1
|
File DM, Abdou Y, Force J, Moore DT, Anders CK, Reeder-Hayes K, Carey LA, Muss HB, Perou CM, Marcom PK, Dees EC. A Phase I Trial of Alpelisib Combined With Capecitabine in Patients With HER2-Negative Metastatic Breast Cancer. Clin Breast Cancer 2024:S1526-8209(24)00213-1. [PMID: 39217059 DOI: 10.1016/j.clbc.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Alpelisib is an oral α-specific class I PI3K inhibitor approved in combination with fulvestrant for the treatment of PIK3CA-mutated hormone receptor-positive (HR+), human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. The tolerability of this drug with the oral chemotherapy capecitabine is unknown. PATIENTS AND METHODS This phase I trial evaluated the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of alpelisib (250 mg or 300 mg daily for 3-weeks) with capecitabine (1000 mg/m2 twice daily for 2-weeks followed by a 1-week rest period) in patients with metastatic HER2-negative breast cancer, regardless of PIK3CA mutation status. RESULTS Eighteen patients were treated with alpelisib-capecitabine. Half of the patients had HR+ breast cancer, and 16 had prior systemic therapy for metastatic disease. The MTD of alpelisib was 250 mg daily in combination with capecitabine 1000 mg/m2 twice daily. DLTs included hyperglycemia, QTc prolongation, fatigue, and chest pain. The most common grade 3 adverse event (AE) was hyperglycemia (28%). No grade 4 AEs were observed. Three patients discontinued therapy due to an AE. One-third of patients required dose reduction of both alpelisib and capecitabine. Four patients experienced a partial response and 8 patients experienced stable disease. The median progression-free survival was 9.7 months (95% CI 2.8-13.5 months) and median overall survival was 18.2 months (95% CI 7.2-35.2 months). Twelve patients had PIK3CA mutation testing completed, of these 2 had known or likely deleterious PIK3CA mutation. CONCLUSION This study provides safety data for an oral combination therapy of alpelisib-capecitabine and defines tolerable doses for further study.
Collapse
Affiliation(s)
- Danielle M File
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yara Abdou
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC.
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, NC; Duke Cancer Institute, Durham, NC
| | | | - Carey K Anders
- Department of Medicine, Duke University, Durham, NC; Duke Cancer Institute, Durham, NC
| | - Katherine Reeder-Hayes
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Lisa A Carey
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Hyman B Muss
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Charles M Perou
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC; Department of Genetics, The University of North Carolina, Chapel Hill, NC
| | - P Kelly Marcom
- Department of Medicine, Duke University, Durham, NC; Duke Cancer Institute, Durham, NC
| | - E Claire Dees
- Department of Medical Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| |
Collapse
|
2
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Jayaraman S, Wu X, Kalari KR, Tang X, Kuffel MJ, Bruinsma ES, Jalali S, Peterson KL, Correia C, Kudgus RA, Kaufmann SH, Renuse S, Ingle JN, Reid JM, Ames MM, Fields AP, Schellenberg MJ, Hawse JR, Pandey A, Goetz MP. Endoxifen downregulates AKT phosphorylation through protein kinase C beta 1 inhibition in ERα+ breast cancer. NPJ Breast Cancer 2023; 9:101. [PMID: 38114522 PMCID: PMC10730845 DOI: 10.1038/s41523-023-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCβ) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCβ1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCβ1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCβ1 degradation, attenuated PKCβ1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCβ1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCβ1 as an ENDX target, indicate that PKCβ1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.
Collapse
Affiliation(s)
| | - Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mary J Kuffel
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shahrzad Jalali
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cristina Correia
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew M Ames
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL, 32224, USA
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Pu W, Wang F, Li K, Xing C, Zhuang Z, Wang H, Bian H, Zhang R, Xiao L. Novel Method for Detection of PIK3CA Mutations in Circulating Tumor DNA of Patients with Colorectal Cancer. Appl Biochem Biotechnol 2023; 195:7821-7831. [PMID: 37093531 DOI: 10.1007/s12010-023-04488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The PIK3CA mutation is considered a potential target for treatment of colorectal cancer. We evaluated a PIK3CA mutation assay on plasma cell-free DNA (cfDNA) using a newly developed PCR with restriction digestion integrated and followed by Sanger's sequencing. We analyzed PIK3CA mutation in plasma with our newly developed assays and in matching tumor tissues by routine methods. We detected the PIK3CA gene mutation status by both methods in samples from 40 colorectal cancer patients. Three H1047R mutations of PIK3CA gene were detected in the cfDNA of the 40 patients by restriction digestion PCR. Neither E545K nor H1047R mutations were detected in the cfDNA by routine PCR/sequencing. The PIK3CA H1047R and E545K mutations in cfDNA can be sensitively detected with our newly developed assays. The colorectal cancer has been used as a clinical example in testing our new assays, which indicates that the new assays may have wider applications in detecting mutations in precision oncology. Trial registration: Current Controlled Trials ChiCTR-DDT-12002848, 8 October 2012.
Collapse
Affiliation(s)
- Wangyang Pu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fengjiao Wang
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, 215004, China
| | - Kai Li
- Molecular Medicine Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hui Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Huahui Bian
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li Xiao
- Molecular Medicine Center, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
5
|
Yeom J, Cho Y, Ahn S, Jeung S. Anticancer effects of alpelisib on PIK3CA-mutated canine mammary tumor cell lines. Front Vet Sci 2023; 10:1279535. [PMID: 38033642 PMCID: PMC10684731 DOI: 10.3389/fvets.2023.1279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Canine mammary tumors (CMTs) are commonly observed in old and unspayed female dogs. Recently, dogs have been increasingly spaying at a young age to prevent mammary tumors. These CMTs require extensive local excision and exhibit a high probability of metastasis to the regional lymph nodes and lungs during malignancy. However, the molecular and biological mechanisms underlying CMT development have not been fully elucidated, and research in this area is limited. Therefore, in this study, we established new CMT cell lines by isolating cells from tumor tissues and investigated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), a target for human breast cancer. PIK3CA mutations were observed at a similar loci as in the human PIK3CA gene in half of all canine samples. Furthermore, we investigated whether alpelisib, a PIK3CA inhibitor approved by the U.S. Food and Drug Administration for human breast cancer treatment, along with fulvestrant, is effective for CMT treatment. Alpelisib exerted stronger anticancer effects on cell lines with PIK3CA mutations than on the wild-type cell lines. In conclusion, we established new CMT cell lines with PIK3CA mutations and confirmed the efficacy of alpelisib for CMT treatment in vitro.
Collapse
Affiliation(s)
- Jiah Yeom
- Research Institute, VIP Animal Medical Center, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Kim J, Chun Y, Ramirez CB, Hoffner LA, Jung S, Jang KH, Rubtsova VI, Jang C, Lee G. MAPK13 stabilization via m 6A mRNA modification limits anticancer efficacy of rapamycin. J Biol Chem 2023; 299:105175. [PMID: 37599001 PMCID: PMC10511813 DOI: 10.1016/j.jbc.2023.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
N6-adenosine methylation (m6A) is the most abundant mRNA modification that controls gene expression through diverse mechanisms. Accordingly, m6A-dependent regulation of oncogenes and tumor suppressors contributes to tumor development. However, the role of m6A-mediated gene regulation upon drug treatment or resistance is poorly understood. Here, we report that m6A modification of mitogen-activated protein kinase 13 (MAPK13) mRNA determines the sensitivity of cancer cells to the mechanistic target of rapamycin complex 1 (mTORC1)-targeting agent rapamycin. mTORC1 induces m6A modification of MAPK13 mRNA at its 3' untranslated region through the methyltransferase-like 3 (METTL3)-METTL14-Wilms' tumor 1-associating protein(WTAP) methyltransferase complex, facilitating its mRNA degradation via an m6A reader protein YTH domain family protein 2. Rapamycin blunts this process and stabilizes MAPK13. On the other hand, genetic or pharmacological inhibition of MAPK13 enhances rapamycin's anticancer effects, which suggests that MAPK13 confers a progrowth signal upon rapamycin treatment, thereby limiting rapamycin efficacy. Together, our data indicate that rapamycin-mediated MAPK13 mRNA stabilization underlies drug resistance, and it should be considered as a promising therapeutic target to sensitize cancer cells to rapamycin.
Collapse
Affiliation(s)
- Joohwan Kim
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Cuauhtemoc B Ramirez
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA; Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Lauren A Hoffner
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Sunhee Jung
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Ki-Hong Jang
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Varvara I Rubtsova
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA; School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
7
|
Moghbeli M, Taghehchian N, Akhlaghipour I, Samsami Y, Maharati A. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells: A comprehensive review. Int J Biol Macromol 2023; 248:125995. [PMID: 37499722 DOI: 10.1016/j.ijbiomac.2023.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Chemotherapy is one of the common first-line therapeutic methods in cancer patients. Despite the significant effects in improving the quality of life and survival of patients, chemo resistance is observed in a significant part of cancer patients, which leads to tumor recurrence and metastasis. Doxorubicin (DOX) and paclitaxel (PTX) are used as the first-line drugs in a wide range of tumors; however, DOX/PTX resistance limits their use in cancer patients. Considering the DOX/PTX side effects in normal tissues, identification of DOX/PTX resistant cancer patients is required to choose the most efficient therapeutic strategy for these patients. Investigating the molecular mechanisms involved in DOX/PTX response can help to improve the prognosis in cancer patients. Several cellular processes such as drug efflux, autophagy, and DNA repair are associated with chemo resistance that can be regulated by transcription factors as the main effectors in signaling pathways. Forkhead box (FOX) family of transcription factor has a key role in regulating cellular processes such as cell differentiation, migration, apoptosis, and proliferation. FOX deregulations have been associated with resistance to chemotherapy in different cancers. Therefore, we discussed the role of FOX protein family in DOX/PTX response. It has been reported that FOX proteins are mainly involved in DOX/PTX response by regulation of drug efflux, autophagy, structural proteins, and signaling pathways such as PI3K/AKT, NF-kb, and JNK. This review is an effective step in introducing the FOX protein family as the reliable prognostic markers and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans 2023; 51:1459-1472. [PMID: 37471270 PMCID: PMC10586779 DOI: 10.1042/bst20220866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The class IA PI3K signaling pathway is activated by growth factor stimulation and regulates a signaling cascade that promotes diverse events including cell growth, proliferation, migration and metabolism. PI3K signaling is one of the most commonly hyperactivated pathways in breast cancer, leading to increased tumor growth and progression. PI3K hyperactivation occurs via a number of genetic and epigenetic mechanisms including mutation or amplification of PIK3CA, the gene encoding the p110α subunit of PI3Kα, as well as via dysregulation of the upstream growth factor receptors or downstream signaling effectors. Over the past decade, extensive efforts to develop therapeutics that suppress oncogenic PI3K signaling have been undertaken. Although FDA-approved PI3K inhibitors are now emerging, their clinical success remains limited due to adverse effects and negative feedback mechanisms which contribute to their reduced efficacy. There is an emerging body of evidence demonstrating crosstalk between the PI3K and Wnt/β-catenin pathways in breast cancer. However, PI3K exhibits opposing effects on Wnt/β-catenin signaling in distinct tumor subsets, whereby PI3K promotes Wnt/β-catenin activation in ER+ cancers, but paradoxically suppresses this pathway in ER- breast cancers. This review discusses the molecular mechanisms for PI3K-Wnt crosstalk in breast cancer, and how Wnt-targeted therapies have the potential to contribute to treatment regimens for breast cancers with PI3K dysregulation.
Collapse
Affiliation(s)
- Samuel J. Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Ooms
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
Cho S, Chun Y, He L, Ramirez CB, Ganesh KS, Jeong K, Song J, Cheong JG, Li Z, Choi J, Kim J, Koundouros N, Ding F, Dephoure N, Jang C, Blenis J, Lee G. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell 2023; 83:3010-3026.e8. [PMID: 37595559 PMCID: PMC10494788 DOI: 10.1016/j.molcel.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/23/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.
Collapse
Affiliation(s)
- Sungyun Cho
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yujin Chun
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Long He
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cuauhtemoc B Ramirez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kripa S Ganesh
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kyungjo Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Junho Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhongchi Li
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea; Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joohwan Kim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nikos Koundouros
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, Center for Synthetic Biology, and Center for Neural Circuit Mapping, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - John Blenis
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Kuo YH, Lai TC, Chang CH, Hsieh HC, Yang FM, Hu MC. 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) induces apoptosis in breast cancer cells through inhibiting of Mcl-1 expression. Sci Rep 2023; 13:12621. [PMID: 37537243 PMCID: PMC10400577 DOI: 10.1038/s41598-023-39340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
The effective treatment of breast cancer remains a profound clinical challenge, especially due to drug resistance and metastasis which unfortunately arise in many patients. The transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), as a selective inhibitor of cyclin-dependent kinase 9, was shown to be effective in inducing apoptosis in various hematopoietic malignancies. However, the anticancer efficacy of DRB against breast cancer is still unclear. Herein, we demonstrated that administration of DRB to the breast cancer cell line led to the inhibition of cellular proliferation and induction of the typical signs of apoptotic cells, including the increases in Annexin V-positive cells, DNA fragmentation, and activation of caspase-7, caspase-9, and poly (ADP ribose) polymerase (PARP). Treatment of DRB resulted in a rapid decline in the myeloid cell leukemia 1 (Mcl-1) protein, whereas levels of other antiapoptotic proteins did not change. Overexpression of Mcl-1 decreased the DRB-induced PARP cleavage, whereas knockdown of Mcl-1 enhanced the effects of DRB on PARP activation, indicating that loss of Mcl-1 accounts for the DRB-mediated apoptosis in MCF-7 cells, but not in T-47D. Furthermore, we found that co-treatment of MCF-7 cells with an inhibitor of AKT (LY294002) or an inhibitor of the proteasome (MG-132) significantly augmented the DRB-induced apoptosis. These data suggested that DRB in combination with LY294002 or MG-132 may have a greater therapeutic potency against breast cancer cells.
Collapse
Affiliation(s)
- Yi-Hsuan Kuo
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Tsai-Chun Lai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chia-Hsin Chang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Han-Ching Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Feng-Ming Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
11
|
Ma S, Cho S, Sahasranaman S, Zhao W, Pang J, Ding X, Dean B, Wang B, Hsu JY, Ware J, Salphati L. Absorption, Metabolism, and Excretion of Taselisib (GDC-0032), a Potent β-Sparing PI3K Inhibitor in Rats, Dogs, and Humans. Drug Metab Dispos 2023; 51:436-450. [PMID: 36623882 DOI: 10.1124/dmd.122.001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Taselisib (also known as GDC-0032) is a potent and selective phosphoinositide 3-kinase (PI3K) inhibitor that displays greater selectivity for mutant PI3Kα than wild-type PI3Kα To better understand the absorption, distribution, metabolism, and excretion properties of taselisib, mass balance studies were conducted following single oral doses of [14C]taselisib in rats, dogs, and humans. Absolute bioavailability (ABA) of taselisib in humans was determined by oral administration of taselisib at the therapeutic dose followed by intravenous dosing of [14C]taselisib as a microtracer. The ABA in humans was 57.4%. Absorption of taselisib was rapid in rats and dogs and moderately slow in humans. The recovery of radioactivity in excreta was high (>96%) in the three species where feces was the major route of excretion. Taselisib was the major circulating component in the three species with no metabolite accounting for >10% of the total drug-derived material. The fraction absorbed of taselisib was 35.9% in rats and 71.4% in dogs. In rats, absorbed drug underwent moderate to extensive metabolism and biliary excretion of taselisib was minor. In dog, biliary excretion and metabolism were major clearance pathways. In humans, 84.2% of the dose was recovered as the parent drug in excreta indicating that metabolism played a minor role in the drug's clearance. Major metabolism pathways were oxidation and amide hydrolysis in the three species while methylation was another prominent metabolism pathway in dogs. The site of methylation was identified on the triazole moiety. In vitro experiments characterized that the N-methylation was dog-specific and likely mediated by a thiol methyltransferase. SIGNIFICANCE STATEMENT: This study provides a comprehensive description of the absorption, distribution, and metabolism and pharmacokinetic properties of taselisib in preclinical species and humans. This study demonstrated the importance of oral bioavailability results for understanding taselisib's clearance pathways. The study also describes the identification and characterization of a unique dog-specific N-methylation metabolite of taselisib and the enzyme mediating N-methylation in vitro.
Collapse
Affiliation(s)
- Shuguang Ma
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Srikumar Sahasranaman
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Weiping Zhao
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Jodie Pang
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Xiao Ding
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Brian Dean
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Bin Wang
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Jerry Y Hsu
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Joseph Ware
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| | - Laurent Salphati
- Department of Drug Metabolism and Pharmacokinetics (S.M., S.C., W.Z., J.P., X.D., B.D., L.S.) and Department of Clinical Pharmacology (S.S., J.Y.H., J.W.), Genentech, Inc., South San Francisco, California; and XenoBiotic Laboratories (B.W.), Inc., Plainsboro, New Jersey
| |
Collapse
|
12
|
Understanding of molecular basis of histological graded horn cancer by transcriptome profiling. Gene 2023; 857:147196. [PMID: 36641075 DOI: 10.1016/j.gene.2023.147196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Horn cancer is most devastating and prominent cancer in Indian zebu cattle that affects socio-economic condition of small-scale farmers who depends on their cattle for farm work. Development in the field for genomics through next generation sequencing and bioinformatics advancement have helped to identify genes which have a role in horn cancer development. Histopathological examination of cancerous tissues of horn revealed myxomatous changes, well, moderate and poorly differentiated squamous cell carcinoma. Differential gene expression analysis showed 40, 11, 66 and 29 upregulated genes and 10, 14, 08 and 07 down-regulated genes in myxomatous, well, moderate and poorly differentiated squamous cell carcinoma as compared to normal. Significant differentially expressed genes are related to cell development, cell proliferation, cell-cell communication, cell signaling and angiogenesis which are linked to Akt pathway, mTOR pathway and Wnt pathway. Activity of these genes and related pathways have already been established about their role in development of cancer. Among the candidate genes; keratin family, keratin family related gene, chemokine signaling and cytokines signaling associated genes could be a prominent target for the development of stage specific prognosis marker after further detailed study at large sample population level. CSTA, PTN, SPP1 genes have upregulation in all stages of cancer and they have enrolled as biomarkers for horn cancer.
Collapse
|
13
|
Hany D, Zoetemelk M, Bhattacharya K, Nowak-Sliwinska P, Picard D. Network-informed discovery of multidrug combinations for ERα+/HER2-/PI3Kα-mutant breast cancer. Cell Mol Life Sci 2023; 80:80. [PMID: 36869202 PMCID: PMC10032341 DOI: 10.1007/s00018-023-04730-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/20/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
Breast cancer is a persistent threat to women worldwide. A large proportion of breast cancers are dependent on the estrogen receptor α (ERα) for tumor progression. Therefore, targeting ERα with antagonists, such as tamoxifen, or estrogen deprivation by aromatase inhibitors remain standard therapies for ERα + breast cancer. The clinical benefits of monotherapy are often counterbalanced by off-target toxicity and development of resistance. Combinations of more than two drugs might be of great therapeutic value to prevent resistance, and to reduce doses, and hence, decrease toxicity. We mined data from the literature and public repositories to construct a network of potential drug targets for synergistic multidrug combinations. With 9 drugs, we performed a phenotypic combinatorial screen with ERα + breast cancer cell lines. We identified two optimized low-dose combinations of 3 and 4 drugs of high therapeutic relevance to the frequent ERα + /HER2-/PI3Kα-mutant subtype of breast cancer. The 3-drug combination targets ERα in combination with PI3Kα and cyclin-dependent kinase inhibitor 1 (p21). In addition, the 4-drug combination contains an inhibitor for poly (ADP-ribose) polymerase 1 (PARP1), which showed benefits in long-term treatments. Moreover, we validated the efficacy of the combinations in tamoxifen-resistant cell lines, patient-derived organoids, and xenograft experiments. Thus, we propose multidrug combinations that have the potential to overcome the standard issues of current monotherapies.
Collapse
Affiliation(s)
- Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21311, Egypt
| | - Marloes Zoetemelk
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland
| | - Patrycja Nowak-Sliwinska
- Groupe de Pharmacologie Moléculaire, Section des Sciences Pharmaceutiques, Université de Genève, Genève, Switzerland
- Institut des Sciences Pharmaceutiques de Suisse Occidentale, Université de Genève, Genève, Switzerland
- Centre de Recherche Translationnelle en Onco-hématologie, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, 1211, Genève 4, Switzerland.
| |
Collapse
|
14
|
Wu K, Rodrigues L, Post G, Harvey G, White M, Miller A, Lambert L, Lewis B, Lopes C, Zou J. Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs. NPJ Precis Oncol 2023; 7:8. [PMID: 36658200 PMCID: PMC9852553 DOI: 10.1038/s41698-023-00346-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Spontaneous tumors in canines share significant genetic and histological similarities with human tumors, positioning them as valuable models to guide drug development. However, current translational studies have limited real world evidence as cancer outcomes are dispersed across veterinary clinics and genomic tests are rarely performed on dogs. In this study, we aim to expand the value of canine models by systematically characterizing genetic mutations in tumors and their response to targeted treatments. In total, we collect and analyze survival outcomes for 2119 tumor-bearing dogs and the prognostic effect of genomic alterations in a subset of 1108 dogs. Our analysis identifies prognostic concordance between canines and humans in several key oncogenes, including TP53 and PIK3CA. We also find that several targeted treatments designed for humans are associated with a positive prognosis when used to treat canine tumors with specific genomic alterations, underscoring the value of canine models in advancing drug discovery for personalized oncology.
Collapse
Affiliation(s)
- Kevin Wu
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| | | | | | | | | | | | | | | | | | - James Zou
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| |
Collapse
|
15
|
An SJ, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proc Natl Acad Sci U S A 2022; 119:e2208947119. [PMID: 36417441 PMCID: PMC9860279 DOI: 10.1073/pnas.2208947119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e., the docking protein Gab1, the PI-3K/AKT pathway in epithelial cells is regulated by the exocyst complex, which is a vesicle tether that is essential for exocytosis. Using live-cell imaging, we demonstrate that PI(3,4,5)P3 levels fluctuate at the membrane on a minutes time scale and that these fluctuations are associated with local PI(3,4,5)P3 increases at sites where recycling vesicles undergo exocytic fusion. Supporting a role for exocytosis in PI(3,4,5)P3 generation, acute promotion of exocytosis by optogenetically driving exocyst-mediated vesicle tethering up-regulates PI(3,4,5)P3 production and AKT activation. Conversely, acute inhibition of exocytosis using Endosidin2, a small-molecule inhibitor of the exocyst subunit Exo70 (also designated EXOC7), or inhibition of exocyst function by siRNA-mediated knockdown of the exocyst subunit Sec15 (EXOC6), impairs PI(3,4,5)P3 production and AKT activation induced by EGF stimulation of epithelial cells. Moreover, prolonged inhibition of EGF signaling by EGFR tyrosine kinase inhibitors results in spontaneous reactivation of AKT without a concomitant relief of EGFR inhibition. However, this reactivation can be negated by acutely inhibiting the exocyst. These experiments demonstrate that exocyst-mediated exocytosis-by regulating PI(3,4,5)P3 levels at the plasma membrane-subserves activation of the PI-3K/AKT pathway by EGFR in epithelial cells.
Collapse
Affiliation(s)
- Seong J. An
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| | - Alexander Anneken
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhiqun Xi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Changseon Choi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Joseph Schlessinger
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
| | - Derek Toomre
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| |
Collapse
|
16
|
PIK3CAMutations in Breast Cancer Subtypes Other Than HR-Positive/HER2-Negative. J Pers Med 2022; 12:jpm12111793. [PMID: 36579519 PMCID: PMC9694420 DOI: 10.3390/jpm12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a key role in cancer, influencing growth, proliferation, and survival of tumor cells. PIK3CA mutations are generally oncogenic and responsible for uncontrolled cellular growth. PI3K inhibitors (PI3Ki) can inhibit the PI3K/AKT/mTOR pathway, although burdened by not easily manageable toxicity. Among PI3Ki, alpelisib, a selective p110α inhibitor, is approved for the treatment of hormone receptor (HR)+/HER2- PIK3CA mutant metastatic breast cancer (BC) that has progressed to a first line endocrine therapy. PIK3CA mutations are also present in triple negative BC (TNBC) and HER2+ BC, although the role of PI3K inhibition is not well established in these subtypes. In this review, we go through the PI3K/AKT/mTOR pathway, describing most common mutations found in PI3K genes and how they can be detected. We describe the available biological and clinical evidence of PIK3CA mutations in breast cancers other than HR+/HER2-, summarizing clinical trials investigating PI3Ki in these subtypes.
Collapse
|
17
|
Radwan IT, Elwahy AH, Darweesh AF, Sharaky M, Bagato N, Khater HF, Salem ME. Design, synthesis, docking study, and anticancer evaluation of novel bis-thiazole derivatives linked to benzofuran or benzothiazole moieties as PI3k inhibitors and apoptosis inducers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Fang J, Li K, Huang C, Xue H, Ni Q. LncRNA TTN-AS1 confers tamoxifen resistance in breast cancer via sponging miR-107 to modulate PI3K/AKT signaling pathway. Am J Transl Res 2022; 14:2267-2279. [PMID: 35559394 PMCID: PMC9091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/02/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Tamoxifen resistance of breast cancer (BC) is a significant hindrance in clinical therapy. The long-noncoding RNA (lncRNA) TTN-AS1 has been reported as a crucial tumor promoting factor in various cancers. In this study, we set out to discover the specific pathologic regulatory mechanisms of tamoxifen-resistance in breast cancer. METHODS MTT assay was conducted to evaluate the cell viability of the breast cancer cell lines MCF-7 and MCF-7/TAM. QRT-PCR and western blot assay were performed to estimate the expression of TTN-AS1, miR-107 and related proteins. Flow cytometry was conducted to identify degree of apoptosis and cell cycle. The invasive ability was estimated by transwell chamber assay. RESULTS Our findings revealed that TTN-AS1 can enhance tamoxifen-resistance in BC cells and augment the invasive ability of tamoxifen-resistant breast cancer cells by down-regulating miR-107, and thereby encourage the development of drug-resistant BC. Further investigation indicates that lncRNA TTN-AS1 worsens the course of tamoxifen-resistant BC by regulating zinc and ring finger 2 (ZNRF2) via miR-107 and activating the PI3K/AKT pathway. CONCLUSION Our findings suggest that the lncRNA TTN-AS1 can encourage tamoxifen-resistance in BC by modulating the miR-107/ZNRF2 axis and stimulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jun Fang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Kun Li
- Department of Thyroid and Breast Surgery, Kunshan Hospital of Traditional Chinese MedicineKunshan 215300, Jiangsu, PR China
- Kunshan Affiliated Hospital of Nanjing University of Chinese MedicineKunshan 215300, Jiangsu, PR China
| | - Chen Huang
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Huimin Xue
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong UniversityNantong 226001, Jiangsu, PR China
| |
Collapse
|
19
|
Migliaccio I, Paoli M, Risi E, Biagioni C, Biganzoli L, Benelli M, Malorni L. PIK3CA co-occurring mutations and copy-number gain in hormone receptor positive and HER2 negative breast cancer. NPJ Breast Cancer 2022; 8:24. [PMID: 35181669 PMCID: PMC8857304 DOI: 10.1038/s41523-022-00382-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
We aim to elucidate the prognostic value of PIK3CA mutations and copy number (CN) gain (PIK3CA-mut/gain) in hormone receptor-positive and HER2-negative (HR + /HER2−) breast cancer (BC). We analyzed primary HR + /HER2− BC from three publicly available datasets comprising over 2000 samples and assessed the associations with tumoral and clinical characteristics and outcome. Clinical benefit (CB) in alpelisib-treated patients from two studies including 46 patients was analyzed. About 8–10% of HR + /HER2− primary BC had PIK3CA-mut/gain. In two of the datasets analyzed, among patients with PIK3CA mutant tumors, those with mut/gain had significantly worse outcome compared to those with CN neutral (PIK3CA-mut/neut) and PIK3CA-mut/gain remained an independent prognostic factor. CB of alpelisib-treated patients with PIK3CA-mut/gain and PIK3CA-mut/neut tumors was comparable. PIK3CA CN might help clarifying the prognostic and predictive role of PIK3CA mutations. Further studies are warranted.
Collapse
Affiliation(s)
- Ilenia Migliaccio
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.
| | - Marta Paoli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Emanuela Risi
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.,"Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Laura Biganzoli
- "Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| | - Luca Malorni
- "Sandro Pitigliani" Translational Research Unit, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy.,"Sandro Pitigliani" Department of Medical Oncology, Hospital of Prato, Azienda USL Toscana Centro, 59100, Prato, Italy
| |
Collapse
|
20
|
Granqvist V, Holmgren C, Larsson C. The combination of TRAIL and the Smac mimetic LCL-161 induces an irreversible phenotypic change of MCF-7 breast cancer cells. Exp Mol Pathol 2022; 125:104739. [PMID: 35007560 DOI: 10.1016/j.yexmp.2021.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy affecting women. Although the prognosis generally is good, a substantial number of patients still suffer from relapse, emphasizing the need for novel treatments. Smac mimetics were developed to facilitate cell death by blocking inhibitor of apoptosis proteins (IAPs). It has been suggested that TNF-related apoptosis inducing ligand (TRAIL) can be used together with Smac mimetics to induce cancer cell death. METHODS Cell viability was studied with Trypan blue staining and Annexin V assay, siRNA was used to downregulate specific proteins, protein levels were estimated with Western blot, and mRNA levels were analyzed with qPCR, microarray and RNA-seq. For global expression, groups were compared with principal component analysis and the limma package in R. Gene enrichment was analyzed with Fisher's test. For other experiments, significance of difference was tested by one-way ANOVA, followed by Tukey's HSD test. RESULTS The combination of Smac mimetic LCL-161 and TRAIL induces an irreversible change in phenotype, but not cell death, of luminal MCF-7 breast cancer cells. The cells become small and circular and dissociate from each other and the effect could not be reversed by returning the cells to regular growth medium. The morphology change could be prevented by caspase inhibition using z-VAD-FMK and downregulation of caspase-8. Caspase-7 is also indicated to be of importance since downregulation of this caspase resulted in fewer morphologically changed cells. Enrichment analyses of changes in global gene expression demonstrated that genes associated with estrogen receptor (ER) signaling are downregulated, whereas nuclear factor kappa B- (NF-κB) and interferon- (IFN) driven genes are upregulated in altered cells. However, inhibition of these pathways did not influence the change in morphology. Induction of IFN-induced genes were potentiated but NF-ĸB-driven genes were slightly suppressed by caspase inhibition. CONCLUSIONS The results demonstrate that LCL-161 and TRAIL can irreversibly alter the MCF-7 breast cancer cell phenotype. However, the changes in morphology and global gene expression are mediated via separate pathways.
Collapse
Affiliation(s)
- Victoria Granqvist
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden.
| |
Collapse
|
21
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
22
|
Alcon C, Zañudo JGT, Albert R, Wagle N, Scaltriti M, Letai A, Samitier J, Montero J. ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells 2021; 10:1659. [PMID: 34359829 PMCID: PMC8304651 DOI: 10.3390/cells10071659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most frequent type of cancer and the major cause of mortality in women. The rapid development of various therapeutic options has led to the improvement of treatment outcomes; nevertheless, one-third of estrogen receptor (ER)-positive patients relapse due to cancer cell acquired resistance. Here, we use dynamic BH3 profiling (DBP), a functional predictive assay that measures net changes in apoptotic priming, to find new effective treatments for ER+ breast cancer. We observed anti-apoptotic adaptations upon treatment that pointed to metronomic therapeutic combinations to enhance cytotoxicity and avoid resistance. Indeed, we found that the anti-apoptotic proteins BCL-xL and MCL-1 are crucial for ER+ breast cancer cells resistance to therapy, as they exert a dual inhibition of the pro-apoptotic protein BIM and compensate for each other. In addition, we identified the AKT inhibitor ipatasertib and two BH3 mimetics targeting these anti-apoptotic proteins, S63845 and A-1331852, as new potential therapies for this type of cancer. Therefore, we postulate the sequential inhibition of both proteins using BH3 mimetics as a new treatment option for refractory and relapsed ER+ breast cancer tumors.
Collapse
Affiliation(s)
- Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| | | | - Reka Albert
- Department of Biology, The Pennsylvania State University, University Park, PA 16802-6300, USA;
| | - Nikhil Wagle
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; (J.G.T.Z.); (N.W.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Maurizio Scaltriti
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028 Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (C.A.); (J.S.)
| |
Collapse
|
23
|
Shi X, Sun Y, Zhang Y, Wang W, Xu J, Guan Y, Ding Y, Yao Y. MEX3A promotes development and progression of breast cancer through regulation of PIK3CA. Exp Cell Res 2021; 404:112580. [PMID: 33811903 DOI: 10.1016/j.yexcr.2021.112580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer has been identified as the most common malignant tumors among women and the morbidity of breast cancer is still increasing rapidly. MEX3A possesses important functions in the regulation of mRNAs and may be involved in a variety of human diseases including cancer, whose relationship with breast cancer is still not clear. In this study, MEX3A was identified as a potential promotor in breast cancer, whose expression was strongly higher in breast cancer tissues than normal tissues. The in vitro experiments showed that MEX3A is capable of promoting the development of breast cancer through stimulating cell proliferation, inhibiting cell apoptosis, arresting cell cycle and promoting cell migration. The functions of MEX3A were also verified in vivo. Furthermore, a combination of genechip analysis and Ingenuity pathway analysis (IPA) identified PIK3CA as a potential downstream target of MEX3A, knockdown of which executes similar inhibitory effects on breast cancer and could alleviate MEX3A-induced progression of breast cancer. In conclusion, our study unveiled, as the first time, MEX3A as a tumor promotor for breast cancer, whose function was carried out probably through the regulation of PIK3CA.
Collapse
Affiliation(s)
- Xianbiao Shi
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yulu Sun
- School of Medicine, Southeast University, Nanjing, China
| | - Yin Zhang
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Wang
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiahan Xu
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yinan Guan
- School of Medicine, Southeast University, Nanjing, China
| | - Yitao Ding
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongzhong Yao
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Vitale SR, Martorana F, Stella S, Motta G, Inzerilli N, Massimino M, Tirrò E, Manzella L, Vigneri P. PI3K inhibition in breast cancer: Identifying and overcoming different flavors of resistance. Crit Rev Oncol Hematol 2021; 162:103334. [PMID: 33865994 DOI: 10.1016/j.critrevonc.2021.103334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is commonly deregulated in many human tumors, including breast cancer. Somatic mutations of the PI3K alpha catalytic subunit (PIK3CA) are the most common cause of pathway hyperactivation. Hence, several PI3K inhibitors have been investigated with one of them, alpelisib, recently approved for the treatment of endocrine sensitive, PIK3CA mutated, metastatic breast cancer. Unfortunately, all patients receiving a PI3K inhibitor eventually develop resistance to these compounds. Mechanisms of resistance include oncogenic PI3K alterations, pathway reactivation through upstream or downstream effectors and enhancement of parallel pro-survival pathways. We review the prognostic and predictive role of PI3K alterations in breast cancer, focusing on resistance to PI3K inhibitors and on biomarkers with potential clinical relevance. We also discuss combination strategies that may overcome resistance to PI3K inhibitors, thus increasing the efficacy of these drugs in breast cancer.
Collapse
Affiliation(s)
- Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Gianmarco Motta
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Nicola Inzerilli
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy.
| |
Collapse
|
25
|
PIK3CA Mutation Assessment in HR+/HER2− Metastatic Breast Cancer: Overview for Oncology Clinical Practice. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the PI3K–AKT–mTOR pathway occurs in several human cancers, including hormone receptor (HR)-positive breast cancer (BC) where is associated with resistance to endocrine therapy and disease progression. In BC, the most common PI3K–AKT–mTOR pathway alteration is represented by PIK3CA oncogenic mutations. These mutations can occur throughout several domains of the p110α catalytic subunit, but the majority are found in the helical and kinase domains (exon 9 and 20) that represent the “hotspots”. Considering the central role of the PI3K–AKT–mTOR pathway in HR-positive BC, several inhibitors (both pan-PI3K and isoform-specific) have been developed and tested in clinical trials. Recently, the PI3Kα-selective inhibitor alpelisib was the first PI3K inhibitor approved for clinical use in HR-positive metastatic BC based on the results of the phase III SOLAR-1 trial. Several methods to assess PIK3CA mutational status in tumor samples have been developed and validated, including real-time polymerase chain reaction (PCR), digital droplet PCR (ddPCR), BEAMing assays, Sanger sequencing, and next-generation sequencing (NGS) panels. Several new challenges will be expected once alpelisib is widely available in a clinical setting, including the harmonization of testing procedures for the detection of PI3K–AKT–mTOR pathway alterations. Herein, we provide an overview on PI3K–AKT–mTOR pathway alterations in HR-positive BC, discuss their role in determining prognosis and resistance to endocrine therapy and highlight practical considerations about diagnostic methods for the detection of PI3K–AKT–mTOR pathway activation status.
Collapse
|
26
|
Novel Anti-FOLR1 Antibody-Drug Conjugate MORAb-202 in Breast Cancer and Non-Small Cell Lung Cancer Cells. Antibodies (Basel) 2021; 10:antib10010006. [PMID: 33535554 PMCID: PMC7930947 DOI: 10.3390/antib10010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs), which are currently being developed, may become promising cancer therapeutics. Folate receptor α (FOLR1), a glycosylphosphatidylinositol-anchored membrane protein, is an attractive target of ADCs, as it is largely absent from normal tissues but is overexpressed in malignant tumors of epithelial origin, including ovarian, lung, and breast cancer. In this study, we tested the effects of novel anti-FOLR1 antibody-eribulin conjugate MORAb-202 in breast cancer and non-small cell lung cancer (NSCLC) cell lines. FOLR1 expression, cell proliferation, bystander killing effects, and apoptosis were evaluated in seven breast cancer and nine NSCLC cell lines treated with MORAb-202. Tumor growth and FOLR1 expression were assessed in T47D and MCF7 orthotopic xenograft mouse models after a single intravenous administration of MORAb-202 (5 mg/kg). MORAb-202 was associated with inhibited cell proliferation, with specific selectivity toward FOLR1-expressing breast cancer cell lines. Eribulin, the payload of MORAb-202, was unleashed in HCC1954 cells, diffused into intercellular spaces, and then killed the non-FOLR1-expressing MCF7 cells in co-culture systems. In orthotopic xenograft mouse models, FOLR1-expressing T47D tumors and non-FOLR1-expressing MCF7 tumors were suppressed upon MORAb-202 administration. The novel anti-FOLR1 antibody-eribulin conjugate MORAb-202 has potential antitumor effects in breast cancer.
Collapse
|
27
|
Fortarezza F, Pezzuto F, Cazzato G, Punzo C, d’Amati A, Lettini T, Gentile M, Buonadonna AL, Mariano M, Pezzolla A, Serio G. Bilateral Phyllodes Giant Tumor. A Case Report Analyzed by Array-CGH. Diagnostics (Basel) 2020; 10:diagnostics10100825. [PMID: 33076253 PMCID: PMC7602371 DOI: 10.3390/diagnostics10100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The breast phyllodes tumor is a biphasic tumor that accounts for less than of 1% of all breast neoplasms. It is classified as benign, borderline, or malignant, and can mimic benign masses. Some recurrent alterations have been identified. However, a precise molecular classification of these tumors has not yet been established. Herein, we describe a case of a 43-year-old woman that was admitted to the emergency room for a significant bleeding from the breast skin. A voluminous ulcerative mass of the left breast and multiple nodules with micro-calcifications on the right side were detected at a physical examination. A left total mastectomy and a nodulectomy of the right breast was performed. The histological diagnosis of the surgical specimens reported a bilateral giant phyllodes tumor, showing malignant features on the left and borderline characteristics associated with a fibroadenoma on the right. A further molecular analysis was carried out by an array-Comparative Genomic Hybridization (CGH) to characterize copy-number alterations. Many losses were detected in the malignant mass, involving several tumor suppressor genes. These findings could explain the malignant growth and the metastatic risk. In our study, genomic profiling by an array-CGH revealed a greater chromosomal instability in the borderline mass (40 total defects) than in the malignant (19 total defects) giant phyllodes tumor, reflecting the tumor heterogeneity. Should our results be confirmed with more sensitive and specific molecular tests (DNA sequencing and FISH analysis), they could allow a better selection of patients with adverse pathological features, thus optimizing and improving patient's management.
Collapse
Affiliation(s)
- Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.)
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Pathology Unit, University of Padova, 35121 Padova, Italy; (F.F.); (F.P.)
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (G.C.); (A.d.); (T.L.); (M.M.)
| | - Clelia Punzo
- Department of Emergency and Organ Transplantation (DETO), Surgery Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (C.P.); (A.P.)
| | - Antonio d’Amati
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (G.C.); (A.d.); (T.L.); (M.M.)
| | - Teresa Lettini
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (G.C.); (A.d.); (T.L.); (M.M.)
| | - Mattia Gentile
- Medical Genetics, “Di Venere” Hospital, 70131 Carbonara (Bari), Italy; (M.G.); (A.L.B.)
| | | | - Marta Mariano
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (G.C.); (A.d.); (T.L.); (M.M.)
| | - Angela Pezzolla
- Department of Emergency and Organ Transplantation (DETO), Surgery Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (C.P.); (A.P.)
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation (DETO), Pathology Section, Breast Unit Care, University of Bari, Medical School, 70124 Bari, Italy; (G.C.); (A.d.); (T.L.); (M.M.)
- Correspondence: ; Tel.: +39-080-5474368
| |
Collapse
|
28
|
Kwong A, Cheuk IWY, Shin VY, Ho CYS, Au CH, Ho DNY, Wong EYL, Yu SWY, Chen J, Chan KKL, Ngan HYS, Chan TL, Ma ESK. Somatic mutation profiling in BRCA-negative breast and ovarian cancer patients by multigene panel sequencing. Am J Cancer Res 2020; 10:2919-2932. [PMID: 33042626 PMCID: PMC7539773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023] Open
Abstract
Targeted therapeutic agents such as poly (ADP-ribose) polymerases (PARP) inhibitors have emerged in treating cancers associated with germline BRCA mutations. Recently studies demonstrated the effectiveness of PARP inhibitors in treating patients with somatic BRCA mutations. Somatic mutations in 122 Chinese breast or ovarian cancer patients without BRCA, PTEN and TP53 mutations were screened using multigene sequencing panel. The five most frequent pathogenic or likely pathogenic mutated genes identified in breast cancer patients were PIK3CA (28.6%), TP53 (16.9%), MAP3K1 (14.3%), GATA3 (14.3%) and PTEN (5.2%). The five most frequently mutated genes identified in ovarian patients were TP53 (52.9%), KRAS (23.5%) and PIK3CA (11.8%), BRCA1 (5.9%) and RB1 (5.9%). Somatic PIK3CA and TP53 mutations were common events in both germline BRCA-negative breast and ovarian cancer patients. In contrast, somatic screening of BRCA mutations in BRCA-negative breast cancer patients has limited value. The results highlight the benefit of somatic testing to guide future research directions on other targeted therapies for breast and ovarian malignancies.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
- Department of Surgery, Hong Kong Sanatorium & HospitalHong Kong SAR
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
| | - Isabella WY Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Vivian Yvonne Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Cecilia YS Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Chun-Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Dona NY Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Elaine YL Wong
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Stephanie WY Yu
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Jiawei Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen HospitalHong Kong SAR
| | - Karen KL Chan
- Department of Obstetrics and Gynaecology, The University of Hong KongHong Kong SAR
| | - Hextan YS Ngan
- Department of Obstetrics and Gynaecology, The University of Hong KongHong Kong SAR
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| | - Edmond SK Ma
- Hong Kong Hereditary Breast Cancer Family RegistryHong Kong SAR
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & HospitalHong Kong SAR
| |
Collapse
|
29
|
Tan AC. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11:511-518. [PMID: 31989769 PMCID: PMC7049515 DOI: 10.1111/1759-7714.13328] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
The traditional classification of lung cancer into small cell lung cancer and non-small cell lung cancer (NSCLC) has been transformed with the increased understanding of the molecular alterations and genomic biomarkers that drive the development of lung cancer. Increased activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway leads to numerous hallmarks of cancer and this pathway represents an attractive target for novel anticancer therapies. In NSCLC, the PI3K/Akt/mTOR pathway has been heavily implicated in both tumorigenesis and the progression of disease. A number of specific inhibitors of PI3K, Akt and mTOR are currently under development and in various stages of preclinical investigation and in early phase clinical trials for NSCLC. Early evidence has yielded disappointing results. Clinical trials, however, have been performed on predominantly molecularly unselected populations, and patient enrichment strategies using high-precision predictive biomarkers in future trials will increase the likelihood of success. A greater understanding of the underlying molecular biology including epigenetic alterations is also crucial to allow for the detection of appropriate biomarkers and guide combination approaches.
Collapse
Affiliation(s)
- Aaron C. Tan
- Division of Medical OncologyNational Cancer Centre SingaporeSingapore
| |
Collapse
|
30
|
Lee MH, Cho JH, Kwon SY, Jung SJ, Lee JH. Clinicopathological Characteristics of PIK3CA Mutation and Amplification in Korean Patients with Breast Cancers. Int J Med Sci 2020; 17:1131-1135. [PMID: 32410843 PMCID: PMC7211160 DOI: 10.7150/ijms.44319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
The frequency of PIK3CA mutation and amplification was various and their clinical significances have not been clarified in Korean patients with invasive breast carcinoma (IBC). The study aimed to investigate the clinical and prognostic significances of PIK3CA mutation and amplification in IBC patients. DNA was isolated from paired normal and tumoral tissues in 128 IBC patients and the mutation and expression of PIK3CA gene were analyzed. PIK3CA mutation and expression was detected in 14.3% and 21.9% of IBC patients, respectively. And the level of PIK3CA expression was not different according to the presence of PIK3CA mutation (p = 0.775). PIK3CA mutation and expression were significantly associated with Luminal A type (p = 0.017 and p = 0.011, respectively). However, they did not have any clinical and prognostic values for IBC patients. This result suggested that alterations of PIK3CA pathway contribute to the pathogenesis of specific type of IBC.
Collapse
Affiliation(s)
- Moo-Hyun Lee
- Department of General Surgery, Keimyung University Dongsan Medical Center
| | - Ji-Hyung Cho
- Department of General Surgery, Keimyung University Dongsan Medical Center
| | - Sun-Young Kwon
- Department of Pathology, Keimyung University Dongsan Medical Center
| | - Soo-Jung Jung
- Department of Anatomy, Keimyung University School of Medicine
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine
| |
Collapse
|
31
|
Abstract
One of the hallmarks of hormone receptor (HR)-positive breast cancer is its dependence on the phosphatidylinositol-3-kinase (PI3K) pathway. Here, we review the epidemiologic, functional, and pharmacologic interactions between oncogenic PI3K and the estrogen receptor (ER). We discuss the epidemiology of PI3K pathway alterations, mechanisms of resistance to PI3K inhibitors, and the current mechanistic landscape of crosstalk between PI3K and ER, which provide the rationale for dual ER and PI3K inhibition and is now a standard of care in the treatment of ER+ PIK3CA-mutant metastatic breast cancer. We outline newer studies in this field that delineate the clinically relevant overlaps between PI3K and parallel signaling pathways, insulin signaling, and ER epigenetic modifiers. We also identify several caveats with the current data and propose new strategies to overcome these bottlenecks.
Collapse
Affiliation(s)
- N Vasan
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Medicine, New York, USA
| | - E Toska
- Human Oncology and Pathogenesis Program, New York, USA
| | - M Scaltriti
- Human Oncology and Pathogenesis Program, New York, USA
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
32
|
Everolimus Nanoformulation in Biological Nanoparticles Increases Drug Responsiveness in Resistant and Low-Responsive Breast Cancer Cell Lines. Pharmaceutics 2019; 11:pharmaceutics11080384. [PMID: 31382388 PMCID: PMC6723888 DOI: 10.3390/pharmaceutics11080384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Everolimus (Eve) is an FDA approved drug that inhibits mammalian target of rapamycin (mTOR). It is employed in breast cancer treatment even if its responsiveness is controversial. In an attempt to increase Eve effectiveness, we have developed a novel Eve nanoformulation exploiting H-ferritin nanocages (HEve) to improve its subcellular delivery. We took advantage of the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1). Breast cancer cells overexpressing TfR-1 were successfully recognized by H-Ferritin, displaying quick nanocage internalization. HEve has been tested and compared to Eve for in vitro efficacy in sensitive and resistant breast cancer cells. Nanoformulated Eve induced remarkable antiproliferative activity in vitro, making even resistant cell lines sensitive to Eve. Moreover, the antiproliferative activity of HEve is fully in accordance with cytotoxicity observed by cell death assay. Furthermore, the significant increase in anticancer efficacy displayed in HEve-treated samples is due to the improved drug accumulation, as demonstrated by UHPLC-MS/MS quantifications. Our findings suggest that optimizing Eve subcellular delivery, thanks to nanoformulation, determines its improved antitumor activity in a panel of Eve-sensitive or resistant breast cancer cell lines.
Collapse
|
33
|
Zhang P, Zheng P, Liu Y. Amplification of the CD24 Gene Is an Independent Predictor for Poor Prognosis of Breast Cancer. Front Genet 2019; 10:560. [PMID: 31244889 PMCID: PMC6581687 DOI: 10.3389/fgene.2019.00560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
CD24 is a glycosyl-phosphatidyl-inositol linked glycoprotein expressed in a broad range of cell types including cancer cells. Although it is overexpressed in nearly 70% of human cancers, copy number variation of the CD24 locus has not been reported for any cancer. Here, we analyzed the genomics, transcriptomics, and clinical data of 1082 breast cancer (BRCA) samples and other cancer samples from the clinically annotated genomic database, The Cancer Genome Atlas (TCGA). The GISTIC2 method was applied to stratify the CD24 copy number, and Cox regression was performed to compare hazard ratio (HR) of CD24 overexpression, amplification and other traditional prognosis features for overall survival (OS). Our data demonstrated that CD24 amplification strongly correlated with its mRNA overexpression as well as TP53 mutant, cancer proliferation and metastasis features. In particular, CD24 amplification was enriched in basal-like subtype samples and associated with poor clinical outcome. Surprisingly, based on the univariate Cox regression analysis, CD24 overexpression (HR = 1.62, P = 0.010) and copy number amplification (HR = 1.79, P = 0.022) was more relevant to OS than TP53 mutant, mutation counts, diagnosis age, and BRCA subtypes. And based on multivariate survival analysis, CD24 amplification remained the most significant and independent predictor for worse OS (HR = 1.88, P = 0.015).
Collapse
Affiliation(s)
- Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,OncoImmune, Inc., Rockville, MD, United States
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,OncoImmune, Inc., Rockville, MD, United States
| |
Collapse
|
34
|
Sabbah DA, Ibrahim AH, Talib WH, Alqaisi KM, Sweidan K, Bardaweel SK, Sheikha GA, Zhong HA, Al-Shalabi E, Khalaf RA, Mubarak MS. Ligand-Based Drug Design: Synthesis and Biological Evaluation of Substituted Benzoin Derivatives as Potential Antitumor Agents. Med Chem 2019; 15:417-429. [DOI: 10.2174/1573406414666180912111846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022]
Abstract
Background:
Phosphoinositide 3-kinase α (PI3Kα) has emerged as a promising target
for anticancer drug design.
Objectives:
Target compounds were designed to investigate the effect of the p-OCH3 motifs on
ligand/PI3Kα complex interaction and antiproliferative activity.
Methods:
Synthesis of the proposed compounds, biological examination tests against human colon
adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell
lines, along with Glide docking studies.
Results:
A series of 1,2-bis(4-methoxyphenyl)-2-oxoethyl benzoates was synthesized and characterized
by means of FT-IR, 1H and 13C NMR, and by elemental analysis. Biological investigation
demonstrated that the newly synthesized compounds exhibit antiproliferative activity in human colon
adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D)
cell lines possibly via inhibition of PI3Kα and estrogen receptor alpha (ERα). Additionally, results
revealed that these compounds exert selective inhibitory activity, induce apoptosis, and suppress
VEGF production. Compound 3c exhibited promising antiproliferative activity in HCT-116 interrogating
that hydrogen bond-acceptor mediates ligand/PI3Kα complex formation on m- position.
Compounds 3e and 3i displayed high inhibitory activity in MCF-7 and T47D implying a wide cleft
discloses the o-attachment. Furthermore, compound 3g exerted selective inhibitory activity against
T47D. Glide docking studies against PI3Kα and ERα demonstrated that the series accommodate
binding to PI3Kα and/or ERα.
Conclusion:
The series exhibited a potential antitumor activity in human carcinoma cell lines encoding
PI3Kα and/or ERα.
Collapse
Affiliation(s)
- Dima A. Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Ameerah H. Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Khalid M. Alqaisi
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, P.O. Box 132222, Zarqa 13132, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Ghassan A. Sheikha
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Haizhen A. Zhong
- DSC 362, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| | - Eveen Al-Shalabi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | - Reema A. Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733, Jordan
| | | |
Collapse
|
35
|
Mitchell CB, Phillips WA. Mouse Models for Exploring the Biological Consequences and Clinical Significance of PIK3CA Mutations. Biomolecules 2019; 9:biom9040158. [PMID: 31018529 PMCID: PMC6523081 DOI: 10.3390/biom9040158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is involved in a myriad of cellular signalling pathways that regulate cell growth, metabolism, proliferation and survival. As a result, alterations in the PI3K pathway are frequently associated with human cancers. Indeed, PIK3CA-the gene encoding the p110α catalytic subunit of PI3K-is one of the most commonly mutated human oncogenes. PIK3CA mutations have also been implicated in non-malignant conditions including congenital overgrowth syndromes and vascular malformations. In order to study the role of PIK3CA mutations in driving tumorigenesis and tissue overgrowth and to test potential therapeutic interventions for these conditions, model systems are essential. In this review we discuss the various mouse models currently available for preclinical studies into the biological consequences and clinical significance of PIK3CA mutations.
Collapse
Affiliation(s)
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
36
|
Akt inhibitor SC66 promotes cell sensitivity to cisplatin in chemoresistant ovarian cancer cells through inhibition of COL11A1 expression. Cell Death Dis 2019; 10:322. [PMID: 30975980 PMCID: PMC6459878 DOI: 10.1038/s41419-019-1555-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/28/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
We studied Akt inhibition using SC66 in a NOD-SCID xenograft mouse model and a panel of eight ovarian cancer cell lines. Elevated phospho-Akt levels in cancerous tissue were associated with short progression-free survival and overall survival. Cell sensitivity to SC66 was inversely correlated with phospho-Akt and COL11A1 expression levels, as well as resistance to cisplatin or paclitaxel. SC66 inhibited phosphorylation of Akt and its downstream effectors 4EBP1 and p70S6 kinase. SC66 also attenuated expression of TWIST1 and Mcl-1, factors important in cell invasiveness and anti-apoptosis, respectively. SC66-sensitized chemoresistant cells to cisplatin and paclitaxel treatment, and promoted apoptosis. In addition, SC66 inhibited COL11A1 expression via decreased binding of CCAAT/enhancer-binding protein beta (c/EBPβ), reducing chemoresistance and decreasing binding of nuclear transcription factor Y (NF-YA) to COL11A1. A mouse xenograft experiment demonstrated that SC66 treatment caused a reduction in tumor formation and enhanced the therapeutic efficacy of cisplatin. This study demonstrates the role of Akt in ovarian tumor progression and chemoresistance, and supports the application of SC66 as a therapy for ovarian cancer.
Collapse
|
37
|
Liu Q, Hu P. Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer. Cancers (Basel) 2019; 11:cancers11040494. [PMID: 30959966 PMCID: PMC6520782 DOI: 10.3390/cancers11040494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/20/2022] Open
Abstract
Artificial intelligence-based unsupervised deep learning (DL) is widely used to mine multimodal big data. However, there are few applications of this technology to cancer genomics. We aim to develop DL models to extract deep features from the breast cancer gene expression data and copy number alteration (CNA) data separately and jointly. We hypothesize that the deep features are associated with patients’ clinical characteristics and outcomes. Two unsupervised denoising autoencoders (DAs) were developed to extract deep features from TCGA (The Cancer Genome Atlas) breast cancer gene expression and CNA data separately and jointly. A heat map was used to view and cluster patients into subgroups based on these DL features. Fisher’s exact test and Pearson’ Chi-square test were applied to test the associations of patients’ groups and clinical information. Survival differences between the groups were evaluated by Kaplan–Meier (KM) curves. Associations between each of the features and patient’s overall survival were assessed using Cox’s proportional hazards (COX-PH) model and a risk score for each feature set from the different omics data sets was generated from the survival regression coefficients. The risk scores for each feature set were binarized into high- and low-risk patient groups to evaluate survival differences using KM curves. Furthermore, the risk scores were traced back to their gene level DAs weights so that the three gene lists for each of the genomic data points were generated to perform gene set enrichment analysis. Patients were clustered into two groups based on concatenated features from the gene expression and CNA data and these two groups showed different overall survival rates (p-value = 0.049) and different ER (Estrogen receptor) statuses (p-value = 0.002, OR (odds ratio) = 0.626). All the risk scores from the gene expression and CNA data and their concatenated one were significantly associated with breast cancer survival. The patients with the high-risk group were significantly associated with patients’ worse outcomes (p-values ≤ 0.0023). The concatenated risk score was enriched by the AMP-activated protein kinase (AMPK) signaling pathway, the regulation of DNA-templated transcription, the regulation of nucleic acid-templated transcription, the regulation of apoptotic process, the positive regulation of gene expression, the positive regulation of cell proliferation, heart morphogenesis, the regulation of cellular macromolecule biosynthetic process, with FDR (false discovery rate) less than 0.05. We confirmed DAs can effectively extract meaningful genomic features from genomic data and concatenating multiple data sources can improve the significance of the features associated with breast cancer patients’ clinical characteristics and outcomes.
Collapse
Affiliation(s)
- Qian Liu
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
- Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
38
|
Chia SKL, Martin M, Holmes FA, Ejlertsen B, Delaloge S, Moy B, Iwata H, von Minckwitz G, Mansi J, Barrios CH, Gnant M, Tomašević Z, Denduluri N, Šeparović R, Kim SB, Jakobsen EH, Harvey V, Robert N, Smith J, Harker G, Zhang B, Eli LD, Ye Y, Lalani AS, Buyse M, Chan A. PIK3CA alterations and benefit with neratinib: analysis from the randomized, double-blind, placebo-controlled, phase III ExteNET trial. Breast Cancer Res 2019; 21:39. [PMID: 30867034 PMCID: PMC6417207 DOI: 10.1186/s13058-019-1115-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neratinib is an irreversible pan-HER tyrosine kinase inhibitor that inhibits PI3K/Akt and MAPK signaling pathways after HER2 receptor activation. The ExteNET study showed that neratinib significantly improved 5-year invasive disease-free survival (iDFS) in women who completed trastuzumab-based adjuvant therapy for early breast cancer (EBC). We assessed the prognostic and predictive significance of PIK3CA alterations in patients in ExteNET. METHODS Participants were women aged ≥ 18 years (≥ 20 years in Japan) with stage 1-3c (modified to stage 2-3c in February 2010) operable breast cancer, who had completed (neo)adjuvant chemotherapy plus trastuzumab ≤ 2 years before randomization, with no evidence of disease recurrence or metastatic disease at study entry. Patients were randomized to oral neratinib 240 mg/day or placebo for 1 year. Formalin-fixed, paraffin-embedded primary tumor specimens underwent polymerase chain reaction (PCR) PIK3CA testing for two hotspot mutations in exon 9, one hot-spot mutation in exon 20, and fluorescence in situ hybridization (FISH) analysis for PIK3CA amplification. The primary endpoint (iDFS) was tested with log-rank test and hazard ratios (HRs) estimated using Cox proportional-hazards models. RESULTS Among the intent-to-treat population (n = 2840), tumor specimens were available for PCR testing (991 patients) and PIK3CA FISH (702 patients). Overall, 262 samples were PIK3CA altered: 201 were mutated (77%), 52 (20%) were amplified, and 9 (3%) were mutated and amplified. iDFS was non-significantly worse in placebo-treated patients with altered vs wild-type PIK3CA (HR 1.34; 95% CI 0.72-2.50; P = 0.357). Neratinib's effect over placebo was significant in patients with PIK3CA-altered tumors (HR 0.41; 95% CI 0.17-0.90, P = 0.028) but not PIK3CA wild-type tumors (HR 0.72; 95% CI 0.36-1.41; P = 0.34). The interaction test was non-significant (P = 0.309). CONCLUSIONS Although there was a greater absolute risk reduction associated with neratinib treatment of patients with PIK3CA-altered tumors in ExteNET, current data do not support PIK3CA alteration as a predictive biomarker of response to neratinib in HER2-positive EBC. TRIAL REGISTRATION ClinicalTrials.gov , NCT00878709 . Trial registered April 9, 2009.
Collapse
Affiliation(s)
- Stephen K L Chia
- British Columbia Cancer Agency, University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z4E6, Canada.
| | - Miguel Martin
- Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Gunter von Minckwitz
- Luisenkrankenhaus, German Breast Group Forschungs GmbH, Düsseldorf, Neu-isenburg, Germany
| | - Janine Mansi
- Biomedical Research Centre, Guy's Hospital, King's College London, London, UK
| | - Carlos H Barrios
- Pontifical Catholic University of Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Michael Gnant
- Department of Surgery and Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Zorica Tomašević
- Daily Chemotherapy Hospital, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Robert Šeparović
- University Hospital for Tumors, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Sung-Bae Kim
- Asan Medical Center, University of Ulsan, Seoul, Korea
| | | | - Vernon Harvey
- Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Nicholas Robert
- McKesson Specialty Health and The US Oncology Network, The Woodlands, TX, USA
| | | | | | - Bo Zhang
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | - Lisa D Eli
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | - Yining Ye
- Puma Biotechnology, Inc., Los Angeles, CA, USA
| | | | - Marc Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
| | - Arlene Chan
- Breast Cancer Research Centre-WA, Perth & Curtin University, Nedlands, Australia
| |
Collapse
|
39
|
Millis SZ, Jardim DL, Albacker L, Ross JS, Miller VA, Ali SM, Kurzrock R. Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities. Cancer 2018; 125:1185-1199. [PMID: 30582752 PMCID: PMC6433468 DOI: 10.1002/cncr.31921] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 01/19/2023]
Abstract
Background The phosphatidylinositol 3‐kinase (PI3K) pathway is frequently altered in cancer. This report describes the landscape of PI3K alterations in solid tumors as well as co‐alterations serving as potential resistance/attenuation mechanisms. Methods Consecutive samples were analyzed in a commercial Clinical Laboratory Improvement Amendment‐certified laboratory using comprehensive genomic profiling performed by next‐generation sequencing (315 genes). The co‐alterations evaluated included the Erb‐B2 receptor tyrosine kinase 2 (ERBB2), ERBB3, ERBB4, RAS, MET proto‐oncogene tyrosine kinase (MET), and mitogen‐activated protein kinase kinase (MAP2K) genes as well as tumor protein 53 (TP53), estrogen receptor 1 (ESR1), and androgen receptor (AR). Results Alterations in any of 18 PI3K‐pathway associated genes were identified in 44% of 60,991 tumors. Although single base and insertions/deletions (indels) were the most frequent alterations, copy number changes and rearrangements were identified in 11% and 0.9% of patients, respectively. Overall, the most frequently altered genes were PIK3 catalytic subunit α (PIK3CA) (13%), phosphatase and tensin homolog (PTEN) (9%), and serine/threonine kinase 11 (STK11) (5%). Tumor types that frequently harbored at least 1 PI3K alteration were uterine (77%), cervical (62%), anal (59%), and breast (58%) cancers. Alterations also were discerned frequently in tumors with carcinosarcoma (89%) and squamous cell carcinoma (62%) histologies. Tumors with a greater likelihood of co‐occurring PI3K pathway and MAPK pathway alterations included colorectal cancers (odds ratio [OR], 1.64; P < .001), mesotheliomas (OR, 2.67; P = .024), anal cancers (OR, 1.98; P = .03), and nonsquamous head and neck cancers (OR, 2.03; P = .019). The co‐occurrence of ESR1 and/or AR alterations with PI3K alterations was statistically significant in bladder, colorectal, uterine, prostate, and unknown primary cancers. Conclusions Comprehensive genomic profiling reveals altered PI3K‐related genes in 44% of solid malignancies, including rare disease and histology types. The frequency of alterations and the co‐occurrence of resistance pathways vary by tumor type, directly affecting opportunities for targeted therapy. Comprehensive genomic profiling of solid tumors reveals frequent genetic alterations in several genes of the phosphatidylinositol 3‐kinase (PI3K) pathway. Data from this analysis suggest that in‐depth characterization of the PI3K pathway along with concomitant resistance alterations in other pathways can provide a genomic background for the development of future treatments.
Collapse
Affiliation(s)
| | - Denis L Jardim
- Department of Clinical Oncology, Hospital Sírio Libanes, Sao Paulo, Brazil
| | | | | | | | - Siraj M Ali
- Foundation Medicine, Cambridge, Massachusetts
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, San Diego, California
| |
Collapse
|
40
|
Al-Blewi FF, Rezki N, Al-Sodies SA, Bardaweel SK, Sabbah DA, Messali M, Aouad MR. Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: ultrasound assisted synthesis, molecular docking and anticancer evaluation. Chem Cent J 2018; 12:118. [PMID: 30467608 PMCID: PMC6768046 DOI: 10.1186/s13065-018-0489-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/13/2018] [Indexed: 11/15/2022] Open
Abstract
Background Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry. Results A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely 8, 28, 29 and 32 suggesting an apoptotic cellular death pathway. Conclusions Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds 2–6 bind to the kinase site and form H-bond with S774, K802, H917 and D933. ![]() Electronic supplementary material The online version of this article (10.1186/s13065-018-0489-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fawzia Faleh Al-Blewi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia. .,Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M'nouar, 31000, Oran, Algeria.
| | - Salsabeel Abdullah Al-Sodies
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | - Dima A Sabbah
- Faculty of Pharmacy, Al-Zaytoonah University, Amman, 11733, Jordan
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Medina, 30002, Saudi Arabia.
| |
Collapse
|
41
|
Rizzolo P, Navazio AS, Silvestri V, Valentini V, Zelli V, Zanna I, Masala G, Bianchi S, Scarnò M, Tommasi S, Palli D, Ottini L. Somatic alterations of targetable oncogenes are frequently observed in BRCA1/2 mutation negative male breast cancers. Oncotarget 2018; 7:74097-74106. [PMID: 27765917 PMCID: PMC5342038 DOI: 10.18632/oncotarget.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, MBC research and clinical approach are mostly based upon data derived from its largely known female counterpart. We aimed at investigating whether MBC cases harbor somatic alterations of genes known as prognostic biomarkers and molecular therapeutic targets in female breast cancer. We examined 103 MBC cases, all characterized for germ-line BRCA1/2 mutations, for somatic alterations in PIK3CA, EGFR, ESR1 and CCND1 genes. Pathogenic mutations of PIK3CA were detected in 2% of MBCs. No pathogenic mutations were identified in ESR1 and EGFR. Gene copy number variations (CNVs) analysis showed amplification of PIK3CA in 8.1%, EGFR in 6.8% and CCND1 in 16% of MBCs, whereas deletion of ESR1 was detected in 15% of MBCs. Somatic mutations and gene amplification were found only in BRCA1/2 mutation negative MBCs. Significant associations emerged between EGFR amplification and large tumor size (T4), ER-negative and HER2-positive status, between CCND1 amplification and HER2-positive and MIB1-positive status, and between ESR1 deletion and ER-negative status. Our results show that amplification of targetable oncogenes is frequent in BRCA1/2 mutation negative MBCs and may identify MBC subsets characterized by aggressive phenotype that may benefit from potential targeted therapeutic approaches.
Collapse
Affiliation(s)
- Piera Rizzolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Sara Navazio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Zelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ines Zanna
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
| | - Marco Scarnò
- CINECA (Inter University Consortium for Super Computing), Rome, Italy
| | - Stefania Tommasi
- Molecular Genetics Laboratory, Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Cheng J, Fu S, Wei C, Tania M, Khan MA, Imani S, Zhou B, Chen H, Xiao X, Wu J, Fu J. Evaluation of PIK3CA mutations as a biomarker in Chinese breast carcinomas from Western China. Cancer Biomark 2018; 19:85-92. [PMID: 28269754 DOI: 10.3233/cbm-160380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND PIK3CA gene encodes the p110 α catalytic subunit of the oncoprotein phosphatidylinositol 3-kinase (PI3 K) which regulates many biological processes such as cell proliferation, differentiation, migration and survival through the activation of various signaling pathways. OBJECTIVE In this study, we have investigated the possible somatic mutations in PIK3CA gene in invasive ductal breast carcinomas of Chinese women from Western China. METHODS Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tissue samples. The hotspot mutations in PIK3CA gene of exon 9 and exon 20 were studied by pyrosequencing. RESULTS The sequencing identified two hotspot mutations in exon 20 of one cancer samples at p. H1047L (c. 3140A > T) and eight cancer sample at p. H1047R (c. 3140A > G). No mutation in exon 9 of PIK3CA gene was found in these breast cancer tissue samples. PIK3CA mutations showed surprising clinicopathological features in breast cancer patients, as incidence of lymph node invasiveness is increased in the patients with PIK3CA mutation. In addition, all the patients showed tumor size bigger than 3 cm in diameter. It is important that for early detection and early treatment for BC in developing countries or areas like Western China, and for people to provide popularization education using scientific knowledge in cancer fields. CONCLUSIONS This study identified PIK3CA mutations in breast carcinoma patients of Western China that will enable a more rapid molecular diagnosis, and provide a stronger rationale evidence for development of precision therapeutic approaches as well as promising therapeutic targets for breast cancer treatment or patient management.
Collapse
Affiliation(s)
- Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.,Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shangyi Fu
- Honors College, University of Houston, Houston, TX 77204, USA.,Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.,Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mousumi Tania
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh, Vietnam
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Baixu Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hanchun Chen
- Department of Biochemistry, School of Life Sciencesand the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410013, China
| | - Xiuli Xiao
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingbo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.,Judicial Authentication Center, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
43
|
Zagradišnik B, Krgović D, Herodež ŠS, Zagorac A, Ćižmarević B, Vokač NK. Identification of genomic copy number variations associated with specific clinical features of head and neck cancer. Mol Cytogenet 2018; 11:5. [PMID: 29371888 PMCID: PMC5769503 DOI: 10.1186/s13039-018-0354-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022] Open
Abstract
Background Copy number variations (CNSs) of large genomic regions are an important mechanism implicated in the development of head and neck cancer, however, for most changes their exact role is not well understood. The aim of this study was to find possible associations between gains/losses of genomic regions and clinically distinct subgroups of head and neck cancer patients. Results Array comparative genomic hybridization (aCGH) analysis was performed on DNA samples in 64 patients with cancer in oral cavity, oropharynx or hypopharynx. Overlapping genomic regions created from gains and losses were used for statistical analysis. Following regions were overrepresented: in tumors with stage I or II a gain of 2.98 Mb on 6p21.2-p11 and a gain of 7.4 Mb on 8q11.1-q11.23; in tumors with grade I histology a gain of 1.1 Mb on 8q24.13, a loss of a large part of p arm of chromosome 3, a loss of a 1.24 Mb on 6q14.3, and a loss of terminal 32 Mb region of 8p23.3; in cases with affected lymph nodes a gain of 0.75 Mb on 3q24, and a gain of 0.9 Mb on 3q26.32-q26.33; in cases with unaffected lymph nodes a gain of 1.1 Mb on 8q23.3, in patients not treated with surgery a gain of 12.2 Mb on 7q21.3-q22.3 and a gain of 0.33 Mb on 20q11.22. Conclusions Our study identified several genomic regions of interest which appear to be associated with various clinically distinct subgroups of head and neck cancer. They represent a potentially important source of biomarkers useful for the clinical management of head and neck cancer. In particular, the PIK3CA and AGTR1 genes could be singled out to predict the lymph node involvement.
Collapse
Affiliation(s)
- Boris Zagradišnik
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Danijela Krgović
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Špela Stangler Herodež
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Andreja Zagorac
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Bogdan Ćižmarević
- 2Department of Otorhinolaryngology, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Nadja Kokalj Vokač
- 1Laboratory of Medical Genetics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
44
|
Hosseini S, Behjati F, Rahimi M, Taheri N, Khoram Khorshid H, Aghakhani Moghaddam F, Ghasemi S, Karimlou M, Sirati F, Keyhani E. Relationship Between PIK3CA Amplification and P110α and CD34 Tissue Expression as Angiogenesis Markers in Iranian Women with Sporadic Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:447-453. [PMID: 30774684 PMCID: PMC6358562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The PI3K/AKT/mTOR pathway is known to play an important role in regulating angiogenesis both in normal and breast cancer (BC) tissues. PIK3CA amplification was reported in various malignancies, including approximately 10% of BC cases. The aim of this study was to identify the frequency of PIK3CA amplification in Iranian female patients suffering from BC. Additionally, possible association between PIK3CA amplification and P110α expression with microvascular density (MVD) was examined. METHODS DNA samples were extracted from paraffin embedded tumor tissue blocks and copy number changes were evaluated by MLPA Technique. The results were analyzed by coffalyzer software. The tissue expression of P110α and CD34 was assessed using immunohistochemistry. RESULTS Ten out of 40 samples (17.5%) showed amplification in PIK3CA gene and 22 out of 40 samples (55%) showed overexpression in P110α. For CD34, from 40 samples, 20 (50%), 15 (37.5%) and 5 (12.5%) had scores 1+, 2+ and 3+, respectively. CONCLUSION No significant association was detected between gain of PIK3CA copy number and P110α or CD34 tissue expression.
Collapse
Affiliation(s)
- Shadi Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nazanin Taheri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Saghar Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Karimlou
- Dept. of Epidemiology and Biostatistics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fereidoon Sirati
- Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Keyhani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran,Corresponding information: Elahe Keyhani, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, E-mail :
| |
Collapse
|
45
|
Kim HS, Lee SE, Bae YS, Kim DJ, Lee CG, Hur J, Chung H, Park JC, Shin SK, Lee SK, Lee YC, Kim HR, Shim YM, Jewell SS, Kim H, Choi YL, Cho BC. PIK3CA amplification is associated with poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Oncotarget 2017; 7:30691-701. [PMID: 27095573 PMCID: PMC5058710 DOI: 10.18632/oncotarget.8749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
To investigate the clinicopathologic characteristics and the prognostic impact of PIK3CA gene amplification in curatively resected esophageal squamous cell carcinoma (ESCC). Using 534 curatively resected ESCCs, the PIK3CA gene copy number was evaluated with fluorescent in situ hybridization. PIK3CA amplification was defined as PIK3CA/centromere 3 ratio is ≥ 2.0 or average number of PIK3CA signals/tumor cell nucleus ≥ 5.0. PIK3CA mutations in exon 9 and 20, encoding the highly conserved helical and kinase domains were assessed by direct sequencing in 388 cases. PIK3CA amplification was detected in 56 (10.5%) cases. PIK3CA amplification was significantly associated with higher T-stage (P=0.026) and pathologic stage (P=0.053). PIK3CA amplification showed a significantly shorter disease free survival (DFS) compared with that of non-amplified group (33.4 vs 63.1 months, P=0.019). After adjusting for gender, tumor location, pathologic stage, histologic grade and adjuvant treatment, PIK3CA amplification was significantly associated with a shorter DFS (adjusted hazard ratio [AHR] 1.53; 95% CI, 1.10-2.17; P=0.02). Though the statistical insignificance, PIK3CA amplification showed tendency of shorter OS (52.1 vs 96.5 moths, P=0.116). PIK3CA mutations were detected in 6 (1.5%) of 388 cases; 5 cases with exon 9 mutations in E545K while one exon 20 mutation in H1047L. PIK3CA amplification is a frequent oncogenic alteration and associated with shorter survival, suggesting its role as a prognostic biomarker in resected ESCC. PIK3CA amplification may represent a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Yoon Sung Bae
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Joon Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Geol Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hur
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunsoo Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Chul Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Kwan Shin
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Kil Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Chan Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Susan S Jewell
- Abbott Molecular Laboratories, Des Plaines, IL, United States
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Liu X, Xu Y, Zhou Q, Chen M, Zhang Y, Liang H, Zhao J, Zhong W, Wang M. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncol 2017; 14:665-674. [PMID: 29219001 DOI: 10.2217/fon-2017-0588] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of PI3K in cancer has been well established, and mutations of PIK3CA, the gene coding for catalytic subunit p110α of PI3K, are found in approximately 30% human cancers. The hyperactivated PI3K pathway plays a central role in the tumor cell activities such as proliferation, differentiation, chemotaxis, survival, trafficking and metabolism. Besides, PI3K pathway is involved in the regulation of angiogenesis and the host immune response against cancer. Therefore, the inhibition of PI3K pathway can yield multifaceted tumor cell-extrinsic effects that may synergize with chemotherapy, and more importantly, with the newly revived immunotherapy. Here, we review the structures and activation modes of PI3Ks and its implications in angiogenesis, extracellular matrix remodeling and tumor immunity.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yan Xu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qing Zhou
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Minjiang Chen
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yu Zhang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Hongge Liang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Jing Zhao
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Wei Zhong
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Mengzhao Wang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| |
Collapse
|
47
|
Kim JH, Lee JS, Kim EJ, Park KH, Kim KH, Yi SY, Kim HS, Cho YJ, Shin KH, Ahn JB, Hu H, Kim KS, Choi YD, Kim S, Lee YH, Suh JS, Noh SH, Rha SY, Kim HS. Prognostic implications of PIK3CA amplification in curatively resected liposarcoma. Oncotarget 2017; 7:24549-58. [PMID: 27016421 PMCID: PMC5029721 DOI: 10.18632/oncotarget.8240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Background We investigated the epidemiologic characteristics and prognostic significance of PIK3CA mutations/amplifications in curative resected liposarcoma. Patients and methods A total of 125 liposarcoma tissue samples were collected over a 12-year period. PIK3CA mutations and gene copy number amplifications were analyzed by pyrosequencing and fluorescence in situ hybridization (FISH). Results Nine of the 105 liposarcomas (8.6%) had activating PIK3CA mutation. PIK3CA mutations were more frequent in myxoid/round cell and pleomorphic tumors compared with well-differentiated/dedifferentiated tumors (13.3% vs. 2.2%, P=0.043). In FISH PIK3CA analysis, copy number gain was detected in 14 of the 101 tumors (13.9%): 11 (10.9%) tumors had increased gene copy number (polysomy) and 3 (3.0%) exhibited gene amplification. In survival analysis, patients with PIK3CA copy number gain had a worse prognosis compared to patients without PIK3CA amplification (median disease-free survival [DFS] 22.2 vs. 107.6 months p=0.005). By multivariate analysis, PIK3CA copy number gain was an independent prognostic factor for worse DFS (P=0.027; hazard ratio, 2.400; 95% confidence interval 1.105 to 5.213). PIK3CA mutation was not associated with DFS and overall survival. Conclusions We demonstrated PIK3CA mutation and amplification in liposarcoma. PIK3CA copy number gain was an independent poor prognostic factor for DFS. Further studies are needed to evaluate the potential diagnostic and therapeutic role of PIK3CA mutations and amplifications in liposarcoma.
Collapse
Affiliation(s)
- Joo Hoon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Seok Lee
- Department of Pathology, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Eo Jin Kim
- Department of Pathology, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kyu Hyun Park
- Cancer Metastasis Research Center, Song Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hyang Kim
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seong Yoon Yi
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Ilsan, Korea
| | - Han Seong Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University College of Medicine, Ilsan, Korea
| | - Yong Jin Cho
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoo-Ho Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyuk Hu
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Han Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Suck Suh
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P, Nakanishi H, Eguchi S, Koizumi A, Sasaki J, Juvin V, Kiselev VY, Niewczas I, Gray A, Valayer A, Spensberger D, Imbert M, Felisbino S, Habuchi T, Beinke S, Cosulich S, Le Novère N, Sasaki T, Clark J, Hawkins PT, Stephens LR. PTEN Regulates PI(3,4)P 2 Signaling Downstream of Class I PI3K. Mol Cell 2017; 68:566-580.e10. [PMID: 29056325 PMCID: PMC5678281 DOI: 10.1016/j.molcel.2017.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN. PTEN is a PI(3,4)P2 3-phosphatase PTEN and INPP4B regulate PI(3,4)P2 accumulation downstream of class I PI3K PTEN regulates PI(3,4)P2-dependent activation of Akt and formation of invadopodia PI(3,4)P2 signaling may play a role in the tumor suppressor function of PTEN
Collapse
Affiliation(s)
| | | | - Tamara Chessa
- Signalling Programme, Babraham Institute, Cambridge, UK
| | | | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK; AstraZeneca R&D Cambridge, CRUK Cambridge Institute, Cambridge, UK
| | - Pınar Pir
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Hiroki Nakanishi
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Satoshi Eguchi
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Junko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | | | | - Alexander Gray
- School of Life Sciences, University of Dundee, Dow St., Dundee, UK
| | | | | | - Marine Imbert
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Sergio Felisbino
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Soren Beinke
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Sabina Cosulich
- AstraZeneca R&D Cambridge, CRUK Cambridge Institute, Cambridge, UK
| | | | - Takehiko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | | - Len R Stephens
- Signalling Programme, Babraham Institute, Cambridge, UK.
| |
Collapse
|
49
|
Dong L, Meng F, Wu L, Mitchell AV, Block CJ, Zhang B, Craig DB, Jang H, Chen W, Yang Q, Wu G. Cooperative oncogenic effect and cell signaling crosstalk of co‑occurring HER2 and mutant PIK3CA in mammary epithelial cells. Int J Oncol 2017; 51:1320-1330. [PMID: 28902361 PMCID: PMC5592866 DOI: 10.3892/ijo.2017.4108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Though incidence of PI3K oncogenic mutation is prominent in breast cancer (20-30%), pharmacological targeting of this signaling pathway alone has failed to provide meaningful clinical benefit. To better understand and address this problem, we conducted genome-wide analysis to study the association of mutant PI3K with other gene amplification events. One of the most significant copy number gain events associated with PIK3CA mutation was the region within chromosome 17 containing HER2To investigate the oncogenic effect and cell signaling regulation of co-occurring PIK3CA-H1047R and or HER2 gene, we generated cell models ectopically expressing mutant PIK3CA, HER2 or both genetic alterations. We observed that cells with both genetic alterations demonstrate increased aggressiveness and invasive capabilities than cells with either genetic change alone. Furthermore, we found that the combination of the HER2 inhibitor (CP-724714) and pan PI3K inhibitor (LY294002) is more potent than either inhibitor alone in terms of inhibition of cell proliferation and colony formation. Significantly, four cell signaling pathways were found in common for cells with HER2, mutant PIK3CA and cells with both genetic alterations through an Affymetric microarray analysis. Moreover, the cells with both genetic alterations acquired more significant replication stress as shown by enriched signaling pathways of cell cycle checkpoint control and DNA damage response signaling. Our study suggests co-occurrence of oncogenic HER2 and mutant PIK3CA cooperatively drives breast cancer progression. The cells with both genetic alterations obtain additional features of replication stress which could open new opportunity for cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Lun Dong
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fanyan Meng
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hyejeong Jang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
50
|
Bozorg-Ghalati F, Hedayati M, Dianatpour M, Azizi F, Mosaffa N, Mehrabani D. Effects of a Phosphoinositide-3-Kinase Inhibitor on Anaplastic Thyroid Cancer Stem Cells. Asian Pac J Cancer Prev 2017; 18:2287-2291. [PMID: 28843268 PMCID: PMC5697493 DOI: 10.22034/apjcp.2017.18.8.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Thyroidectomy, radioactive iodine therapy, chemotherapy, or their combination are treatments of choice for thyroid cancers. However, cancer stem cells (CSCs) may become resistant to therapy, and mutations in somatic genes affect radioiodine uptake. This study determined the effect of a phosphoinositide-3-kinase (PI3K) inhibitor on anaplastic thyroid CSCs. Materials and Methods: The magnetic-activated cell sorting assay was used for segregating CD133-positive CSCs from three anaplastic thyroid carcinoma (ATC) cell lines (C643, SW1736, and 8305C). After confirming the cells’ purity by flow cytometry, they were treated with 5, 10, 20, or 25 μM LY294002, a PI3K inhibitor, and then evaluated at 24 and 48 h. The sodium-iodide symporter (NIS) mRNA level was determined using the quantitative real-time polymerase chain reaction. NIS protein expression was evaluated using western blotting. Results: The PI3K inhibitor, at different concentrations and times, increased the NIS mRNA level (1.30-6.17-fold, P < 0.0001). If the NIS mRNA level in LY294002-treated CD133-positive CSCs was increased more than 2-fold, the NIS protein content was detectable. Conclusions: CD133-positive CSCs isolated from ATC cell lines expressed NIS mRNA and protein after PI3K inhibition. Our findings suggest that molecularly targeted CSC therapy may improve the treatment efficacy of aggressive cancers like ATC.
Collapse
Affiliation(s)
- Farzaneh Bozorg-Ghalati
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , dianatpour@sums.
ac.ir
| | | | | | | | | | | |
Collapse
|