1
|
Mor‐Vaknin N, Rivas M, Legendre M, Mohan S, Yuanfan Y, Mau T, Johnson A, Huang B, Zhao L, Kimura Y, Spalding SJ, Morris PW, Gottlieb BS, Onel K, Olson JC, Edelheit BS, Shishov M, Jung LK, Cassidy EA, Prahalad S, Passo MH, Beukelman T, Mehta J, Giannini EH, Adams BS, Lovell DJ, Markovitz DM. High Levels of DEK Autoantibodies in Sera of Patients With Polyarticular Juvenile Idiopathic Arthritis and With Early Disease Flares Following Cessation of Anti-Tumor Necrosis Factor Therapy. Arthritis Rheumatol 2018; 70:594-605. [PMID: 29287303 PMCID: PMC5876119 DOI: 10.1002/art.40404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The nuclear oncoprotein DEK is an autoantigen associated with juvenile idiopathic arthritis (JIA), especially the oligoarticular subtype. DEK is a secreted chemotactic factor. Abundant levels of DEK and DEK autoantibodies are found in inflamed synovium in JIA. We undertook this study to further characterize the nature of DEK autoantibodies in screening serum samples from 2 different cohorts that consisted mostly of patients with JIA. METHODS DEK autoantibody levels were analyzed in sera from 33 JIA patients, 13 patients with other inflammatory conditions, and 11 healthy controls, as well as in 89 serum samples from JIA patients receiving anti-tumor necrosis factor (anti-TNF) therapy. Recombinant His-tagged full-length DEK protein (1-375 amino acids [aa]) and the 187-375-aa and 1-350-aa His-tagged DEK fragments made in a baculovirus system were used for enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The C-terminal 25-aa fragment of DEK was expressed in a glutathione S-transferase-tagged vector. ELISA results were calculated as area under the curve by the trapezoidal rule. RESULTS DEK autoantibody levels were significantly higher in patients with polyarticular JIA than in those with oligoarticular JIA, and were higher in patients with polyarticular JIA who had more active disease after cessation of anti-TNF therapy. Immunoblotting against the C-terminal 25-aa fragment of DEK confirmed that this section of the DEK molecule is the most immunogenic domain. CONCLUSION DEK autoantibody levels are higher in patients with polyarticular JIA than in those with oligoarticular JIA, and higher in patients who have disease flares after cessation of anti-TNF therapy. The C-terminal 25-aa fragment is the most immunogenic portion of DEK. These findings are significant with respect to the nature of DEK autoantibodies, their contribution to JIA pathogenesis, and their implications for JIA management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne Johnson
- Cincinnati Children's Hospital Medical CenterCincinnatiOhio
| | - Bin Huang
- Cincinnati Children's Hospital Medical Center and University of Cincinnati School of MedicineCincinnatiOhio
| | | | - Yukiko Kimura
- Joseph M. Sanzari Children's HospitalHackensack University Medical CenterHackensackNew Jersey
| | | | | | - Beth S. Gottlieb
- Cohen Children's Medical Center, Northwell HealthHofstra Norwell School of MedicineHempsteadNew York
| | - Karen Onel
- Joseph M. Sanzari Children's HospitalHackensack University Medical CenterHackensackNew Jersey
| | | | | | | | | | | | | | | | | | - Jay Mehta
- Children's Hospital at Montefiore/Albert Einstein College of MedicineBronxNew York
| | | | | | | | | |
Collapse
|
2
|
Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, Zhu J, Lin J, Ding L, Ye Q. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget 2016; 7:23740-56. [PMID: 26988756 PMCID: PMC5029660 DOI: 10.18632/oncotarget.8060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Chick Embryo
- Chorioallantoic Membrane/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Response Elements
- Signal Transduction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Shibin Wang
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Yang Li
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jie Zhu
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
3
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
5
|
Sandén C, Gullberg U. The DEK oncoprotein and its emerging roles in gene regulation. Leukemia 2015; 29:1632-6. [PMID: 25765544 DOI: 10.1038/leu.2015.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/08/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
The DEK oncogene is highly expressed in cells from most human tissues and overexpressed in a large and growing number of cancers. It also fuses with the NUP214 gene to form the DEK-NUP214 fusion gene in a subset of acute myeloid leukemia. Originally characterized as a member of this translocation, DEK has since been implicated in epigenetic and transcriptional regulation, but its role in these processes is still elusive and intriguingly complex. Similarly multifaceted is its contribution to cellular transformation, affecting multiple cellular processes such as self-renewal, proliferation, differentiation, senescence and apoptosis. Recently, the roles of the DEK and DEK-NUP214 proteins have been elucidated by global analysis of DNA binding and gene expression, as well as multiple functional studies. This review outlines recent advances in the understanding of the basic functions of the DEK protein and its role in leukemogenesis.
Collapse
Affiliation(s)
- C Sandén
- Department of Hematology, Lund University, Lund, Sweden
| | - U Gullberg
- Department of Hematology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Waidmann S, Kusenda B, Mayerhofer J, Mechtler K, Jonak C. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis. THE PLANT CELL 2014; 26:4328-44. [PMID: 25387881 PMCID: PMC4277211 DOI: 10.1105/tpc.114.129254] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 05/19/2023]
Abstract
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Branislav Kusenda
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Juliane Mayerhofer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
7
|
Chistiakov DA, Savost’anov KV, Baranov AA. Genetic background of juvenile idiopathic arthritis. Autoimmunity 2014; 47:351-60. [DOI: 10.3109/08916934.2014.889119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Saha AK, Kappes F, Mundade A, Deutzmann A, Rosmarin DM, Legendre M, Chatain N, Al-Obaidi Z, Adams BS, Ploegh HL, Ferrando-May E, Mor-Vaknin N, Markovitz DM. Intercellular trafficking of the nuclear oncoprotein DEK. Proc Natl Acad Sci U S A 2013; 110:6847-52. [PMID: 23569252 PMCID: PMC3637753 DOI: 10.1073/pnas.1220751110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DEK is a biochemically distinct, conserved nonhistone protein that is vital to global heterochromatin integrity. In addition, DEK can be secreted and function as a chemotactic, proinflammatory factor. Here we show that exogenous DEK can penetrate cells, translocate to the nucleus, and there carry out its endogenous nuclear functions. Strikingly, adjacent cells can take up DEK secreted from synovial macrophages. DEK internalization is a heparan sulfate-dependent process, and cellular uptake of DEK into DEK knockdown cells corrects global heterochromatin depletion and DNA repair deficits, the phenotypic aberrations characteristic of these cells. These findings thus unify the extracellular and intracellular activities of DEK, and suggest that this paracrine loop involving DEK plays a role in chromatin biology.
Collapse
Affiliation(s)
- Anjan K. Saha
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen 52074, Germany
| | - Amruta Mundade
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Anja Deutzmann
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - David M. Rosmarin
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Nicolas Chatain
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen 52074, Germany
| | - Zeina Al-Obaidi
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - Barbara S. Adams
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - Hidde L. Ploegh
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142
| | | | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109
- Programs in Immunology, Cellular and Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Mor-Vaknin N, Kappes F, Dick AE, Legendre M, Damoc C, Teitz-Tennenbaum S, Kwok R, Ferrando-May E, Adams BS, Markovitz DM. DEK in the synovium of patients with juvenile idiopathic arthritis: characterization of DEK antibodies and posttranslational modification of the DEK autoantigen. ARTHRITIS AND RHEUMATISM 2011; 63:556-67. [PMID: 21280010 PMCID: PMC3117121 DOI: 10.1002/art.30138] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE DEK is a nuclear phosphoprotein and autoantigen in a subset of children with juvenile idiopathic arthritis (JIA). Autoantibodies to DEK are also found in a broad spectrum of disorders associated with abnormal immune activation. We previously demonstrated that DEK is secreted by macrophages, is released by apoptotic T cells, and attracts leukocytes. Since DEK has been identified in the synovial fluid (SF) of patients with JIA, this study was undertaken to investigate how DEK protein and/or autoantibodies may contribute to the pathogenesis of JIA. METHODS DEK autoantibodies, immune complexes (ICs), and synovial macrophages were purified from the SF of patients with JIA. DEK autoantibodies and ICs were purified by affinity-column chromatography and analyzed by 2-dimensional gel electrophoresis, immunoblotting, and enzyme-linked immunosorbent assay. DEK in supernatants and exosomes was purified by serial centrifugation and immunoprecipitation with magnetic beads, and posttranslational modifications of DEK were identified by nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS). RESULTS DEK autoantibodies and protein were found in the SF of patients with JIA. Secretion of DEK by synovial macrophages was observed both in a free form and via exosomes. DEK autoantibodies (IgG2) may activate the complement cascade, primarily recognize the C-terminal portion of DEK protein, and exhibit higher affinity for acetylated DEK. Consistent with these observations, DEK underwent acetylation on an unprecedented number of lysine residues, as demonstrated by nano-LC-MS/MS. CONCLUSION These results indicate that DEK can contribute directly to joint inflammation in JIA by generating ICs through high-affinity interaction between DEK and DEK autoantibodies, a process enhanced by acetylation of DEK in the inflamed joint.
Collapse
|
10
|
Devany M, Kappes F, Chen KM, Markovitz DM, Matsuo H. Solution NMR structure of the N-terminal domain of the human DEK protein. Protein Sci 2008; 17:205-15. [PMID: 18227428 PMCID: PMC2222715 DOI: 10.1110/ps.073244108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
The human DEK protein has a long-standing association with carcinogenesis since the DEK gene was originally identified in the t(6:9) chromosomal translocation in a subtype of patients with acute myelogenous leukemia (AML). Recent studies have partly unveiled DEK's cellular functions including apoptosis inhibition in primary cells as well as cancer cells, determination of 3' splice site of transcribed RNA, and suppression of transcription initiation by polymerase II. It has been previously shown that the N-terminal region of DEK, spanning residues 68-226, confers important in vitro and in vivo functions of DEK, which include double-stranded DNA (ds-DNA) binding, introduction of constrained positive supercoils into closed dsDNA, and apoptosis inhibition. In this paper, we describe the three-dimensional structure of the N-terminal domain of DEK (DEKntd) as determined using solution NMR. The C-terminal part of DEKntd, which contains a putative DNA-binding motif (SAF/SAP motif), folds into a helix-loop-helix structure. Interestingly, the N-terminal part of DEKntd shows a very similar structure to the C-terminal part, although the N-terminal and the C-terminal part differ distinctively in their amino acid sequences. As a consequence, the structure of DEKntd has a pseudo twofold plane symmetry. In addition, we tested dsDNA binding of DEKntd by monitoring changes of NMR chemical shifts upon addition of dsDNAs. We found that not only the C-terminal part containing the SAF/SAP motif but the N-terminal part is also involved in DEKntd's dsDNA binding. Our study illustrates a new structural variant and reveals novel dsDNA-binding properties for proteins containing the SAP/SAF motif.
Collapse
Affiliation(s)
- Matthew Devany
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Paderova J, Orlic-Milacic M, Yoshimoto M, da Cunha Santos G, Gallie B, Squire JA. Novel 6p rearrangements and recurrent translocation breakpoints in retinoblastoma cell lines identified by spectral karyotyping and mBAND analyses. ACTA ACUST UNITED AC 2008; 179:102-11. [PMID: 18036396 DOI: 10.1016/j.cancergencyto.2007.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/28/2007] [Indexed: 01/09/2023]
Abstract
Gain of the short arm of chromosome 6, usually through isochromosome 6p formation, is present in approximately 50% of retinoblastoma tumors. The minimal region of gain maps to chromosome band 6p22. Two genes, DEK and E2F3, are implicated as candidate oncogenes. However, chromosomal translocations have been overlooked as a potential mechanism of activation of oncogenes at 6p22 in retinoblastoma. Here, we report combined spectral karyotyping), 4',6-diamidino-2-phenylindole banding, mBAND, and locus-specific fluorescence in situ hybridization analyses of four retinoblastoma cell lines, RB1021, RB247c, RB383, and Y79. In RB1021 and RB247c, 6p undergoes structural rearrangements involving a common translocation breakpoint at 6p22. These data imply that 6p translocations may represent another mechanism of activation of 6p oncogene(s) in a subset of retinoblastomas, besides the copy number increase. In addition to 6p22, other recurrent translocation breakpoints identified in this study are 4p16, 11p15, 17q21.3, and 20q13. Common regions of gain map to chromosomal arms 1q, 2p, 6p, 17q, and 21q.
Collapse
Affiliation(s)
- Jana Paderova
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Maragaret Hospital, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | | | |
Collapse
|
12
|
Rodríguez-Rodero S, González S, Rodrigo L, Fernández-Morera JL, Martínez-Borra J, López-Vázquez A, López-Larrea C. Transcriptional regulation of MICA and MICB: a novel polymorphism in MICB promoter alters transcriptional regulation by Sp1. Eur J Immunol 2007; 37:1938-53. [PMID: 17557375 DOI: 10.1002/eji.200737031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I-related genes A/B (MICA/B) are ligands of the NKG2D receptor expressed on T and NK cells. Their expression is highly restricted in normal tissues, but is up-regulated in tumoral and infected cells. We show that the minimal promoter of both genes contains a CCAAT box, which binds to NF-Y, and a GC box, which binds to Sp1, Sp3 and Sp4. We also demonstrate that MICB promoter is polymorphic, showing three single nucleotide polymorphisms (C>G at +16, -341, -408) and a deletion of two base pairs at -66 (AG>--) that is located close to the CCAAT box (-70) and the GC box (-86). Transcriptional activity associated with MICB promoter variants carrying this deletion, present in the 45.3% of Spanish population, showed a remarkable decrease (18-fold, p <0.01). By functional analysis, we show that the deletion plays a critical role in MICB promoter activity by diminishing Sp1 transcriptional activation. These important variations in MICB expression among normal individuals could imply a significant difference in the natural immune response against infections or tumor transformation, and might thereby contribute to an increased aberrant immune response against self cells, providing the molecular basis for the associations of the MICB gene to different autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Unidad de Histocompatibilidad y Transplantes, Hospital Universitario Central de Asturias Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Mor-Vaknin N, Punturieri A, Sitwala K, Faulkner N, Legendre M, Khodadoust MS, Kappes F, Ruth JH, Koch A, Glass D, Petruzzelli L, Adams BS, Markovitz DM. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 2006; 26:9484-96. [PMID: 17030615 PMCID: PMC1698538 DOI: 10.1128/mcb.01030-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/13/2006] [Accepted: 09/15/2006] [Indexed: 12/17/2022] Open
Abstract
The nuclear DNA-binding protein DEK is an autoantigen that has been implicated in the regulation of transcription, chromatin architecture, and mRNA processing. We demonstrate here that DEK is actively secreted by macrophages and is also found in synovial fluid samples from patients with juvenile arthritis. Secretion of DEK is modulated by casein kinase 2, stimulated by interleukin-8, and inhibited by dexamethasone and cyclosporine A, consistent with a role as a proinflammatory molecule. DEK is secreted in both a free form and in exosomes, vesicular structures in which transcription-modulating factors such as DEK have not previously been found. Furthermore, DEK functions as a chemotactic factor, attracting neutrophils, CD8+ T lymphocytes, and natural killer cells. Therefore, the DEK autoantigen, previously described as a strictly nuclear protein, is secreted and can act as an extracellular chemoattractant, suggesting a direct role for DEK in inflammation.
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, MI 48109-0640, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Borchers AT, Selmi C, Cheema G, Keen CL, Shoenfeld Y, Gershwin ME. Juvenile idiopathic arthritis. Autoimmun Rev 2005; 5:279-98. [PMID: 16697970 DOI: 10.1016/j.autrev.2005.09.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
One of the most enigmatic problems in rheumatology has been juvenile idiopathic arthritis (JIA). Firstly, the classification has often depended on clinical features that have variations between patients. Secondly, there are different classification schemes in usage and there are few objective serologic tests that help to resolve the differences between the criteria sets. Thirdly, only recently have significant advances been made in understanding the immunology and immunopathology of JIA and, in particular, new treatment options. In this review, we will define the historical basis of JIA and emphasize not only the clinical features, but also the immunological characteristics, the pathogenesis, and treatment options. We will also discuss, in particular, quality of life, psychosocial functioning, socioeconomic outcomes and the difficult area of mortality. Finally, this review will attempt to bridge genetic observations with clinical presentation. JIA represents a relatively common syndrome of pediatric onset rheumatologic disease and a better understanding of the clinical definition, the relationship to autoimmunity, and novel treatments with biologic agents are critical for improved patient care.
Collapse
|
15
|
Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene 2004; 343:1-9. [PMID: 15563827 DOI: 10.1016/j.gene.2004.08.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/09/2004] [Accepted: 08/25/2004] [Indexed: 11/21/2022]
Abstract
The protein DEK is an abundant and ubiquitous chromatin protein in multicellular organisms (not in yeast). It is expressed in more than a million copies/nucleus of rapidly proliferating mammalian cells. DEK has two DNA binding modules of which one includes a SAP box, a sequence motif that DEK shares with a number of other chromatin proteins. DEK has no apparent affinity to specific DNA sequences, but preferentially binds to superhelical and cruciform DNA, and induces positive supercoils into closed circular DNA. The available evidence strongly suggests that DEK could function as an architectural protein in chromatin comparable to the better known classic architectural chromatin proteins, the high-mobility group or HMG proteins.
Collapse
Affiliation(s)
- Tanja Waldmann
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
16
|
Devany M, Kotharu NP, Matsuo H. Solution NMR structure of the C-terminal domain of the human protein DEK. Protein Sci 2004; 13:2252-9. [PMID: 15238633 PMCID: PMC2279821 DOI: 10.1110/ps.04797104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/03/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
The chromatin-associated protein DEK was first identified as a fusion protein in patients with a subtype of acute myelogenous leukemia. It has since become associated with diverse human ailments ranging from cancers to autoimmune diseases. Despite much research effort, the biochemical basis for these clinical connections has yet to be explained. We have identified a structural domain in the C-terminal region of DEK [DEK(309-375)]. DEK(309-375) implies clinical importance because it can reverse the characteristic abnormal DNA-mutagen sensitivity in fibroblasts from ataxia-telangiectasia (A-T) patients. We determined the solution structure of DEK(309-375) by nuclear magnetic resonance spectroscopy, and found it to be structurally homologous to the E2F/DP transcription factor family. On the basis of this homology, we tested whether DEK(309-375) could bind DNA and identified the DNA-interacting surface. DEK presents a hydrophobic surface on the side opposite the DNA-interacting surface. The structure of the C-terminal region of DEK provides insights into the protein function of DEK.
Collapse
Affiliation(s)
- Matthew Devany
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
17
|
Kappes F, Damoc C, Knippers R, Przybylski M, Pinna LA, Gruss C. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol 2004; 24:6011-20. [PMID: 15199154 PMCID: PMC480878 DOI: 10.1128/mcb.24.13.6011-6020.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/03/2004] [Indexed: 01/15/2023] Open
Abstract
We have examined the posttranslational modification of the human chromatin protein DEK and found that DEK is phosphorylated by the protein kinase CK2 in vitro and in vivo. Phosphorylation sites were mapped by quadrupole ion trap mass spectrometry and found to be clustered in the C-terminal region of the DEK protein. Phosphorylation fluctuates during the cell cycle with a moderate peak during G(1) phase. Filter binding assays, as well as Southwestern analysis, demonstrate that phosphorylation weakens the binding of DEK to DNA. In vivo, however, phosphorylated DEK remains on chromatin. We present evidence that phosphorylated DEK is tethered to chromatin throughout the cell cycle by the un- or underphosphorylated form of DEK.
Collapse
|
18
|
Kappes F, Scholten I, Richter N, Gruss C, Waldmann T. Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol 2004; 24:6000-10. [PMID: 15199153 PMCID: PMC480879 DOI: 10.1128/mcb.24.13.6000-6010.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/03/2004] [Accepted: 04/09/2004] [Indexed: 02/07/2023] Open
Abstract
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.
Collapse
|