1
|
Wu Z, Liu Z, Zhang Q, Zhang H, Cui H, Zhang Y, Liu L, Wang H, Yang J. Plasma Junctional Adhesion Molecule C Levels Are Associated with the Presence and Severity of Coronary Artery Disease. Clin Biochem 2023; 118:110605. [PMID: 37391119 DOI: 10.1016/j.clinbiochem.2023.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Junctional adhesion molecule C (JAM-C) is a novel cell adhesion molecule that belongs to the immunoglobulin superfamily. Previous studies have demonstrated the up-regulation of JAM-C in atherosclerotic vessels in human and in spontaneous early lesions of apoe-/- mice. However, insufficient research is currently available on the association of plasma JAM-C levels with the presence and severity of coronary artery disease (CAD). OBJECTIVES To explore the relationship between plasma JAM-C levels and CAD. DESIGN AND METHODS Plasma JAM-C levels were examined in 226 patients who underwent coronary angiography. Unadjusted and adjusted associations were assessed using logistic regression models. ROC curves were generated to examine the predictive performance of JAM-C. C-statistics, continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were obtained to assess the incremental predictive value of JAM-C. RESULTS Plasma JAM-C levels were significantly higher in patients with CAD and high GS. Multivariate logistic regression analysis showed that JAM-C was independent predictor for the presence and severity of CAD [adjusted OR (95% CI): 2.04(1.28-3.26) and 2.81 (2.02-3.91), respectively]. The optimal cutoff value of plasma JAM-C levels for predicting the presence and severity of CAD was 98.26 pg/ml and 122.48 pg/ml, respectively. Adding JAM-C to the baseline model improved the global performance of the model [C-statistic increased from 0.853 to 0.872, p = 0.171; continuous NRI (95% CI): 0.522 (0.242-0.802), p < 0.001; IDI (95% CI): 0.042 (0.009-0.076), p = 0.014]. CONCLUSIONS Our data showed that plasma JAM-C levels are associated with the presence and severity of CAD, suggesting that JAM-C may be a useful marker for the prevention and management of CAD.
Collapse
Affiliation(s)
- Zhenguo Wu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zaibao Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China; Department of Cardiology, People's Hospital of Qihe County, Dezhou, 251199, China
| | - Qing Zhang
- Intervention Division of Cardiology, People's Hospital of Zhoucun District, Zibo, 255399, China
| | - Hengzhe Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Huiliang Cui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yerui Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Li Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250012, China.
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
3
|
Wong M, Jia Loon C, Rajasoorya C. An Atypical Presentation of Rheumatoid Arthritis as an Asymmetrical Arthropathy. Cureus 2021; 13:e18452. [PMID: 34745777 PMCID: PMC8561669 DOI: 10.7759/cureus.18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
We report a rare entity of distinctly asymmetrical rheumatoid arthritis (RA) in a 71-year-old Chinese lady with a history of cervical radiculopathy secondary to trauma sustained during childhood. The joints on the side of the paresis were spared from severe clinical and radiological manifestations of RA. We review the plausible mechanisms that could explain the link between neurological impairment and rheumatoid joint involvement.
Collapse
Affiliation(s)
- Marc Wong
- Internal Medicine, Sengkang General Hospital, Singapore, SGP
| | - Chong Jia Loon
- Internal Medicine, Sengkang General Hospital, Singapore, SGP
| | - C Rajasoorya
- Internal Medicine, Sengkang General Hospital, Singapore, SGP
| |
Collapse
|
4
|
Hou X, Du HJ, Zhou J, Hu D, Wang YS, Li X. Role of Junctional Adhesion Molecule-C in the Regulation of Inner Endothelial Blood-Retinal Barrier Function. Front Cell Dev Biol 2021; 9:695657. [PMID: 34164405 PMCID: PMC8215391 DOI: 10.3389/fcell.2021.695657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
Although JAM-C is abundantly expressed in the retinae and upregulated in choroidal neovascularization (CNV), it remains thus far poorly understood whether it plays a role in the blood-retinal barrier, which is critical to maintain the normal functions of the eye. Here, we report that JAM-C is highly expressed in retinal capillary endothelial cells (RCECs), and VEGF or PDGF-C treatment induced JAM-C translocation from the cytoplasm to the cytomembrane. Moreover, JAM-C knockdown in RCECs inhibited the adhesion and transmigration of macrophages from wet age-related macular degeneration (wAMD) patients to and through RCECs, whereas JAM-C overexpression in RCECs increased the adhesion and transmigration of macrophages from both wAMD patients and healthy controls. Importantly, the JAM-C overexpression-induced transmigration of macrophages from wAMD patients was abolished by the administration of the protein kinase C (PKC) inhibitor GF109203X. Of note, we found that the serum levels of soluble JAM-C were more than twofold higher in wAMD patients than in healthy controls. Mechanistically, we show that JAM-C overexpression or knockdown in RCECs decreased or increased cytosolic Ca2+ concentrations, respectively. Our findings suggest that the dynamic translocation of JAM-C induced by vasoactive molecules might be one of the mechanisms underlying inner endothelial BRB malfunction, and inhibition of JAM-C or PKC in RCECs may help maintain the normal function of the inner BRB. In addition, increased serum soluble JAM-C levels might serve as a molecular marker for wAMD, and modulating JAM-C activity may have potential therapeutic value for the treatment of BRB malfunction-related ocular diseases.
Collapse
Affiliation(s)
- Xu Hou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong-Jun Du
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Hu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hayer S, Vervoordeldonk MJ, Denis MC, Armaka M, Hoffmann M, Bäcklund J, Nandakumar KS, Niederreiter B, Geka C, Fischer A, Woodworth N, Blüml S, Kollias G, Holmdahl R, Apparailly F, Koenders MI. 'SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann Rheum Dis 2021; 80:714-726. [PMID: 33602797 PMCID: PMC8142455 DOI: 10.1136/annrheumdis-2020-219247] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections (‘SMASH’) recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen–antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | | | - Marietta Armaka
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Markus Hoffmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Birgit Niederreiter
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | - George Kollias
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece.,Department of Physiology, Medical School, University of Athens, Athens, Greece
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Kostelnik KB, Barker A, Schultz C, Mitchell TP, Rajeeve V, White IJ, Aurrand-Lions M, Nourshargh S, Cutillas P, Nightingale TD. Dynamic trafficking and turnover of JAM-C is essential for endothelial cell migration. PLoS Biol 2019; 17:e3000554. [PMID: 31790392 PMCID: PMC6907879 DOI: 10.1371/journal.pbio.3000554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Junctional complexes between endothelial cells form a dynamic barrier that hinders passive diffusion of blood constituents into interstitial tissues. Remodelling of junctions is an essential process during leukocyte trafficking, vascular permeability, and angiogenesis. However, for many junctional proteins, the mechanisms of junctional remodelling have yet to be determined. Here, we used receptor mutagenesis, horseradish peroxidase (HRP), and ascorbate peroxidase 2 (APEX-2) proximity labelling, alongside light and electron microscopy (EM), to map the intracellular trafficking routes of junctional adhesion molecule-C (JAM-C). We found that JAM-C cotraffics with receptors associated with changes in permeability such as vascular endothelial cadherin (VE-Cadherin) and neuropilin (NRP)-1 and 2, but not with junctional proteins associated with the transmigration of leukocytes. Dynamic JAM-C trafficking and degradation are necessary for junctional remodelling during cell migration and angiogenesis. By identifying new potential trafficking machinery, we show that a key point of regulation is the ubiquitylation of JAM-C by the E3 ligase Casitas B-lineage lymphoma (CBL), which controls the rate of trafficking versus lysosomal degradation.
Collapse
Affiliation(s)
- Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Amy Barker
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Christopher Schultz
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Ian J. White
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Michel Aurrand-Lions
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
M T, T A, B S, Ak G, Sks S. Curcumin prophylaxis refurbishes alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia. Respir Physiol Neurobiol 2019; 274:103336. [PMID: 31778793 DOI: 10.1016/j.resp.2019.103336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
We have studied the prophylactic efficacy of curcumin to ameliorate the impairment of tight junction protein integrity and fluid clearance in lungs of rats under hypoxia. A549 cells wereexposed to 3 % O2 for 1 h, 3 h, 6 h, 12 h, 24 h and 48 h and rats were exposed to 7620 m for 6 h. NF-κB, Hif-1α and their related genes, tight junction protein (TJ) (ZO-1, JAM-C, claudin-4 and claudin-5, claudin-18) expressions were determined in A549 cells and lungs of rats by western blotting, ELISA and their activity by reporter gene assay, siRNAp65 knock out. Tissue specific localization of tight junction protein was determined by immunohistochemistry and immunoflorescence. Further transmission electron microscopy (TEM) was used to visualize the TJ structures between pulmonary epithelial cells. Blood gas and hematological parameters were also assessed. Later we checked, whether prior treatment with curcumin can restore the altered alveolar epithelial barrier integrity that is compromised through inflammatory mediators under hypoxia, A549 cells were pre-treated (1 h) with 10 μM curcumin and rats with 50 mg curcumin/kg BW and exposed to hypoxia. Curcumin pre-treatment both in vitro and in vivo showed significant changes in TJ protein integrity, attenuated NF-κB activity with reduced expression of its regulatory genes in lung tissues, serum and bronchoalveolar lavage fluid (BALF) along with stabilized HIF-1α levels under hypoxia. NF-κB inhibitors MG132, SN50 or siRNA mediated p65 knock down significantly reduced the dextran FITC influx into the lungs. The present study indicates that, curcumin prophylaxis augments alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia.
Collapse
Affiliation(s)
- Titto M
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Ankit T
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Saumya B
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Gausal Ak
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Sarada Sks
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
8
|
Hirano Y, Ode Y, Ochani M, Wang P, Aziz M. Targeting junctional adhesion molecule-C ameliorates sepsis-induced acute lung injury by decreasing CXCR4 + aged neutrophils. J Leukoc Biol 2018; 104:1159-1171. [PMID: 30088666 DOI: 10.1002/jlb.3a0218-050r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Sepsis is a severe inflammatory condition associated with high mortality. Transmigration of neutrophils into tissues increases their lifespan to promote deleterious function. Junctional adhesion molecule-C (JAM-C) plays a pivotal role in neutrophil transmigration into tissues. We aim to study the role of JAM-C on the aging of neutrophils to cause sepsis-induced acute lung injury (ALI). Sepsis was induced in C57BL/6J mice by cecal ligation and puncture (CLP) and JAM-C expression in serum was assessed. Bone marrow-derived neutrophils (BMDN) were treated with recombinant mouse JAM-C (rmJAM-C) ex vivo and their viability was assessed. CLP-operated animals were administrated with either isotype IgG or anti-JAM-C Ab at a concentration of 3 mg/kg and after 20 h, aged neutrophils (CXCR4+ ) were assessed in blood and lungs and correlated with systemic injury and inflammatory markers. Soluble JAM-C level in serum was up-regulated during sepsis. Treatment with rmJAM-C inhibited BMDN apoptosis, thereby increasing their lifespan. CLP increased the frequencies of CXCR4+ neutrophils in blood and lungs, while treatment with anti-JAM-C Ab significantly reduced the frequencies of CXCR4+ aged neutrophils. Treatment with anti-JAM-C Ab significantly reduced systemic injury markers (alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) as well as systemic and lung inflammatory cytokines (IL-6 and IL-1β) and chemokine (macrophage inflammatory protein-2). The blockade of JAM-C improved lung histology and reduced neutrophil contents in lungs of septic mice. Thus, reduction of the pro-inflammatory aged neutrophils by blockade of JAM-C has a novel therapeutic potential in sepsis-induced ALI.
Collapse
Affiliation(s)
- Yohei Hirano
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Emergency and Critical Care Medicine, Juntendo University and Urayasu Hospital, Chiba, Japan
| | - Yasumasa Ode
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
9
|
Bradfield PF, Menon A, Miljkovic-Licina M, Lee BP, Fischer N, Fish RJ, Kwak B, Fisher EA, Imhof BA. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques. PLoS One 2016; 11:e0159679. [PMID: 27442505 PMCID: PMC4956249 DOI: 10.1371/journal.pone.0159679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Paul F. Bradfield
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
- * E-mail:
| | - Arjun Menon
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Boris P. Lee
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Nicolas Fischer
- NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva, Switzerland
| | - Brenda Kwak
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Edward A. Fisher
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Beat A. Imhof
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| |
Collapse
|
10
|
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18:433-48. [PMID: 26198292 PMCID: PMC4879881 DOI: 10.1007/s10456-015-9477-2] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vasculature, which plays a critical role in the pathogenesis of several inflammatory autoimmune diseases such as rheumatoid arthritis (RA), spondyloarthropathies, psoriasis, systemic lupus erythematosus, systemic sclerosis, and atherosclerosis. In RA, excessive migration of circulating leukocytes into the inflamed joint necessitates formation of new blood vessels to provide nutrients and oxygen to the hypertrophic joint. The dominance of the pro-angiogenic factors over the endogenous angiostatic mediators triggers angiogenesis. In this review article, we highlight the underlying mechanisms by which cells present in the RA synovial tissue are modulated to secrete pro-angiogenic factors. We focus on the significance of pro-angiogenic factors such as growth factors, hypoxia-inducible factors, cytokines, chemokines, matrix metalloproteinases, and adhesion molecules on RA pathogenesis. As pro-angiogenic factors are primarily produced from RA synovial tissue macrophages and fibroblasts, we emphasize the key role of RA synovial tissue lining layer in maintaining synovitis through neovascularization. Lastly, we summarize the specific approaches utilized to target angiogenesis. We conclude that the formation of new blood vessels plays an indispensable role in RA progression. However, since the function of several pro-angiogenic mediators is cross regulated, discovering novel approaches to target multiple cascades or selecting an upstream cascade that impairs the activity of a number of pro-angiogenic factors may provide a promising strategy for RA therapy.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shalini Ravella
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shanti Virupannavar
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
12
|
Rabquer BJ, Koch AE. Microvascular clues to hemiplegia-induced asymmetric RA. Nat Rev Rheumatol 2014; 10:701-2. [DOI: 10.1038/nrrheum.2014.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Talabot-Ayer D, Martin P, Seemayer CA, Vigne S, Lamacchia C, Finckh A, Saiji E, Gabay C, Palmer G. Immune-mediated experimental arthritis in IL-33 deficient mice. Cytokine 2014; 69:68-74. [PMID: 25022964 DOI: 10.1016/j.cyto.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 03/18/2014] [Accepted: 05/12/2014] [Indexed: 11/15/2022]
Abstract
Previous work suggested implication of the interleukin (IL)-1 family cytokine IL-33, signaling through its receptor ST2, in the pathogenesis of human and mouse arthritis. In this study, we directly investigated the role of endogenous IL-33 in antigen-induced arthritis (AIA) and collagen-induced arthritis (CIA) using IL-33 KO mice. AIA was induced by injection of methylated bovine serum albumin (mBSA) into knee joints of previously immunized mice. CIA was induced by immunization with bovine type II collagen. Disease severity was evaluated by clinical and histological scoring and cellular immune responses were assessed in cultured draining lymph node cells. Our results indicate that the development of AIA or CIA, as assessed by clinical or histological evaluation, is not impaired in IL-33 deficient mice. We did not observe any consistent modifications in humoral or cellular immune responses in IL-33 KO mice, although IL-33 deficiency enhanced antigen-specific IFN-γ production, proliferation or IgG2a titers in some experiments, suggesting that endogenous IL-33 may contribute to shaping the adaptive immune response. In conclusion, our data suggest that IL-33 plays a modifying rather than a pivotal role in disease development in two models of immune-mediated arthritis.
Collapse
Affiliation(s)
- Dominique Talabot-Ayer
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Praxedis Martin
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | | | - Solenne Vigne
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Céline Lamacchia
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland
| | - Essia Saiji
- Department of Clinical Pathology, University Hospital, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva, Switzerland; Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
14
|
Leinster DA, Colom B, Whiteford JR, Ennis DP, Lockley M, McNeish IA, Aurrand-Lions M, Chavakis T, Imhof BA, Balkwill FR, Nourshargh S. Endothelial cell junctional adhesion molecule C plays a key role in the development of tumors in a murine model of ovarian cancer. FASEB J 2013; 27:4244-53. [PMID: 23825230 PMCID: PMC3819510 DOI: 10.1096/fj.13-230441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/24/2013] [Indexed: 01/05/2023]
Abstract
Junctional adhesion molecule C (JAM-C) is a transmembrane protein with significant roles in regulation of endothelial cell (EC) functions, including immune cell recruitment and angiogenesis. As these responses are important in promoting tumor growth, the role of EC JAM-C in tumor development was investigated using the ID8 syngeneic model of ovarian cancer. Within 10-15 wk, intraperitoneally injected ID8 cells form multiple tumor deposits and ascites that resemble human high-grade serous ovarian cancer. Compared to wild-type mice, survival in this model was increased in EC JAM-C knockouts (KOs; 88 vs. 96 d, P=0.04) and reduced in EC JAM-C transgenics (88 vs. 78.5 d, P=0.03), mice deficient in or overexpressing EC JAM-C, respectively. While tumor growth was significantly reduced in EC JAM-C KOs (87% inhibition at 10 wk, P<0.0005), this was not associated with alterations in tumor vessel density or immune cell infiltration. However, tumor microvessels from EC JAM-C-deficient mice exhibited reduced pericyte coverage and increased vascular leakage, suggesting a role for EC JAM-C in the development of functional tumor vessels. These findings provide evidence for a role for EC JAM-C in tumor growth and aggressiveness as well as recruitment of pericytes to newly formed blood vessels in a model of ovarian cancer.
Collapse
Affiliation(s)
- David A Leinster
- 2Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lamacchia C, Palmer G, Rodriguez E, Martin P, Vigne S, Seemayer CA, Talabot-Ayer D, Towne JE, Gabay C. The severity of experimental arthritis is independent of IL-36 receptor signaling. Arthritis Res Ther 2013; 15:R38. [PMID: 23452551 PMCID: PMC3672771 DOI: 10.1186/ar4192] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/01/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction Interleukin (IL)-36 refers to three related IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, that bind to the IL-36 receptor (IL-36R). IL-36 exerts proinflammatory effects in skin and lung and stimulates T cell responses. In the present study, we examined the expression and function of IL-36R and its ligands in experimental arthritis. Methods Collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum transfer-induced arthritis were induced according to standard protocols. Messenger RNA levels for IL-36R and its ligands in the joints of mice with CIA were determined by RT-qPCR. Mice with CIA were injected with a blocking monoclonal anti-IL-36R, a blocking anti-IL-1RI, or their isotype-matched control antibodies at the time of arthritis onset. Anti-IL-36R or control antibodies were also injected at the time of AIA induction. Finally, IL-36R-deficient mice were examined in AIA and serum transfer-induced arthritis. The development and severity of arthritis were assessed by clinical and histological scoring. Results IL-36R, IL-36Ra and IL-36γ mRNA were detected in the joints of mice with CIA, but their levels did not correlate with arthritis severity. As opposed to anti-IL-1RI antibody treatment, the injection of an anti-IL-36R antibody was devoid of effect on the development and severity of CIA. The severity of joint inflammation and structural damage in AIA was also unaltered by anti-IL-36R antibody treatment. Finally, the severity of AIA and K/BxN serum transfer-induced arthritis was similar in IL-36R-deficient and wild-type mice. Conclusions The development and severity of experimental arthritis are independent of IL-36R signaling.
Collapse
|
16
|
Colom B, Poitelon Y, Huang W, Woodfin A, Averill S, Del Carro U, Zambroni D, Brain SD, Perretti M, Ahluwalia A, Priestley JV, Chavakis T, Imhof BA, Feltri ML, Nourshargh S. Schwann cell-specific JAM-C-deficient mice reveal novel expression and functions for JAM-C in peripheral nerves. FASEB J 2011; 26:1064-76. [PMID: 22090315 PMCID: PMC3370675 DOI: 10.1096/fj.11-196220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Junctional adhesion molecule-C (JAM-C) is an adhesion molecule expressed at junctions between adjacent endothelial and epithelial cells and implicated in multiple inflammatory and vascular responses. In addition, we recently reported on the expression of JAM-C in Schwann cells (SCs) and its importance for the integrity and function of peripheral nerves. To investigate the role of JAM-C in neuronal functions further, mice with a specific deletion of JAM-C in SCs (JAM-C SC KO) were generated. Compared to wild-type (WT) controls, JAM-C SC KO mice showed electrophysiological defects, muscular weakness, and hypersensitivity to mechanical stimuli. In addressing the underlying cause of these defects, nerves from JAM-C SC KO mice were found to have morphological defects in the paranodal region, exhibiting increased nodal length as compared to WTs. The study also reports on previously undetected expressions of JAM-C, namely on perineural cells, and in line with nociception defects of the JAM-C SC KO animals, on finely myelinated sensory nerve fibers. Collectively, the generation and characterization of JAM-C SC KO mice has provided unequivocal evidence for the involvement of SC JAM-C in the fine organization of peripheral nerves and in modulating multiple neuronal responses.
Collapse
Affiliation(s)
- Bartomeu Colom
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Junctional adhesion molecules are transmembrane proteins that belong to the immunoglobulin superfamily. In addition to their localization in close proximity to the tight junctions in endothelial and epithelial cells, junctional adhesion molecules are also expressed in circulating cells that do not form junctions, such as leukocytes and platelets. As a consequence, these proteins are associated not only with the permeability-regulating barrier function of the tight junctions, but also with other biologic processes, such as inflammatory reactions, responses to vascular injury, and tumor angiogenesis. Furthermore, because of their transmembrane topology, junctional adhesion molecules are poised both for receiving inputs from the cell interior (their expression, localization, and function being regulated in response to inflammatory cytokines and growth factors) and for translating extracellular adhesive events into functional responses. This review focuses on the different roles of junctional adhesion molecules in normal and pathologic conditions, with emphasis on inflammatory reactions and vascular responses to injury.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Department of Biochemistry and Molecular Pharmacology Mario Negri Institute of Pharmacological Research, Milano, Italy.
| |
Collapse
|
18
|
Hu DM, Yang Y, Tang W. Treatment with anti-JAM-C mAb attenuates pancreatic and systemic inflammation in mice with acute necrotizing pancreatitis. Shijie Huaren Xiaohua Zazhi 2011; 19:74-77. [DOI: 10.11569/wcjd.v19.i1.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether anti-JAM-C mAb exerts a protective effect against pancreatic and systemic inflammation in mice with acute necrotizing pancreatitis (ANP).
METHODS: A mouse model of ANP was induced by intraperitoneal injection of cerulein and lipopolysaccharide. ANP mice were divided into three groups: mice undergoing an intraperitoneal injection of anti-JAM-C mAb (anti-JAM-C mAb group), ANP group and those receiving normal saline (NS group). Blood samples were taken to determine serum amylase and TNF-α concentrations, and pancreatic samples was collected for morphological study and histological scoring.
RESULTS: Compared to the ANP group, treatment with anti-JAM-C mAb significantly reduced the severity of pancreatic injury, including edema (1.9 ± 0.1 vs 2.4 ± 0.3, P < 0.05), inflammatory cell infiltration (1.5 ± 0.2 vs 2.4 ± 0.2, P < 0.05), necrosis (1.1 ± 0.2 vs 2.0 ± 0.2, P < 0.05) and hemorrhage (1.0 ± 0.2 vs 1.8 ± 0.2, P < 0.05). In addition, the wet weight, serum amylase and TNF-α concentrations in ANP group were markedly higher than NS group and anti-JAM-C mAb group (348 mg ± 27 mg vs 235 mg ± 24 mg, 286 mg ± 36 mg; 17 985 U/L ± 1 064 U/L vs 1 876 U/L ± 245 U/L, 13 870 U/L ± 988 U/L; 628 ng/L ± 48 ng/L vs 320 ng/L ± 23 ng/L, 58 ng/L ± 13 ng/L, all P < 0.05).
CONCLUSION: Treatment with anti-JAM-C mAb significantly reduces pancreatic and systemic inflammation in mice with ANP.
Collapse
|
19
|
Renshaw D, Montero-Melendez T, Dalli J, Kamal A, Brancaleone V, D'Acquisto F, Cirino G, Perretti M. Downstream gene activation of the receptor ALX by the agonist annexin A1. PLoS One 2010; 5. [PMID: 20862244 PMCID: PMC2941452 DOI: 10.1371/journal.pone.0012771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 08/18/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Our understanding of pro-resolution factors in determining the outcome of inflammation has recently gained ground, yet not many studies have investigated whether specific genes or patterns of genes, are modified by these mediators. Here, we have focussed on the glucocorticoid modulated pro-resolution factor annexin A1 (AnxA1), studying if its interaction with the ALX receptor would affect downstream genomic targets. METHODOLOGY/PRINCIPAL FINDINGS Using microarray technology in ALX transfected HEK293 cells, we discovered an over-lapping, yet distinct gene activation profile for AnxA1 compared to its N-terminal mimetic peptide Ac2-26, which may be suggestive of unique downstream inflammatory outcomes for each substance. When the up-regulated genes were explored, consistently induced was the sphingosine phosphate phosphatase-2 gene (SGPP2), involved in regulation of the sphingosine 1 phosphate chemotactic system. Up-regulation of this gene, as well as JAG1 (and down-regulation of JAM3), was confirmed using real time PCR both with transfected HEK293 cells and human peripheral blood leukocytes. Furthermore, lymph nodes taken from AnxA1(null) mice displayed lower SGPP2 gene activity. Finally, connectivity map analysis for AnxA1 and peptide Ac2-26 indicated striking similarities with known anti-inflammatory therapeutics, glucocorticoids and aspirin-like compounds, as well as with histone deacetylase inhibitors. CONCLUSION/SIGNIFICANCE We believe these new data raise the profile of AnxA1 from being solely a short-term anti-inflammatory factor, to being a 'trigger' of the endogenous pro-resolution arsenal.
Collapse
Affiliation(s)
- Derek Renshaw
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Ahmad Kamal
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Vincenzo Brancaleone
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
- Department of Experimental Pharmacology, School of Pharmacy, University of Naples, Naples, Italy
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, School of Pharmacy, University of Naples, Naples, Italy
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
The chemokine receptor CXCR2 ligand KC (CXCL1) mediates neutrophil recruitment and is critical for development of experimental Lyme arthritis and carditis. Infect Immun 2010; 78:4593-600. [PMID: 20823213 DOI: 10.1128/iai.00798-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Deletion of the chemokine receptor CXCR2 prevents the recruitment of neutrophils into tissues and subsequent development of experimental Lyme arthritis. Following footpad inoculation of Borrelia burgdorferi, the agent of Lyme disease, expression of the CXCR2 ligand KC (CXCL1) is highly upregulated in the joints of arthritis-susceptible mice and is likely to play an important role in the recruitment of neutrophils to the site of infection. To test this hypothesis, we infected C3H KC(-/-) mice with B. burgdorferi and followed the development of arthritis and carditis. Ankle swelling was significantly attenuated during the peak of arthritis in the KC(-/-) mice. Arthritis severity scores were significantly lower in the KC(-/-) mice on days 11 and 21 postinfection, with fewer neutrophils present in the inflammatory lesions. Cardiac lesions were also significantly decreased in KC(-/-) mice at day 21 postinfection. There were, however, no differences between C3H wild-type and KC(-/-) mice in spirochete clearance from tissues. Two other CXCR2 ligands, LIX (CXCL5) and MIP-2 (CXCL2), were not increased to compensate for the loss of KC, and the production of several innate cytokines was unaltered. These results demonstrate that KC plays a critical nonredundant role in the development of experimental Lyme arthritis and carditis via CXCR2-mediated recruitment of neutrophils into the site of infection.
Collapse
|
21
|
Schmitt F, Lagopoulos L, Käuper P, Rossi N, Busso N, Barge J, Wagnières G, Laue C, Wandrey C, Juillerat-Jeanneret L. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release 2010; 144:242-50. [DOI: 10.1016/j.jconrel.2010.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/05/2010] [Indexed: 02/07/2023]
|
22
|
Hu DM, Yang Y, Tang W. Expression of JAM-C in different tissues of mice with acute necrotizing pancreatitis. Shijie Huaren Xiaohua Zazhi 2010; 18:81-83. [DOI: 10.11569/wcjd.v18.i1.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of junctional adhesion molecule-C (JAM-C) in the pancreas, kidney and lung of mice with acute necrotizing pancreatitis (ANP).
METHODS: Mice were injected intraperitoneally with cerulein and lipopolysaccharide (LPS) to induce ANP. The ANP group was given 6 hourly injections of a supramaximal dose of cerulein (50 μg/kg). After the final cerulein injection, LPS was injected intraperitoneally at a dose of 10 mg/kg. The control group was given the same volume of normal saline solution. Three hours after the final injection, mice were sacrificed. Blood samples were taken from the mice after removing the eyeball to determine the serum amylase concentration, and the pancreas, kidney and lung specimens were removed for morphology study and Western blot to test the expression of JAM-C.
RESULTS: Western blot analysis showed a more than 3-fold increase in JAM-C expression levels in the pancreas, kidney and lung in the ANP group compared with the control group (0.608 ± 0.133 vs 0.176 ± 0.024, 0.718 ± 0.148 vs 0.160 ± 0.027, and 0.654 ± 0.085 vs 0.166 ± 0.039, respectively; all P < 0.05).
CONCLUSION: JAM-C expressed by endothelial cells contributes to the pathophysiology of acute necrotizing pancreatitis and may be used as a target for future clinical interventions.
Collapse
|
23
|
Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 2009; 129:178-85. [PMID: 19824913 DOI: 10.1111/j.1365-2567.2009.03174.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The NACHT, LRR and PYD domains containing protein (NALP3) inflammasome is a key regulator of interleukin-1 beta (IL-1 beta) secretion. As there is strong evidence for a pro-inflammatory role of IL-1 beta in rheumatoid arthritis (RA) and in murine models of arthritis, we explored the expression of the different components of the NALP3 inflammasome as well as other nucleotide oligomerization domain (NOD)-like receptors (NLRs) in synovium obtained from patients with RA. The expression of NLRs was also studied in fibroblast lines derived from joint tissue. By immunohistology, NALP3 and apoptosis-associated speck-like protein containing a CARD domain (ASC) were expressed in myeloid and endothelial cells and B cells. T cells expressed ASC but lacked NALP3. In synovial fibroblast lines, NALP3 expression was not detected at the RNA and protein levels and stimulation with known NALP3 agonists failed to induce IL-1 beta secretion. Interestingly, we were unable to distinguish RA from osteoarthritis synovial samples on the basis of their basal level of RNA expression of known NLR proteins, though RA samples contained higher levels of caspase-1 assayed by enzyme-linked immunosorbent assay. These results indicate that myeloid and endothelial cells are the principal sources of inflammasome-mediated IL-1 beta production in the synovium, and that synovial fibroblasts are unable to activate caspase-1 because they lack NALP3. The NALP3 inflammasome activity does not account for the difference in level of inflammation between RA and osteoarthritis.
Collapse
Affiliation(s)
- Laeticia Kolly
- Laboratoire de Rhumatologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Scheiermann C, Colom B, Meda P, Patel NSA, Voisin MB, Marrelli A, Woodfin A, Pitzalis C, Thiemermann C, Aurrand-Lions M, Imhof BA, Nourshargh S. Junctional adhesion molecule-C mediates leukocyte infiltration in response to ischemia reperfusion injury. Arterioscler Thromb Vasc Biol 2009; 29:1509-15. [PMID: 19574560 DOI: 10.1161/atvbaha.109.187559] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Junctional adhesion molecule-C (JAM-C) is an adhesion molecule that has multiple roles in inflammation and vascular biology, but many aspects of its functions under pathological conditions are unknown. Here we investigated the role of JAM-C in leukocyte migration in response to ischemia reperfusion (I/R) injury. METHODS AND RESULTS Pretreatment of mice with soluble JAM-C (sJAM-C), used as a pharmacological blocker of JAM-C-mediated reactions, significantly suppressed leukocyte migration in models of kidney and cremaster muscle I/R injury (39 and 51% inhibition, respectively). Furthermore, in the cremaster muscle model (studied by intravital microscopy), both leukocyte adhesion and transmigration were suppressed in JAM-C-deficient mice (JAM-C(-/-)) and enhanced in mice overexpressing JAM-C in their endothelial cells (ECs). Analysis of JAM-C subcellular expression by immunoelectron microscopy indicated that in I/R-injured tissues, EC JAM-C was redistributed from cytoplasmic vesicles and EC junctional sites to nonjunctional plasma membranes, a response that may account for the role of JAM-C in both leukocyte adhesion and transmigration under conditions of I/R injury. CONCLUSIONS The findings demonstrate a role for EC JAM-C in mediating leukocyte adhesion and transmigration in response to I/R injury and indicate the existence of a novel regulatory mechanism for redistribution and hence function of EC JAM-C in vivo.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, William Harvey Research Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gabriel D, Busso N, So A, van den Bergh H, Gurny R, Lange N. Thrombin-sensitive photodynamic agents: a novel strategy for selective synovectomy in rheumatoid arthritis. J Control Release 2009; 138:225-34. [PMID: 19445983 DOI: 10.1016/j.jconrel.2009.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/26/2022]
Abstract
Protease-sensitive macromolecular prodrugs have attracted interest for bio-responsive drug delivery to sites with up-regulated proteolytic activities such as inflammatory or cancerous lesions. Here we report the development of a novel polymeric photosensitizer prodrug (T-PS) to target thrombin, a protease up-regulated in synovial tissues of rheumatoid arthritis (RA) patients, for minimally invasive photodynamic synovectomy. In T-PS, multiple photosensitizer units are tethered to a polymeric backbone via short, thrombin-cleavable peptide linkers. Photoactivity of the prodrug is efficiently impaired due to energy transfer between neighbouring photosensitizer units. T-PS activation by exogenous and endogenous thrombin induced an increase in fluorescence emission by a factor of 16 after in vitro digestion and a selective fluorescence enhancement in arthritic lesions in vivo, in a collagen-induced arthritis mouse model. In vitro studies on primary human synoviocytes showed a phototoxic effect only after enzymatic digestion of the prodrug and light irradiation, thus demonstrating the functionality of T-PS induced PDT. The developed photosensitizer prodrugs combine the passive targeting capacity of macromolecular drug delivery systems with site-selective photosensitizer release and activation. They illuminate lesions with pathologically enhanced proteolytic activity and induce cell death, subsequent to irradiation.
Collapse
Affiliation(s)
- Doris Gabriel
- Laboratory of Pharmaceutics and Biopharmaceutics, Section of Pharmaceutical Sciences, University of Lausanne, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Zimmerli C, Lee BPL, Palmer G, Gabay C, Adams R, Aurrand-Lions M, Imhof BA. Adaptive immune response in JAM-C-deficient mice: normal initiation but reduced IgG memory. THE JOURNAL OF IMMUNOLOGY 2009; 182:4728-36. [PMID: 19342649 DOI: 10.4049/jimmunol.0803892] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that junctional adhesion molecule (JAM)-C-deficient mice have leukocytic pulmonary infiltrates, disturbed neutrophil homeostasis, and increased postnatal mortality. This phenotype was partially rescued when mice were housed in ventilated isolators, suggesting an inability to cope with opportunistic infections. In the present study, we further examined the adaptive immune responses in JAM-C(-/-) mice. We found that murine conventional dendritic cells express in addition to Mac-1 and CD11c also JAM-B as ligand for JAM-C. By in vitro adhesion assay, we show that murine DCs can interact with recombinant JAM-C via Mac-1. However, this interaction does not seem to be necessary for dendritic cell migration and function in vivo, even though JAM-C is highly expressed by lymphatic sinuses of lymph nodes. Nevertheless, upon immunization and boosting with a protein Ag, JAM-C-deficient mice showed decreased persistence of specific circulating Abs although the initial response was normal. Such a phenotype has also been observed in a model of Ag-induced arthritis, showing that specific IgG2a Ab titers are reduced in the serum of JAM-C(-/-) compared with wild-type mice. Taken together, these data suggest that JAM-C deficiency affects the adaptive humoral immune response against pathogens, in addition to the innate immune system.
Collapse
Affiliation(s)
- Claudia Zimmerli
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Oki K, Tsuji F, Ohashi K, Kageyama M, Aono H, Sasano M. The investigation of synovial genomic targets of bucillamine with microarray technique. Inflamm Res 2009; 58:571-84. [PMID: 19290479 DOI: 10.1007/s00011-009-0021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/16/2008] [Accepted: 02/01/2009] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1 beta-stimulated human fibroblast-like synovial cells (FLS). METHODS Normal human FLS were treated with IL-1 beta in the presence or absence of 10 and 100 microM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis. RESULTS Numerous pathways were activated by IL-1 beta stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1 beta. CONCLUSIONS Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1 beta in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.
Collapse
Affiliation(s)
- Kenji Oki
- Research & Development Center, Santen Pharmaceutical Co., Ltd., 8916-16 Takayama-cho, Ikoma-shi, Nara, 630-0101, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Immenschuh S, Naidu S, Chavakis T, Beschmann H, Ludwig RJ, Santoso S. Transcriptional induction of junctional adhesion molecule-C gene expression in activated T cells. J Leukoc Biol 2009; 85:796-803. [PMID: 19204148 DOI: 10.1189/jlb.0708422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Junctional adhesion molecule (JAM)-C is an Ig superfamily protein, which is involved in the regulation of various inflammatory and vascular events such as transendothelial leukocyte migration. JAM-C is expressed highly on the surface of endothelial cells and platelets, whereas expression in T lymphocytes is not well studied. To investigate the specific gene regulation of JAM-C in T lymphocytes, we determined JAM-C expression in quiescent and activated human T cells. Treatment with the polyclonal T cell activator PHA increased surface and total JAM-C expression in T cells time- and dose-dependently, as determined by flow cytometry and immunoblot analysis. In contrast, no up-regulation of JAM-A in activated T cells was detectable. The highest level of JAM-C up-regulation by PHA was observed in CD3(+)forkhead box P3(+) and CD4(+)CD25(high) T cells. Moreover, TCR activation with combined anti-CD3 and anti-CD28 stimulation induced JAM-C expression in T cells. JAM-C induction occurred at the mRNA level, suggesting a transcriptional regulatory mechanism of JAM-C expression. Accordingly, we studied the regulation of the human JAM-C gene promoter in transiently transfected T cells. Luciferase activity of a JAM-C promoter gene construct with three potential consensus sites for the transcription factor NFAT was induced markedly in activated T cells. Finally, pretreatment with two pharmacological inhibitors of calcineurin, cyclosporin A, and FK-506, but not with MAPK inhibitors, blocked JAM-C induction in activated T cells. In summary, JAM-C is up-regulated in activated human T lymphocytes via a transcriptional mechanism, suggesting a potential role of JAM-C in T cell functions.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.
Collapse
|
30
|
Rabquer BJ, Pakozdi A, Michel JE, Gujar BS, Haines GK, Imhof BA, Koch AE. Junctional adhesion molecule C mediates leukocyte adhesion to rheumatoid arthritis synovium. ACTA ACUST UNITED AC 2008; 58:3020-9. [PMID: 18821692 DOI: 10.1002/art.23867] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Leukocyte infiltration into the rheumatoid arthritis (RA) synovium is a multistep process in which leukocytes leave the bloodstream and invade the synovial tissue (ST). Leukocyte transendothelial migration and adhesion to RA ST requires adhesion molecules on the surface of endothelial cells and RA ST fibroblasts. This study was undertaken to investigate the role of junctional adhesion molecule C (JAM-C) in mediating leukocyte recruitment and retention in the RA joint. METHODS Immunohistologic analysis was performed on RA, osteoarthritis (OA), and normal ST samples to quantify JAM-C expression. Fibroblast JAM-C expression was also analyzed using Western blotting, cell surface enzyme-linked immunosorbent assay, and immunofluorescence. To determine the role of JAM-C in leukocyte retention in the RA synovium, in vitro and in situ adhesion assays and RA ST fibroblast transmigration assays were performed. RESULTS JAM-C was highly expressed by RA ST lining cells, and its expression was increased in OA ST and RA ST endothelial cells compared with normal ST endothelial cells. JAM-C was also expressed on the surface of OA ST and RA ST fibroblasts. Furthermore, we demonstrated that myeloid U937 cell adhesion to both OA ST and RA ST fibroblasts and to RA ST was dependent on JAM-C. U937 cell migration through an RA ST fibroblast monolayer was enhanced in the presence of neutralizing antibodies against JAM-C. CONCLUSION Our results highlight the novel role of JAM-C in recruiting and retaining leukocytes in the RA synovium and suggest that targeting JAM-C may be important in combating inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Bradley J Rabquer
- University of Michigan Medical School, Department of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Busso N, Chobaz-Péclat V, Hamilton J, Spee P, Wagtmann N, So A. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Res Ther 2008; 10:R42. [PMID: 18412955 PMCID: PMC2453761 DOI: 10.1186/ar2400] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/26/2008] [Accepted: 04/15/2008] [Indexed: 02/05/2023] Open
Abstract
Introduction Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood – in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). Methods We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1–219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. Results Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. Conclusion Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.
Collapse
Affiliation(s)
- Nathalie Busso
- Laboratoire de Rhumatologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|