CI 1.09 to 2.14). CONCLUSIONS Our study demonstrated an increased risk of osteoporotic fracture among HCV-infected patients. Further studies are required to clarify how this risk should be addressed in clinical practice.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | - Charat Thongprayoon
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, NY, USA
| | | | - Patompong Ungprasert
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Abdel Meguid E, Ke Y, Ji J, El-Hashash AHK. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes. J Cell Physiol 2017; 233:1825-1835. [PMID: 28369866 DOI: 10.1002/jcp.25940] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023]
Abstract
The exploration of stem and progenitor cells holds promise for advancing our understanding of the biology of tissue repair and regeneration mechanisms after injury. This will also help in the future use of stem cell therapy for the development of regenerative medicine approaches for the treatment of different tissue-species defects or disorders such as bone, cartilages, and tooth defects or disorders. Bone is a specialized connective tissue, with mineralized extracellular components that provide bones with both strength and rigidity, and thus enable bones to function in body mechanical supports and necessary locomotion process. New insights have been added to the use of different types of stem cells in bone and tooth defects over the last few years. In this concise review, we briefly describe bone structure as well as summarize recent research progress and accumulated information regarding the osteogenic differentiation of stem cells, as well as stem cell contributions to bone repair/regeneration, bone defects or disorders, and both restoration and regeneration of bones and cartilages. We also discuss advances in the osteogenic differentiation and bone regeneration of dental and periodontal stem cells as well as in stem cell contributions to dentine regeneration and tooth engineering.
Collapse
Affiliation(s)
- Eiman Abdel Meguid
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Sciences Queen's University, Belfast, Ireland, UK
| | - Yuehai Ke
- Molecular Medicine Research Centre, School of Basic Medical, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junfeng Ji
- Dr.Li Dak Sum & Yip Yio Chin Centre of Stem Cell and Regenerative Medicine School of Medicine, Zhejiang University
| | - Ahmed H K El-Hashash
- Molecular Medicine Research Centre, School of Basic Medical, Zhejiang University, Hangzhou, Zhejiang, China.,Dr.Li Dak Sum & Yip Yio Chin Centre of Stem Cell and Regenerative Medicine School of Medicine, Zhejiang University.,University of Edinburgh-Zhejiang University Institute (UoE- ZJU Institute).,Edinburgh Medical School, University of Edinburgh, UK
| |
Collapse
|
17
|
Wang W, Wang H, Zhou X, Li X, Sun W, Dellinger M, Boyce BF, Xing L. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice. J Bone Miner Res 2017; 32:939-950. [PMID: 28052488 PMCID: PMC5413433 DOI: 10.1002/jbmr.3077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 11/08/2022]
Abstract
Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Wensheng Wang
- The 1st Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hua Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Institute of Stomatology, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xing Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Dellinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Sharma J, Bhar S, Devi CS. A review on interleukins: The key manipulators in rheumatoid arthritis. Mod Rheumatol 2017; 27:723-746. [DOI: 10.1080/14397595.2016.1266071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jatin Sharma
- School of Biosciences and Technology, VIT University, Vellore, India
| | - Sutonuka Bhar
- School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Subathra Devi
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
19
|
Liu Y, Zhang T, Zhang C, Jin S, Yang R, Wang X, Jiang N, Gan Y, Kou X, Zhou Y. Aspirin Blocks Orthodontic Relapse via Inhibition of CD4+ T Lymphocytes. J Dent Res 2017; 96:586-594. [PMID: 28060561 DOI: 10.1177/0022034516685527] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immunologic response plays an important role in orthodontic tooth movement (OTM) and relapse. Nonsteroidal anti-inflammatory drugs, such as aspirin, affect immune cells and clinical orthodontic treatment. However, the mechanisms by which nonsteroidal anti-inflammatory drugs regulate immune cells to affect orthodontic relapse are unclear. In this study, male Sprague-Dawley rats were grouped as relapse and relapse + aspirin for 10 d after 14 d of OTM. Silicone impressions of the rats’ maxillary dentitions were obtained to record the distance of OTM at the indicated time point. CD4+ T lymphocytes in spleen were examined by flow cytometry. Serum levels of type 1 T-helper (Th1) cell–associated cytokines tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) were determined through enzyme-linked immunosorbent assay. The effects of aspirin on CD4+ T and Th1 cells were also analyzed in vitro. Aspirin treatment significantly reduced the relapse rate. More interestingly, injection of CD25 neutralizing antibody basiliximab or TNF-α inhibitor etanercept can significantly reduce the relapse rate as well. Correspondingly, aspirin treatment significantly accelerated the decrease of orthodontic force–induced secretion of TNF-α and IFN-γ in serum and the expression of TNF-α and IFN-γ in periodontal ligament during relapse. Furthermore, aspirin treatment in vitro significantly repressed the differentiation of CD4+ T and Th1 cells. Overall, results indicated that aspirin treatment can block orthodontic relapse by regulating Th1 cells.
Collapse
Affiliation(s)
- Y. Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - T. Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - C. Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - S.S. Jin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - R.L. Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - X.D. Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - N. Jiang
- Center Laboratory, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Y.H. Gan
- Center Laboratory, School and Hospital of Stomatology, Peking University, Beijing, China
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | - X.X. Kou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y.H. Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- Center for Craniofacial Stem Cell Research and Regeneration, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
Lee DI, Jang SK, Park DW, Kim ST, Park JS, Jo BR, Park JY, Park HY, Joo SS. Diarylheptanoid Hirsutenone Attenuates Osteoclastogenesis by Suppressing IFNγ and NF-κB Signaling in Th1 and Preosteoclastic Cells. Biol Pharm Bull 2017; 40:630-637. [DOI: 10.1248/bpb.b16-00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Do Ik Lee
- College of Pharmacy, Chung-Ang University
| | - Su Kil Jang
- College of Life Science, Gangneung-Wonju National University
| | - Da Woon Park
- College of Life Science, Gangneung-Wonju National University
| | - Seung Tae Kim
- College of Life Science, Gangneung-Wonju National University
| | - Jun Sub Park
- College of Life Science, Gangneung-Wonju National University
| | - Bo Ram Jo
- College of Life Science, Gangneung-Wonju National University
| | - Jung Youl Park
- Industry-Academic Cooperation Foundation, Hanbat National University
| | | | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University
| |
Collapse
|
21
|
Wijarnpreecha K, Thongprayoon C, Panjawatanan P, Phatharacharukul P, Ungprasert P. Hepatitis C virus infection and risk of osteoporosis: A meta-analysis. Saudi J Gastroenterol 2017; 23:216-221. [PMID: 28721974 PMCID: PMC5539674 DOI: 10.4103/sjg.sjg_452_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Hepatitis C virus (HCV) infection is one of the most common infections worldwide. Several epidemiologic studies have suggested that patients with HCV infection might be at an increased risk of osteoporosis. However, the data on this relationship remains inconclusive. This meta-analysis was conducted with the aim to summarize all available evidence. MATERIALS AND METHODS A literature search was performed using MEDLINE and EMBASE databases from inception to June 2016. Studies that reported relative risks, odd ratios (OR), or hazard ratios comparing the risk of osteoporosis among HCV-infected patients versus those without HCV infection were included. Pooled OR and 95% confidence interval (CI) were calculated using a random-effect, generic inverse variance method. RESULTS Four studies met our eligibility criteria and were included in the analysis. We found a higher risk of osteoporosis among patients with chronic HCV with OR of 1.65 (95% CI: 0.98-2.77). Sensitivity analysis including only studies with higher quality yielded a higher OR, and the result was statistically significant (OR: 2.47; 95% CI: 1.03-5.93). CONCLUSIONS Our study demonstrated a higher risk of osteoporosis among HCV-infected patients. Further studies are required to clarify how this risk should be addressed in clinical practice.
Collapse
Affiliation(s)
- Karn Wijarnpreecha
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA,Address for correspondence: Dr. Karn Wijarnpreecha, Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA. E-mail:
| | - Charat Thongprayoon
- Department of Internal Medicine, Bassett Medical Center, Cooperstown, New York, USA
| | | | | | - Patompong Ungprasert
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
De Genaro Modanese D, Tiosso-Tamburi R, Furletti de Goes VF, de Cássia Bergamaschi C, Martinez EF, Napimoga MH, Peruzzo DC. Clinical and Immunoinflammatory Evaluation of One-Stage Full-Mouth Ultrasonic Debridement as a Therapeutic Approach for Smokers With Generalized Aggressive Periodontitis: A Short-Term Follow-Up Study. J Periodontol 2016; 87:1012-21. [DOI: 10.1902/jop.2016.150632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Carvalho-Filho PC, Gomes-Filho IS, Meyer R, Olczak T, Xavier MT, Trindade SC. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis. Mediators Inflamm 2016; 2016:7465852. [PMID: 27403039 PMCID: PMC4925967 DOI: 10.1155/2016/7465852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical "keystone pathogens," affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.
Collapse
Affiliation(s)
- P. C. Carvalho-Filho
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - I. S. Gomes-Filho
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| | - R. Meyer
- Department of Biointeraction, Federal University of Bahia, 40110-100 Salvador, BA, Brazil
| | - T. Olczak
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - M. T. Xavier
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - S. C. Trindade
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|
24
|
In Vitro Cytokine Expression and In Vivo Healing and Inflammatory Response to a Collagen-Coated Synthetic Bone Filler. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6427681. [PMID: 27195293 PMCID: PMC4852337 DOI: 10.1155/2016/6427681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022]
Abstract
The goal of the present work was to investigate the relationship between in vivo healing and inflammatory response and in vitro cytokine expression by macrophages of a synthetic bone filler (25% hydroxylapatite-75% β-tricalcium phosphate) bearing a surface nanolayer of collagen. A clinically accepted, state-of-the-art xenograft material was used as a “negative control,” that is, as a material that provides the correct clinical response for the intended use. In vitro data show that both materials exert a very low stimulation of proinflammatory cytokines by macrophages, and this was confirmed by the very mild inflammatory response detected in in vivo tests of local response in a rabbit model. Also, in vitro findings suggest a different mechanism of healing for the test and the control material, with a higher regenerative activity for the synthetic, resorbable filler, as confirmed by in vivo observation and literature reports. Thus, the simple in vitro model adopted provides a reasonable forecast of in vivo results, suggesting that new product development can be guided by in vitro tuning of cell-materials interactions.
Collapse
|
25
|
Jin HM, Kee SJ, Cho YN, Kang JH, Kim MJ, Jung HJ, Park KJ, Kim TJ, Lee SI, Choi H, Koh JT, Kim N, Park YW. Dysregulated osteoclastogenesis is related to natural killer T cell dysfunction in rheumatoid arthritis. Arthritis Rheumatol 2016; 67:2639-50. [PMID: 26097058 DOI: 10.1002/art.39244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the role played by natural killer T (NKT) cells in osteoclastogenesis and their effects on inflammatory bone destruction. METHODS Patients with rheumatoid arthritis (RA) (n = 25) and healthy controls (n = 12) were enrolled in this study. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells (PBMCs) in the presence of macrophage colony-stimulating factor and RANKL. PBMCs were cultured in vitro with α-galactosylceramide (αGalCer), and proliferation indices of NKT cells were estimated by flow cytometry. In vivo effects of αGalCer-stimulated NKT cells on inflammation and bone destruction were determined in mice with collagen-induced arthritis. RESULTS In vitro osteoclastogenesis was found to be significantly inhibited by αGalCer in healthy controls but not in RA patients. Proliferative responses of NKT cells and STAT-1 phosphorylation in monocytes in response to αGalCer were impaired in RA patients. Notably, αGalCer-stimulated NKT cells inhibited osteoclastogenesis mainly via interferon-γ production in a cytokine-dependent manner (not by cell-cell contact) and down-regulated osteoclast-associated genes. Mice treated with αGalCer showed less severe arthritis and reduced bone destruction. Moreover, proinflammatory cytokine expression in arthritic joints was found to be reduced by αGalCer treatment. CONCLUSION This study primarily demonstrates that αGalCer-stimulated NKT cells have a regulatory effect on osteoclastogenesis and a protective effect against inflammatory bone destruction. However, it also shows that these effects of αGalCer are diminished in RA patients and that this is related to NKT cell dysfunction. These findings provide important information for those searching for novel therapeutic strategies to prevent bone destruction in RA.
Collapse
Affiliation(s)
- Hye-Mi Jin
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jeong-Hwa Kang
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sang-Il Lee
- Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - Hyuck Choi
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Nacksung Kim
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
26
|
Phalke SP, Chiplunkar SV. Activation status of γδ T cells dictates their effect on osteoclast generation and bone resorption. Bone Rep 2015; 3:95-103. [PMID: 28377972 PMCID: PMC5365245 DOI: 10.1016/j.bonr.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/20/2015] [Accepted: 10/14/2015] [Indexed: 01/13/2023] Open
Abstract
γδ T cells, a small subset of T cell population (5–10%), forms a bridge between innate and adaptive immunity. Although the role of γδ T cells in infectious diseases and antitumor immunity is well investigated, their role in bone biology needs to be explored. Aminobisphosphonates are used as a standard treatment modality for bone related disorders and are potent activators of γδ T cells. In the present study, we have compared the effect of “activated” and “freshly isolated” γδ T cells on osteoclast generation and function. We have shown that “activated” (αCD3/CD28 + rhIL2 or BrHPP + rhIL2 stimulated) γδ T cells inhibit osteoclastogenesis, while “freshly isolated” γδ T cells enhance osteoclast generation and function. Upon stimulation with phosphoantigen (BrHPP), “freshly isolated” γδ T cells were also able to suppress osteoclast generation and function. Cytokine profiles of these cells revealed that, “freshly isolated” γδ T cells secrete higher amounts of IL6 (pro-osteoclastogenic), while “activated” γδ T cells secrete high IFNγ levels (anti-osteoclastogenic). Neutralization of IFNγ and IL6 reversed the “inhibitory” or “stimulatory” effect of γδ T cells on osteoclastogenesis. In conclusion, we have shown that, activation status and dynamics of IL6 and IFNγ secretion dictate pro and anti-osteoclastogenic role of γδ T cells. Freshly isolated (unstimulated) γδ T cells enhance osteoclastogenesis. Activated γδ T cells inhibit osteoclast generation and function. Activated γδ T cells secrete high IFNγ, while freshly isolated secrete high IL6. Dynamics of IL6/IFNγ explains pro- and anti-osteoclastogenic effect of γδ T cells.
Collapse
Key Words
- Activation status
- BrHPP, bromohydrin pyrophosphate
- CBA, cytometric bead array
- Cytokines
- FCS, Fetal calf serum
- FH, Ficoll-Hypaque
- IFNγ, interferon gamma
- IL6, interleukin 6
- MACS, magnetic-activated cell sorting
- MFI, mean fluorescent intensity
- OAAS, osteoclast activity assay substrate
- OPCs, osteoclast precursor cells
- Osteoclasts
- PBMCs, peripheral blood mononuclear cells
- PBS, phosphate buffered saline
- Phosphoantigen
- RPMI, Roswell Park Memorial Institute medium
- SEM, standard error of mean
- TRAP, tartarate resistant acid phosphatase
- cαMEM, complete minimum essential medium with alpha modification
- rhIL2, recombinant human interleukin 2
- rhMCSF, recombinant human macrophage-colony stimulating factor
- rhRANKL, recombinant human receptor activator of nuclear factor kappa-B ligand
- αIFNγ, anti-interferon gamma
- αIL6, anti-interleukin 6
- γδ T cells
Collapse
Affiliation(s)
| | - Shubhada V. Chiplunkar
- Corresponding author at: Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.Chiplunkar LaboratoryAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi Mumbai410210India
| |
Collapse
|
27
|
Lai JC, Shoback DM, Zipperstein J, Lizaola B, Tseng S, Terrault NA. Bone Mineral Density, Bone Turnover, and Systemic Inflammation in Non-cirrhotics with Chronic Hepatitis C. Dig Dis Sci 2015; 60:1813-9. [PMID: 25563723 PMCID: PMC4797945 DOI: 10.1007/s10620-014-3507-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Whether chronic HCV, a disease characterized by systemic inflammation, impacts bone mineral density (BMD) independent of cirrhosis is unknown. AIM We aimed to evaluate the association between BMD, systemic inflammation, and markers of bone turnover in chronic HCV without cirrhosis. METHODS Non-cirrhotics, 40-60 years old, with chronic HCV underwent measurement of: (1) BMD by dual-energy X-ray absorptiometry scan and (2) serum markers of systemic inflammation and bone turnover. By Chi-squared or t test, we compared those with normal versus low BMD. RESULTS Of the 60 non-cirrhotics, 53 % were female and 53 % Caucasian. Mean (SD) age was 53.3 years (5.7), total bilirubin 0.7 mg/dL (0.3), creatinine 0.8 mg/dL (0.2), and body mass index 28.4 kg/m(2) (6.5). Low BMD was observed in 42 %: 30 % had osteopenia, 12 % had osteoporosis. Elevated tumor necrosis factor α, interleukin-6, and C-reactive protein levels were found in 26, 32, and 5 %, respectively, but did not differ by BMD group (p > 0.05). Patients with low BMD had higher serum phosphorus (4.1 vs. 3.5 mg/dL) and pro-peptide of type 1 collagen (P1NP; 73.1 vs. 47.5 ng/mL) [p < 0.05], but similar bone-specific alkaline phosphatase, serum C-telopeptide, and parathyroid hormone levels. CONCLUSIONS Low BMD is prevalent in 40- to 60-year-old non-cirrhotics with chronic HCV, but not associated with systemic inflammatory markers. Elevated P1NP levels may help to identify those at increased risk of bone complications in this population. Chronic HCV should be considered a risk factor for bone loss, prompting earlier BMD assessments in both men and women.
Collapse
Affiliation(s)
- Jennifer C Lai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Francisco, 513 Parnassus Avenue, Box 0538, San Francisco, CA, 94143, USA,
| | | | | | | | | | | |
Collapse
|
28
|
Napimoga MH, Demasi APD, Jarry CR, Ortega MC, de Araújo VC, Martinez EF. In vitro evaluation of the biological effect of SOFAT on osteoblasts. Int Immunopharmacol 2015; 26:378-83. [PMID: 25916677 DOI: 10.1016/j.intimp.2015.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 01/12/2023]
Abstract
Osteoclastogenesis is regulated by osteoblasts especially through the production of receptor activator of nuclear factor kappa-B ligand (RANKL). Immune cells present in inflamed tissues markedly increase this process by upregulating RANKL directly or by secreting proinflammatory cytokines, which stimulate RANKL expression by osteoblasts. A novel T-cell-secreted cytokine, termed secreted osteoclastogenic factor of activated T cells (SOFAT) was recently described. To better understand how SOFAT affects bone metabolism, we investigated its effect on osteoblastic cells. We demonstrate here that SOFAT did not influence MC3T3 cells viability and proliferation, evaluated by trypan blue exclusion and MTT tests, respectively. SOFAT stimulated the secretion of IL-6, IL-10 and GM-CSF in MC3T3 cells, as shown by the analysis of an inflammatory cytokines ELISA array. The upregulation of the corresponding genes was checked by qPCR. Both RANKL mRNA and protein levels did not significantly change in the presence of SOFAT, evaluated by qPCR and western blotting, respectively. In addition, analysis of a PCR array for IL6/STAT3 pathway demonstrated that SOFAT induced the expression of BCL2, IL1B, IL10, IL22, IL2RA, IL4, IL6, TNFSF10 and PIAS3, while IL2, IL21, CD4, CSF3R and TNF were repressed. Our results confirm that the SOFAT mechanism of action is RANKL-independent and indicate that, by co-opting osteoblasts to increase the production of osteoclastogenic cytokines, SOFAT may exacerbate inflammation and support osteoclast formation and bone destruction.
Collapse
Affiliation(s)
- Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil.
| | - Ana Paula Dias Demasi
- Laboratory of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Christian Rado Jarry
- Periodontal Medicine Research Group, Department of Periodontology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Mauricio Cardoso Ortega
- Periodontal Medicine Research Group, Department of Periodontology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | - Vera Cavalcanti de Araújo
- Laboratory of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas/SP, Brazil
| | | |
Collapse
|
29
|
Affiliation(s)
- Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis CA ; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| |
Collapse
|
30
|
Wang TY, Lo YL, Chou PC, Chung FT, Lin SM, Lin TY, Lin HC, Wang CH, Yu CT, Kuo HP. Associated bone mineral density and obstructive sleep apnea in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2015; 10:231-7. [PMID: 25673983 PMCID: PMC4321657 DOI: 10.2147/copd.s72099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osteoporosis is an important issue for patients with chronic obstructive pulmonary disease (COPD). Worse systemic inflammation and reduced exercise capacity have been reported in COPD patients with obstructive sleep apnea (OSA), implying that OSA may be an independent factor for osteoporosis in COPD patients. METHODS A total of 66 patients with bone mineral density (BMD) and polysomnography results from a previous COPD cohort (January 2008 to January 2013) were retrospectively enrolled. Clinical characteristics such as medication, pulmonary function, BMD, and results of polysomnography were analyzed. RESULTS The BMD in those with OSA was significantly lower than in those without OSA (-1.99±1.63 versus -1.27±1.14, P=0.045). In univariate analysis, body mass index, forced expiratory volume in 1 second, percentage of predicted value, incremental shuttle walk test, apnea-hypopnea index, and oxygen desaturation index (ODI) were significantly associated with BMD. After multivariate linear regression analysis, the ODI was still an independent factor for BMD. In addition, smaller total lung capacity is significantly associated with higher ODI and lower BMD, which implies that lower BMD might cause severer OSA via decreased total lung capacity. CONCLUSION OSA may be an independent factor for BMD in patients with COPD, which implies a possible vicious cycle takes place in these patients.
Collapse
Affiliation(s)
- Tsai-Yu Wang
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Yu-Lun Lo
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan ; Healthcare Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Pai-Chien Chou
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Fu-Tsai Chung
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Ting-Yu Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Chih-Teng Yu
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| | - Han-Pin Kuo
- Department of Thoracic Medicine, School of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taipei, Taiwan
| |
Collapse
|
31
|
Bernhardt A, Schumacher M, Gelinsky M. Formation of osteoclasts on calcium phosphate bone cements and polystyrene depends on monocyte isolation conditions. Tissue Eng Part C Methods 2014; 21:160-70. [PMID: 24919531 DOI: 10.1089/ten.tec.2014.0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMC) are an attractive source for the generation of osteoclasts in vitro, which is an important prerequisite for the examination of resorption and remodeling of biomaterials. In this study, different preparation methods are used to obtain cell populations with a rising content of CD14(+) monocytes. We wanted to address the question whether there is a correlation between content of CD14(+) cells in the preparation and functionality of formed osteoclasts. MATERIALS AND METHODS PBMC obtained by density gradient centrifugation with and without further purification by plastic adherence or immunomagnetic separation of CD14(+) cells were seeded on both cell culture polystyrene and a calcium phosphate bone cement (CPC) and cultivated under stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B ligand (RANKL). Cell cultures were characterized by histological and fluorescent staining of multinucleated cells that were positive for tartrate-resistant acid phosphatase (TRAP) activity and the presence of actin rings, respectively. Furthermore, activities of osteoclast marker enzymes TRAP and carbonic anhydrase II (CA II) were quantified. For osteoclasts cultured on CPC, resorption pits were visualized using scanning electron microscopy (SEM). RESULTS Monocytes of all preparations were successfully differentiated into multinucleated osteoclasts showing TRAP and CA II activity on both cell culture plastic and CPC. Preparations involving an additional plastic adherence step exhibited only a minor increase of TRAP and CA II activity in the second week of cultivation. Furthermore, the number of resorption pits on CPC was reduced in these cultures compared with immunomagnetically enriched monocytes and preparations without additional plastic adherence steps. Optimal results with regard to yield, number of multinucleated osteoclasts, activity of TRAP and CA II, and resorption of CPC were obtained by simple density gradient centrifugation. CONCLUSION All examined monocyte preparation protocols were suitable for the generation of osteoclasts on both polystyrene and CPC. Highly purified monocytes are not mandatory to obtain functional osteoclasts for investigation of biomaterial resorption.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Dresden, Germany
| | | | | |
Collapse
|
32
|
The physiopathological role of IL-33: new highlights in bone biology and a proposed role in periodontal disease. Mediators Inflamm 2014; 2014:342410. [PMID: 24692848 PMCID: PMC3945897 DOI: 10.1155/2014/342410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Interleukin-33 (IL-33) is a recently described member of the IL-1 family. IL-33 acts as an alarmin, chemoattractant, and nuclear factor. ST2, a member of the Toll-like receptor/IL-1R superfamily, the receptor of IL-33, triggers a plethora of downstream effectors and leads the activation of NFK-B, leading the expression of several genes. IL-33 and ST2 are expressed in the majority of cell types, and the IL-33/ST2 axis has a role in immune response, bone homeostasis, and osteoclastogenesis. Several studies show opposite roles of IL-33 in osteoclastogenesis and the implication in bone biology. Few works studied the role of IL-33 in periodontal disease, but we hypothesize a possible role of IL-33 in periodontal disease and bone loss.
Collapse
|
33
|
Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BONEKEY REPORTS 2014; 3:481. [PMID: 24466412 DOI: 10.1038/bonekey.2013.215] [Citation(s) in RCA: 430] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023]
Abstract
Coupling between bone formation and bone resorption refers to the process within basic multicellular units in which resorption by osteoclasts is met by the generation of osteoblasts from precursors, and their bone-forming activity, which needs to be sufficient to replace the bone lost. There are many sources of activities that contribute to coupling at remodeling sites, including growth factors released from the matrix, soluble and membrane products of osteoclasts and their precursors, signals from osteocytes and from immune cells and signaling taking place within the osteoblast lineage. Coupling is therefore a process that involves the interaction of a wide range of cell types and control mechanisms. As bone remodeling occurs at many sites asynchronously throughout the skeleton, locally generated activities comprise very important control mechanisms. In this review, we explore the potential roles of a number of these factors, including sphingosine-1-phosphate, semaphorins, ephrins, interleukin-6 (IL-6) family cytokines and marrow-derived factors. Their interactions achieve the essential tight control of coupling within individual remodeling units that is required for control of skeletal mass.
Collapse
|
34
|
Mathioudakis AG, Amanetopoulou SG, Gialmanidis IP, Chatzimavridou-Grigoriadou V, Siasos G, Evangelopoulou E, Mathioudakis GA. Impact of long-term treatment with low-dose inhaled corticosteroids on the bone mineral density of chronic obstructive pulmonary disease patients: aggravating or beneficial? Respirology 2013; 18:147-53. [PMID: 22985270 DOI: 10.1111/j.1440-1843.2012.02265.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by a low-level systemic chronic inflammatory activity that is responsible for many of the disease's extra-pulmonary manifestations, including osteoporosis and fragility fractures. These manifestations are also well-documented side-effects of oral corticosteroids. It was hypothesized that low levels of inhaled corticosteroids, due to their anti-inflammatory properties and their low circulating levels, might preserve the bone mineral density (BMD) of COPD patients. METHODS Two hundred and fifty-one male ex-smokers with COPD patients grouped on the basis of their diffusion capacity value as predominantly bronchitic or predominantly emphysematic and 313 male controls with similar age and smoking history were enrolled in the study. Each of the patient's categories was randomized into two separate subgroups. Patients enrolled in subgroups B(neg) (n = 91, 36%) and E(neg) (n = 37, 14.7%) were treated with long-acting β2-agonists and anticholinergics, while subgroups B(ICS) (n = 87, 35%) and E(ICS) (n = 38, 15.1%) were additionally receiving low-dose inhaled corticosteroids. Patients and controls were evaluated by clinical examination, lung function testing and BMD measurement every 6 months for 4 years. RESULTS According to the findings, emphysematic patients demonstrated an increased rate of BMD loss compared with bronchitic patients (P = 0.01). Furthermore, a reduction of the annual BMD loss in bronchitic patients on inhaled corticosteroids (P = 0.02) was measured, without a corresponding benefit for the emphysematics (P = not significant). CONCLUSIONS Long-term administration of low-dose inhaled corticosteroids decelerates the annual BMD loss in bronchitic patients, possibly by reducing both pulmonary and systemic chronic inflammation caused by COPD.
Collapse
|
35
|
Catalfamo DL, Britten TM, Storch DI, Calderon NL, Sorenson HL, Wallet SM. Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Dis 2013; 19:303-12. [PMID: 24079914 PMCID: PMC3800028 DOI: 10.1111/odi.12002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/09/2012] [Accepted: 07/15/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED Periodontal disease-associated alveolar bone loss is a comorbidity of type-2-diabetes, where the roles of osteoclasts are poorly understood. OBJECTIVE To evaluate osteoclast differentiation and function in the context of type-2-diabetes. MATERIALS AND METHODS Bone marrow-derived osteoclasts from db/db mice, a model of type-2-diabetes, as well as human osteoclasts derived from peripheral blood of individuals with type-2-diabetes were evaluated for differentiation, resorption, and soluble mediator expression. RESULTS While db/db mice were hyperglycemic at time of cell harvest, human participants were glycemically controlled. Although db/db cultures resulted in a higher number of larger osteoclasts, individual cell receptor activator of nuclear factor kappaB ligand (RANKL)-mediated bone resorption was similar to that observed in diabetes-free osteoclasts. Osteoclasts derived from individuals with type-2-diabetes differentiated similarly to controls with again no difference in bone resorbing capacity. Murine and human type-2-diabetes cultures both displayed inhibition of lipopolysaccharide (LPS)-induced deactivation and increased pro-osteoclastogenic mediator expression. CONCLUSIONS Hyperglycemia plays a role in aberrant osteoclast differentiation leading to an increased capacity for bone resorption. Osteoclasts derived from murine models of and individuals with type-2-diabetes are unable to be inhibited by LPS, again leading to increased capacity for bone resorption. Here, environmental and intrinsic mechanisms associated with the increased alveolar bone loss observed in periodontal patients with type-2-diabetes are described.
Collapse
Affiliation(s)
- Dana L. Catalfamo
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL
| | - Todd M. Britten
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Douglas I. Storch
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Nadia L. Calderon
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Heather L. Sorenson
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | - Shannon M. Wallet
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL
| |
Collapse
|
36
|
Inverse relationship between neutrophil lymphocyte ratio (NLR) and bone mineral density (BMD) in elderly people. Arch Gerontol Geriatr 2013; 57:81-5. [PMID: 23490023 DOI: 10.1016/j.archger.2013.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
Abstract
Osteoporosis is, an age related disorder, influencing elderly people worldwide. The latest data suggests that inflammation plays a critical role in bone remodeling and in pathogenesis of osteoporosis. NLR is a simple, non-invasive and cost-effective marker of inflammation in various malignancies and inflammatory diseases. The objective of the present study was to compare NLR levels in osteopenic, osteoporotic and control subjects and to assess the correlation between NLR levels and BMD. A total of 1635 patients aged 65 years or more were included in this cross-sectional study. BMD was measured by dual-energy X-ray absorptiometry (DEXA) at the lumbar spine and femur. Complete blood count (CBC), biomarkers of inflammation (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR)), glucose/lipid metabolism and established risk factors were determined. In osteoporosis group, NLR levels were found to be elevated as compared to osteopenic and control group (2.54±1.45, 2.37±1.00 and 2.18±0.85, respectively). At multivariate analysis NLR emerged as independent predictor of osteoporosis (OR=1.122; 95%=1.020-1.235, p=0.018) and there was a significant negative correlation between lumbar spine (L2-L4), femoral neck scores and NLR (r=0.348, p<0.001; r=0.264, p=0.004, respectively). Elderly people with osteoporosis have elevated NLR levels, suggesting that inflammation may play an important role in bone remodeling.
Collapse
|
37
|
Catalfamo DL, Calderon NL, Harden SW, Sorenson HL, Neiva KG, Wallet SM. Augmented LPS responsiveness in type 1 diabetes-derived osteoclasts. J Cell Physiol 2013; 228:349-61. [PMID: 22718269 DOI: 10.1002/jcp.24138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone abnormalities are frequent co-morbidities of type 1 diabetes (T1D) and are principally mediated by osteoblasts and osteoclasts which in turn are regulated by immunologic mediators. While decreased skeletal health in T1D involves alterations in osteoblast maturation and function, the effect of altered immune function on osteoclasts in T1D-associated bone and joint pathologies is less understood. Here T1D-associated osteoclast-specific differentiation and function in the presence and absence of inflammatory mediators was characterized utilizing bone marrow-derived osteoclasts (BM-OCs) isolated from non-obese diabetic (NOD) mice, a model for spontaneous autoimmune diabetes with pathology similar to individuals with T1D. Differentiation and osteoclast-mediated bone resorption were evaluated along with cathepsin K, MMP-9, and immune soluble mediator expression. The effect of lipopolysaccharide (LPS), a pro-inflammatory cytokine cocktail, and NOD-derived conditioned supernatants on BM-OC function was also determined. Although NOD BM-OCs cultures contained smaller osteoclasts, they resorbed more bone concomitant with increased cathepsin K, MMP-9, and pro-osteoclastogenic mediator expression. NOD BM-OCs also displayed an inhibition of LPS-induced deactivation that was not a result of soluble mediators produced by NOD BM-OCs, although a pro-inflammatory milieu did enhance NOD BM-OCs bone resorption. Together these data indicate that osteoclasts from a T1D mouse model hyper-respond to RANK-L resulting in excessive bone degradation via enhanced cathepsin K and MMP-9 secretion concomitant with an increased expression of pro-osteoclastic soluble mediators. Our data also suggest that inhibition of LPS-induced deactivation in NOD-derived BM-OC cultures is most likely due to NOD osteoclast responsiveness rather than LPS-induced expression of soluble mediators.
Collapse
Affiliation(s)
- Dana L Catalfamo
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
38
|
The emerging role of Interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev 2012; 24:115-21. [PMID: 23165310 DOI: 10.1016/j.cytogfr.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
Although the causes of inflammatory arthritis elude us, aberrant cytokine expression has been linked to joint pathology. Consequently, several approaches in the clinic and/or in clinical trials are targeting cytokines, e.g. tumor necrosis factor (TNF), Interleukin 23 (IL-23) and Interleukin 17 (IL-17), with the goal of antagonizing their respective biologic activity through therapeutic neutralizing antibodies. Such, cytokine signaling-dependent molecular networks orchestrate synovial inflammation on multiple levels including differentiation of myeloid cells to osteoclasts, the central cellular players in arthritis-associated pathologic bone resorption. Hence, understanding of the cellular and molecular mechanisms elicited by synovial cytokine networks that dictate recruitment, differentiation and activation of osteoclast precursors and osteoclasts, respectively, is central to shaping novel therapeutic options for inflammatory arthritis patients. In this article we are discussing the complex signaling interactions involved in the regulation of inflammatory arthritis and it's associated bone loss with a focus on Interleukin 27 (IL-27). The present review will discuss the primary bone-degrading cell, the osteoclast, and on how IL-27, directly or indirectly, modulates osteoclast activity in autoimmune-driven inflammatory joint diseases.
Collapse
|
39
|
Yoshida H, Matsui H, Murayama SY, Takada Y, Matsuo K, Takahashi T, Nakamura M, Ubukata K, Takahashi T. A CD46 transgenic mouse model for studying the histopathology of arthritis caused by subcutaneous infection with Streptococcus dysgalactiae subspecies equisimilis. J Med Microbiol 2011; 60:1860-1868. [DOI: 10.1099/jmm.0.034108-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Haruno Yoshida
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Somay Yamagata Murayama
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasunari Takada
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsufumi Takahashi
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatoku, Tokyo 108-8641, Japan
| | - Masahiko Nakamura
- Center for Clinical Pharmacy and Clinical Sciences, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatoku, Tokyo 108-8641, Japan
| | - Kimiko Ubukata
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Takahashi
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
40
|
Costa-Rodrigues J, Fernandes A, Fernandes MH. Spontaneous and induced osteoclastogenic behaviour of human peripheral blood mononuclear cells and their CD14(+) and CD14(-) cell fractions. Cell Prolif 2011; 44:410-9. [PMID: 21951284 DOI: 10.1111/j.1365-2184.2011.00768.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES Osteoclasts are descended from the CD14(+) monocyte/macrophage lineage, but influence of other haematopoietic cells on osteoclastic commitment of their precursors has remained poorly understood. In this study, osteoclastogenic behaviour of peripheral blood mononuclear cells (PBMC) and their CD14(+) and CD14(-) subpopulations has been accessed, in the absence or presence of M-CSF and RANKL. MATERIALS AND METHODS Cell cultures were characterized for presence of actin rings and vitronectin and calcitonin receptors, TRAP activity and calcium phosphate resorbing activity, expression of osteoclast-related genes and secretion of M-CSF and RANKL. RESULTS In the absence of growth factors, PBMC and CD14(+) cultures had some degree of cell survival, and some spontaneous osteoclastogenesis was observed, only on cultures of the former. Supplementation with M-CSF and RANKL significantly increased osteoclastogenic behaviour of cell cultures, particularly CD14(+) cell cultures. Nevertheless, PBMC derived a higher degree of osteoclastogenesis, either as absolute values or after normalization by protein content. It was observed that unlike CD14(+) cells, PBMC were able to express M-CSF and RANKL, which increased following growth factor treatment. Also, expression of TNF-α, GM-CSF, IL-1β, IL-6 and IL-17 was higher in PBMC cultures. Finally, CD14(-) cultures exhibited limited cell survival and did not reveal any osteoclast features. CONCLUSIONS Results show that although osteoclastic precursors reside in the CD14(+) cell subpopulation, other populations (such as CD14(-) cells) derived from PBMC, have the ability to modulate osteoclastogenesis positively.
Collapse
Affiliation(s)
- J Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
41
|
Murthy MB. Osteoimmunology - Unleashing the concepts. J Indian Soc Periodontol 2011; 15:190-8. [PMID: 22028503 PMCID: PMC3200011 DOI: 10.4103/0972-124x.85659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/07/2011] [Indexed: 01/19/2023] Open
Abstract
Osteoimmunology is an emerging field of research dedicated to the relationship between the immune processes and the bone metabolism of various inflammatory bone diseases. The regulatory mechanisms governing the osteoclast and osteoblast are critical for understanding the health and disease of the skeletal system. These interactions are either by cell to cell contact or by the secretion of immune regulatory mediators like cytokines and chemokines by immune cells that are governed by the RANKL (TRANCE)-RANK- OPG axis. TRANCE-RANK signaling has served as a cornerstone of osteoimmunology research. There is increased recognition of the importance of the inflammatory and immune responses in the pathogenesis of periodontal disease. Thus, this field has provided a framework for studying the mechanisms underlying periodontal destruction. As bone homeostasis is mainly regulated by both the immune and endocrine systems, there emerged osteoimmunoendocrinology where adipokines take the lead. This review focuses on the underlying concepts of osteoimmunology, its relation to Periodontics.
Collapse
Affiliation(s)
- M. Bhanu Murthy
- Department of Periodontics, Army College of Dental Sciences, Secunderabad, Andhra Pradesh, India
| |
Collapse
|
42
|
Ramos SDP, Ortolan GO, Dos Santos LM, Tobouti PL, Hidalgo MM, Consolaro A, Itano EN. Anti-dentine antibodies with root resorption during orthodontic treatment. Eur J Orthod 2011; 33:584-91. [PMID: 21300727 DOI: 10.1093/ejo/cjq145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to analyse serum IgG levels and salivary secretory IgA (sIgA) levels in human dentine extract (HDE) before (T0) and 6 months after (T6) orthodontic treatment and to correlate anti-HDE autoantibodies to root resorption. Fifty orthodontic patients were selected, 19 males (15.6 ± 8.5 years) and 31 females (21.4 ± 11.2 years), 19 in the mixed dentition (10.3 ± 1.9 years) and 31 in the permanent dentition (24.6 ± 9.9 years). Fifty individuals not undergoing orthodontic treatment matched by gender and age were selected as the controls. Periapical radiographs of the upper central incisors and saliva sampling were obtained of all patients at T0 and T6. Serum samples were collected from the permanent dentition patients (n = 31). Antibody levels were determined by means of immunoenzyme assay. At T6, root resorption was classified as grade 0 (no resorption), grade 1 (slight resorption), and grade 2 (moderate to severe resorption). Differences between antibody levels at T0 and T6 and among different grades of resorption were determined by paired t- and Kruskal-Wallis tests, respectively. Spearman's rank correlation coefficient was applied to detect correlation between sIgA and IgG levels, and logistic regression to determine the association of root resorption grade and the studied variables. Differences were considered significant at P < 0.05. Serum anti-HDE IgG levels decreased (P < 0.01) in grade 2 root resorption patients during treatment and was not correlated to salivary sIgA levels or other variables. Patients who had grade 2 root resorption at T6 showed higher levels of anti-HDE sIgA (P < 0.001). Anti-HDE sIgA levels at T0 and root shape were the main factors associated with the degree of root resorption. The results suggest that variations to systemic and local humoural immune response to dentine antigens may occur during orthodontic treatment. High levels of salivary sIgA before treatment were associated with more advanced lesions after 6 months of treatment.
Collapse
|
43
|
Maitra R, Follenzi A, Yaghoobian A, Montagna C, Merlin S, Cannizzo ES, Hardin JA, Cobelli N, Stanley ER, Santambrogio L. Dendritic cell-mediated in vivo bone resorption. THE JOURNAL OF IMMUNOLOGY 2010; 185:1485-91. [PMID: 20581147 DOI: 10.4049/jimmunol.0903560] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Osteoclasts are resident cells of the bone that are primarily involved in the physiological and pathological remodeling of this tissue. Mature osteoclasts are multinucleated giant cells that are generated from the fusion of circulating precursors originating from the monocyte/macrophage lineage. During inflammatory bone conditions in vivo, de novo osteoclastogenesis is observed but it is currently unknown whether, besides increased osteoclast differentiation from undifferentiated precursors, other cell types can generate a multinucleated giant cell phenotype with bone resorbing activity. In this study, an animal model of calvaria-induced aseptic osteolysis was used to analyze possible bone resorption capabilities of dendritic cells (DCs). We determined by FACS analysis and confocal microscopy that injected GFP-labeled immature DCs were readily recruited to the site of osteolysis. Upon recruitment, the cathepsin K-positive DCs were observed in bone-resorbing pits. Additionally, chromosomal painting identified nuclei from female DCs, previously injected into a male recipient, among the nuclei of giant cells at sites of osteolysis. Finally, osteolysis was also observed upon recruitment of CD11c-GFP conventional DCs in Csf1r(-/-) mice, which exhibit a severe depletion of resident osteoclasts and tissue macrophages. Altogether, our analysis indicates that DCs may have an important role in bone resorption associated with various inflammatory diseases.
Collapse
Affiliation(s)
- Radhashree Maitra
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 2010; 116:210-7. [PMID: 20304810 DOI: 10.1182/blood-2009-11-255026] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bone and immune systems are closely related through cellular and molecular interactions. Because bone-resorbing osteoclasts (OCs) are derived from the monocyte/macrophage lineage, similar to dendritic cells (DCs), we hypothesized that OCs could serve as antigen-presenting cells (APCs) to activate T cells. In this study, OCs were generated from human monocytes with stimulation by receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Results showed that, similar to DCs, OCs express major histocompatibility complex (MHC) classes I and II, and CD80, CD86, and CD40; and uptake soluble antigens. OCs secrete interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha), but not IL-12p70. OCs present allogeneic antigens and activate both CD4+ and CD8+ alloreactive T cells in an MHC-restricted fashion. OCs also present soluble protein tetanus toxoid to activate autologous CD4+ T cells. These findings indicate that OCs can function as APCs and activate both CD4+ and CD8+ T cells. Thus, our study provides new insight into the effect of OCs on the immune system and may help develop novel strategies for treating diseases such as rheumatoid arthritis and multiple myeloma, which affect both the bone and immune systems.
Collapse
|
45
|
Goswami J, Hernández-Santos N, Zuniga LA, Gaffen SL. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol 2009; 39:2831-9. [PMID: 19731364 DOI: 10.1002/eji.200939670] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Post-menopausal osteoporosis is considered to be an inflammatory process, in which numerous pro-inflammatory and T-cell-derived cytokines play a bone-destructive role. IL-17A is the signature cytokine of the pro-inflammatory Th17 population and plays dichotomous roles in diseases that affect bone turnover. Although IL-17A promotes bone loss in rheumatoid arthritis, it is protective against pathogen-induced bone destruction in a periodontal disease model. We used a model of ovariectomy-induced osteoporosis (OVX) in IL-17 receptor (IL-17RA)(-/-) mice to evaluate the role of the IL-17A in bone loss caused by estrogen deficiency. Unexpectedly, IL-17RA(-/-) mice were consistently and markedly more susceptible to OVX-induced bone loss than controls. There were no changes in prototypical Th1, Th2 or Th17 cytokines in serum that could account for increased bone loss. However, IL-17RA(-/-) mice exhibited constitutively elevated leptin, which further increased following OVX. Consistently, IL-17A and IL-17F treatment of 3T3-L1 pre-adipocytes inhibited adipogenesis, leading to reduced production of leptin. In addition to its role in regulating metabolism and satiety, leptin can regulate bone turnover. Accordingly, these data show that IL-17A negatively regulates adipogenesis and subsequent leptin expression, which correlates with increased bone destruction during OVX.
Collapse
Affiliation(s)
- Jaya Goswami
- Department of Microbiology and Immunology, University at Buffalo, SUNY, Buffalo, NY, USA
| | | | | | | |
Collapse
|
46
|
Quinn JMW, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 2009; 310:40-51. [PMID: 19056462 DOI: 10.1016/j.mce.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/29/2008] [Accepted: 11/06/2008] [Indexed: 12/27/2022]
Abstract
Osteoclast differentiation and function is regulated by cellular signals and cytokines that also play significant roles in the immune system. There is much scope, therefore, for immune cell influence on osteoclasts and bone metabolism. Many examples of this have been identified and T cells in particular are a source of factors affecting osteoclast formation and activity, a number which have either pro-osteolytic or anti-osteolytic actions depending on the cellular and microenvironmental context. For example, IL-12 and IL-18 participate in inflammatory processes that can lead to highly destructive osteolysis, yet these cytokines potently block osteoclast formation through mediation of T cells. IL-23 participates in chronic inflammatory processes, but lack of this cytokine results in reduced bone mass in mice, pointing to an influence on physiological regulation of bone mass. Such insights suggest that therapies that target immune responses may significantly influence osteolysis. Investigations into links between the immune system and bone metabolism are thus uncovering important information about the functioning of both systems.
Collapse
|
47
|
Abstract
During the past 10 years we have experienced very significant developments in our understanding of bone biology, and this has improved our abilities to both diagnose and treat patients with osteoporosis. This review covers some of the significant discoveries in bone biology that have led to a better understanding of osteoporosis, including a few of the discoveries that have been translated into new therapies to treat patients with osteoporosis and the structural deterioration of patients with inflammatory arthritis.
Collapse
Affiliation(s)
- Nancy E Lane
- Aging Center, Medicine and Rheumatology, Department of Medicine, University of California at Davis Medical School, Sacramento, CA 95817, USA
| | - Wei Yao
- Aging Center, Medicine and Rheumatology, Department of Medicine, University of California at Davis Medical School, Sacramento, CA 95817, USA
| |
Collapse
|
48
|
Penolazzi L, Lampronti I, Borgatti M, Khan MTH, Zennaro M, Piva R, Gambari R. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 8:59. [PMID: 18973662 PMCID: PMC2587459 DOI: 10.1186/1472-6882-8-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/30/2008] [Indexed: 12/19/2022]
Abstract
Background Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of Emblica officinalis fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts. Methods The effects of extracts from Emblica officinalis on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of Emblica officinalis extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, in vitro effects of Emblica officinalis extracts on NF-kB transcription factor activity were determined by gel shift experiments. Results Extracts of Emblica officinalis were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. Emblica officinalis increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that Emblica officinalis extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that Emblica officinalis extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of Emblica officinalis on the expression levels of interleukin-6, a NF-kB specific target gene. Conclusion Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of Emblica officinalis extracts as an alternative tool for therapy applied to bone diseases.
Collapse
|
49
|
Quinn JMW, Sims NA, Saleh H, Mirosa D, Thompson K, Bouralexis S, Walker EC, Martin TJ, Gillespie MT. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:5720-9. [PMID: 18832731 DOI: 10.4049/jimmunol.181.8.5720] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 stimulates the differentiation and function of the Th17 subset of CD4(+) T cells and plays a critical role in chronic inflammation. The IL-23 receptor-encoding gene is also an inflammatory disease susceptibility gene. IL-23 shares a common subunit with IL-12, a T cell-dependent osteoclast formation inhibitor, and we found that IL-23 also dose-dependently inhibited osteoclastogenesis in a CD4(+) T lymphocyte-dependent manner. When sufficiently enriched, gammadelta T cells also mediated IL-23 inhibition. Like IL-12, IL-23 acted synergistically with IL-18 to block osteoclastogenesis but, unlike IL-12, IL-23 action depended on T cell GM-CSF production. IL-23 did not mediate IL-12 action although IL-12 induced its expression. Male mice lacking IL-23 (IL-23p19(-/-)) had approximately 30% lower bone mineral density and tibial trabecular bone mass (bone volume (BV)/total volume (TV)) than wild-type littermates at 12 wk and 40% lower BV/TV at 26 wk of age; male heterozygotes also had lower bone mass. Female IL-23p19(-/-) mice also had reduced BV/TV. IL-23p19(-/-) mice had no detectable osteoclast defect in trabecular bone but IL-23p19(-/-) had thinner growth plate hypertrophic and primary spongiosa zones (and, in females, less cartilage remnants) compared with wild type. This suggests increased osteoclast action at and below the growth plate, leading to reduced amounts of mature trabecular bone. Thus, IL-23 inhibits osteoclast formation indirectly via T cells in vitro. Under nonpathological conditions (unlike inflammatory conditions), IL-23 favors higher bone mass in long bones by limiting resorption of immature bone forming below the growth plate.
Collapse
|
50
|
Abstract
A significant macrophage and T-cell infiltrate commonly occurs in inflammatory joint conditions such as rheumatoid arthritis that have significant bone destruction. Cytokines produced by activated macrophages and T cells are implicated in arthritis pathogenesis and are involved in osteoclast-mediated bone resorption. The scope of the present review is to analyze current knowledge and to provide a better understanding of how macrophage-derived factors promote the differentiation of a novel T-helper subset (Th17) that promotes osteoclast formation and activation.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Department of Immunology, Schering Plough Biopharma, 901 California Avenue, Palo Alto, CA 94304, USA.
| | | |
Collapse
|