1
|
Gao L, Zhang Y, Feng M, Shen M, Yang L, Wei B, Zhou Y, Zhang Z. HER3: Updates and current biology function, targeted therapy and pathologic detecting methods. Life Sci 2024; 357:123087. [PMID: 39366553 DOI: 10.1016/j.lfs.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Being a member of the EGFR tyrosine kinase family, HER3 has been shown to be overexpressed in a number of cancers, including breast cancer (BC). The kinase activity of HER3 is extremely low, and it forms heterodimers with partners, HER2 in particular, that promote biological processes like cell migration, survival, and proliferation by activating downstream carcinogenic signaling pathways. The overexpression of HER3 is also directly linked to tumor invasion, metastasis, and a poor prognosis. Despite the relatively low expression of HER3 compared to EGFR and HER2, a lot of targeted drugs are making their way into clinical trials and seem to have a bright further. This review aims to summarize the relationship between HER3 overexpression, mutations, and carcinogenicity and drug resistance, starting from the unique structure and kinase activity of HER3. Simultaneously, numerous approaches to HER3 targeted therapy are enumerated, and the clinical detection methods for HER3 that are commonly employed in pathology are sorted and contrasted to offer physicians a range of options. We think that a better knowledge of the mechanisms underlying HER3 in tumors and the advancement of targeted HER3 therapy will contribute to an improved prognosis for cancer patients and an increase in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Leyi Gao
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengna Feng
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China
| | - Yongjie Zhou
- Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No.37, Guo Xue Xiang, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Bian DJH, Cohen SF, Lazaratos AM, Bouganim N, Dankner M. Antibody-Drug Conjugates for the Treatment of Non-Small Cell Lung Cancer with Central Nervous System Metastases. Curr Oncol 2024; 31:6314-6342. [PMID: 39451775 PMCID: PMC11506643 DOI: 10.3390/curroncol31100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent an emerging class of targeted anticancer agents that have demonstrated impressive efficacy in numerous cancer types. In non-small cell lung cancer (NSCLC), ADCs have become a component of the treatment armamentarium for a subset of patients with metastatic disease. Emerging data suggest that some ADCs exhibit impressive activity even in central nervous system (CNS) metastases, a disease site that is difficult to treat and associated with poor prognosis. Herein, we describe and summarize the existing evidence surrounding ADCs in NSCLC with a focus on CNS activity.
Collapse
Affiliation(s)
- David J. H. Bian
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Sara F. Cohen
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Anna-Maria Lazaratos
- Faculté de Médecine, Université de Montreal. Montreal, QC H3A 1G1, Canada;
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nathaniel Bouganim
- Department of Oncology, McGill University Health Centre, Montreal, QC H3A 1G1, Canada;
| | - Matthew Dankner
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Chen Y, Lu A, Hu Z, Li J, Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett 2024; 599:217146. [PMID: 39098760 DOI: 10.1016/j.canlet.2024.217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.
Collapse
Affiliation(s)
- Yutao Chen
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyao Li
- College of Life Sciences, Xijiang University, Urumqi, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand; College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China; College of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi Province, China; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| |
Collapse
|
4
|
Geng W, Thomas H, Chen Z, Yan Z, Zhang P, Zhang M, Huang W, Ren X, Wang Z, Ding K, Zhang J. Mechanisms of acquired resistance to HER2-Positive breast cancer therapies induced by HER3: A comprehensive review. Eur J Pharmacol 2024; 977:176725. [PMID: 38851563 DOI: 10.1016/j.ejphar.2024.176725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Wujun Geng
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Holly Thomas
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Zhiyuan Chen
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhixiu Yan
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pujuan Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
| |
Collapse
|
5
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
6
|
Momeny M, Tienhaara M, Sharma M, Chakroborty D, Varjus R, Takala I, Merisaari J, Padzik A, Vogt A, Paatero I, Elenius K, Laajala TD, Kurppa KJ, Westermarck J. DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol Med 2024; 16:1603-1629. [PMID: 38886591 PMCID: PMC11251193 DOI: 10.1038/s44321-024-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Mari Tienhaara
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Deepankar Chakroborty
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Roosa Varjus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Iina Takala
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Vogt
- University of Pittsburgh Drug Discovery Institute, Department of Computational and Systems Biology, Pittsburgh Technology Center, Pittsburgh, PA, USA
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Klaus Elenius
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Xu D, Hu Z, Wang K, Hu S, Zhou Y, Zhang S, Chen Y, Pan T. Why does HER2-positive breast cancer metastasize to the brain and what can we do about it? Crit Rev Oncol Hematol 2024; 195:104269. [PMID: 38272149 DOI: 10.1016/j.critrevonc.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women. However, in the middle and late stages, some people develop distant metastases, which considerably lower the quality of life and life expectancy. The brain is one of the sites where metastasis frequently happens. According to epidemiological research, brain metastases occur at a late stage in 30-50% of patients with HER2-positive breast cancer, resulting in a poor prognosis. Additionally, few treatments are available for HER2-positive brain metastatic breast cancer, and the mortality rate is remarkable owing to the complexity of the brain's anatomical structure and physiological function. In this review, we described the stages of the brain metastasis of breast cancer, the relationship between the microenvironment and metastatic cancer cells, and the unique molecular and cellular mechanisms. It involves cancer cells migrating, invading, and adhering to the brain; penetrating the blood-brain barrier; interacting with brain cells; and activating signal pathways once inside the brain. Finally, we reviewed current clinically used treatment approaches for brain metastasis in HER2-positive breast cancer; summarized the traditional treatment, targeted treatment, immunotherapy, and other treatment modalities; compared the benefits and drawbacks of each approach; discussed treatment challenges; and emphasized the importance of identifying potential targets to improve patient survival rates and comprehend brain metastasis in breast cancer.
Collapse
Affiliation(s)
- Dongyan Xu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengfang Hu
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiyue Wang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyao Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shizhen Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Pan
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
8
|
Bonni S, Brindley DN, Chamberlain MD, Daneshvar-Baghbadorani N, Freywald A, Hemmings DG, Hombach-Klonisch S, Klonisch T, Raouf A, Shemanko CS, Topolnitska D, Visser K, Vizeacoumar FJ, Wang E, Gibson SB. Breast Tumor Metastasis and Its Microenvironment: It Takes Both Seed and Soil to Grow a Tumor and Target It for Treatment. Cancers (Basel) 2024; 16:911. [PMID: 38473273 DOI: 10.3390/cancers16050911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenvironments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds, whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted treatments for different subtypes of breast cancers have improved overall patient survival, even with metastasis. However, these targeted treatments are based upon the biology of the primary tumor and often these patients' relapse, after therapy, with metastatic tumors. The advent of immunotherapy allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma. This review will describe the heterogeneic nature of breast cancer cells and their microenvironments. The distinct properties of metastatic breast cancer cells and their microenvironments that allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic approaches to improve treatments for metastatic breast cancer.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - M Dean Chamberlain
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Nima Daneshvar-Baghbadorani
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology, Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Carrie Simone Shemanko
- The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Diana Topolnitska
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E OT5, Canada
- Cancer Care Manitoba Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kaitlyn Visser
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Saskatchewan Cancer Agency, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Spencer B Gibson
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
9
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M Saunus
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
10
|
He Y, Shao Y, Chen Q, Liu C, Zhu F, Liu H. Brain metastasis in de novo stage IV breast cancer. Breast 2023; 71:54-59. [PMID: 37499376 PMCID: PMC10413138 DOI: 10.1016/j.breast.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Information of brain metastasis (BM) in de novo stage IV breast cancer is lacking, which is an unavoidable problem and dilemma in practice. Understanding the current situation is helpful for the clinical cognition and decision-making. METHODS We retrospectively analyzed the clinical and survival information of de novo stage IV breast cancer with BM between 2015 and 2019 from the Surveillance, Epidemiology, and End Results (SEER) database. Multivariable logistic and Cox regression analyses were performed to identify predictors of BM and factors associated with all-cause mortality in de novo stage IV breast cancer, respectively. Overall survival (OS) was calculated using Kaplan-Meier and log-rank tests. RESULTS Our cohort consisted of 1366 patients with BM in de novo stage IV breast cancer, with an incidence of 8.38% in patients with metastatic disease to any distant site. Incidence was highest among patients with metastatic disease with HR-HER2+ (12.95%) and HR-HER2- (13.40%) subtypes. The higher the number of extracranial metastases, the higher the BM incidence. The median OS was 12.0 (95%CI: 10.426-13.574) months in BM group; it was longest in HR + HER2+ (19.0[95%CI: 11.793-26.207] months), and shortest in HR-HER2- (7.0 [95%CI:5.354-8.646] months). Marital status, subtype, and abundance of metastatic sites influenced morbidity and OS of BM in de novo stage IV breast cancer. CONCLUSIONS Population-based estimates of the incidence and prognosis for patients with BM in de novo stage IV breast cancer were closely associated with subtype and metastatic burden. These findings may be helpful in developing diagnostic strategies, especially for brain screening.
Collapse
Affiliation(s)
- Yaning He
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Yingbo Shao
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Qi Chen
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Chaojun Liu
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Fangyuan Zhu
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Hui Liu
- Department of Breast Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Breast Oncology, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.
| |
Collapse
|
11
|
Ma J, Chan JJ, Toh CH, Yap YS. Emerging systemic therapy options beyond CDK4/6 inhibitors for hormone receptor-positive HER2-negative advanced breast cancer. NPJ Breast Cancer 2023; 9:74. [PMID: 37684290 PMCID: PMC10491615 DOI: 10.1038/s41523-023-00578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Endocrine therapy (ET) with cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is currently the standard first-line treatment for most patients with hormone receptor (HR) positive, human epidermal growth factor receptor (HER2) negative advanced breast cancer. However, resistance to ET and CDK4/6i inevitably ensues. The optimal post-progression treatment regimens and their sequencing continue to evolve in the rapidly changing treatment landscape. In this review, we summarize the mechanisms of resistance to ET and CDK4/6i, which can be broadly classified as alterations affecting cell cycle mediators and activation of alternative signaling pathways. Recent clinical trials have been directed at the targets and pathways implicated, including estrogen and androgen receptors, PI3K/AKT/mTOR and MAPK pathways, tyrosine kinase receptors such as FGFR and HER2, homologous recombination repair pathway, other components of the cell cycle and cell death. We describe the findings from these clinical trials using small molecule inhibitors, antibody-drug conjugates and immunotherapy, providing insights into how these novel strategies may circumvent treatment resistance, and discuss how some have not translated into clinical benefit. The challenges posed by tumor heterogeneity, adaptive rewiring of signaling pathways and dose-limiting toxicities underscore the need to elucidate the latest tumor biology in each patient, and develop treatments with improved therapeutic index in the era of precision medicine.
Collapse
Affiliation(s)
- Jun Ma
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Jack Junjie Chan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ching Han Toh
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore.
- Oncology Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
12
|
Tomasich E, Steindl A, Paiato C, Hatziioannou T, Kleinberger M, Berchtold L, Puhr R, Hainfellner JA, Müllauer L, Widhalm G, Eckert F, Bartsch R, Heller G, Preusser M, Berghoff AS. Frequent Overexpression of HER3 in Brain Metastases from Breast and Lung Cancer. Clin Cancer Res 2023; 29:3225-3236. [PMID: 37036472 DOI: 10.1158/1078-0432.ccr-23-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE HER3 belongs to a family of receptor tyrosine kinases with oncogenic properties and is targeted by a variety of novel anticancer agents. There is a huge unmet medical need for systemic treatment options in patients with brain metastases (BM). Therefore, we aimed to investigate HER3 expression in BM of breast (BCa) and non-small cell lung cancer (NSCLC) as the basis for future clinical trial design. EXPERIMENTAL DESIGN We analyzed 180 BM samples of breast cancer or NSCLC and 47 corresponding NSCLC extracranial tissue. IHC was performed to evaluate protein expression of HER3, and immune cells based on CD3, CD8, and CD68. To identify dysregulated pathways based on differential DNA methylation patterns, we used Infinium MethylationEPIC microarrays. RESULTS A total of 99/132 (75.0%) of BCa-BM and 35/48 (72.9%) of NSCLC-BM presented with HER3 expression. Among breast cancer, HER2-positive and HER2-low BM showed significantly higher rates of HER3 coexpression than HER2-negative BM (87.1%/85.7% vs. 61.0%, P = 0.004). Among NSCLC, HER3 was more abundantly expressed in BM than in matched extracranial samples (72.9% vs. 41.3%, P = 0.003). No correlation of HER3 expression and intratumoral immune cell density was observed. HER3 expression did not correlate with overall survival from BM diagnosis. Methylation signatures differed according to HER3 status in BCa-BM samples. Pathway analysis revealed subtype-specific differences, such as TrkB and Wnt signaling pathways dysregulated in HER2-positive and triple-negative breast cancer BM, respectively. CONCLUSIONS HER3 is highly abundant in BM of breast cancer and NSCLC. Given the promising results of antibody-drug conjugates in extracranial disease, BM-specific trials that target HER3 are warranted. See related commentary by Kabraji and Lin, p. 2961.
Collapse
Affiliation(s)
- Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christina Paiato
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Kleinberger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Rainer Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Kabraji S, Lin NU. Keeping It in the Family: HER3 as a Target in Brain Metastases. Clin Cancer Res 2023; 29:2961-2963. [PMID: 37306554 DOI: 10.1158/1078-0432.ccr-23-1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In 180 patients with metastatic breast cancer and non-small cell lung cancer (NSCLC), HER3 expression was found in >70% of brain metastases (BM). HER3-targeting antibody-drug conjugates have demonstrated efficacy in HER3-expressing metastatic breast cancer and NSCLC. Thus, HER3 expression by IHC may be a biomarker for development of HER3-targeting BM-specific therapeutics. See related article by Tomasich et al., p. 3225.
Collapse
Affiliation(s)
- Sheheryar Kabraji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Braun A, Reddy S, Cheng L, Gattuso P, Yan L. Clinicopathologic Review of Metastatic Breast Cancer to the Gynecologic Tract. Int J Gynecol Pathol 2023; 42:414-420. [PMID: 36563298 DOI: 10.1097/pgp.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastatic spread is the single most significant predictor of poor survival in breast cancer. Some of the most common metastatic sites are the bones, lungs, liver, brain, and peritoneal cavity. Clinically metastatic breast cancer to the gynecologic tract is usually asymptomatic and diagnosed as an incidental finding during a histologic examination of gynecologic specimens resected for other reasons. Cases of metastatic breast cancer to gynecologic organs diagnosed from August 1995 to January 2021 were retrieved from our institution's pathology databases, and their clinicopathologic features were reviewed. The most common site of metastasis was the ovary which was involved in about 79% (22 of 28 cases) of metastases to the gynecologic tract. Clinically, only 8 cases (36%) presented with ovarian mass detected in imaging studies and the rest of the cases were all incidental findings. Among ovarian metastasis, 59% of cases were invasive lobular carcinoma and 41% were invasive ductal carcinoma. In 5 cases, metastatic breast cancer was found in the endometrium, including 2 cases with endometrial metastasis only and 3 cases with multiple gynecologic organs involved. Metastatic breast cancer rarely involved the lower gynecologic tract, with only 7% vaginal metastasis and 4% found in the vulva. The absolute majority of metastatic breast cancer outside of the ovaries were lobular carcinoma (88%). Most of the metastatic breast carcinomas were positive for estrogen receptor on immunohistochemistry (27 of 28 cases, 96%). Her-2/neu immunostaining was positive in 4 cases only (14%). Metastatic breast cancer needs to be distinguished from gynecologic primary neoplasms and metastatic tumors from adjacent urinary and GI tracts. A careful review of the patient's history and adequate immunohistochemistry panel are helpful to render the diagnosis.
Collapse
|
15
|
Thorne H, Devereux L, Li J, Alsop K, Christie L, van Geelen CT, Burdett N, Pishas KI, Woodford N, Leditschke J, Izzath MHMA, Strachan K, Young G, Jaravaza RD, Madadin MS, Archer M, Glengarry J, Iles L, Rathnaweera A, Hampson C, Almazrooei K, Burke M, Bandara P, Ranson D, Saeedi E, McNally O, Mileshkin L, Hamilton A, Ananda S, Au-Yeung G, Antill Y, Sandhu S, Savas P, Francis PA, Luen S, Loi S, Jennens R, Scott C, Moodie K, Cummings M, Reid A, McCart Reed A, Bowtell D, Lakhani SR, Fox S. BRCA1 and BRCA2 carriers with breast, ovarian and prostate cancer demonstrate a different pattern of metastatic disease compared with non-carriers: results from a rapid autopsy programme. Histopathology 2023; 83:91-103. [PMID: 36999648 DOI: 10.1111/his.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
AIM To catalogue and compare the pattern of metastatic disease in germline BRCA1/2 pathogenic mutation carriers and non-carriers with breast, ovarian and prostate cancer from a rapid autopsy programme. METHODS AND RESULTS The number of metastases in the major body systems and the proportion of participants with metastases were documented in 50 participants (19 germline mutation carriers). Analysis was conducted on the participants' pattern of disease for the different cancers and mutation subgroups. The four commonly affected organ systems were the digestive (liver only) (82%), respiratory (76%), gastrointestinal (65%) and reticuloendothelial (42%). There were significant differences in the pattern of metastatic breast cancer in BRCA1/2 germline carriers compared with non-carriers. Breast cancer carriers had significantly fewer organ systems involved (median n = 3, range = 1-3) compared with non-carriers (median n = 9, range = 1-7) (P = 0.03). BRCA1/2 carriers with ovarian carcinomas had significantly more organ systems with metastatic carcinoma (median n = 10, range = 3-8) than non-carriers (median n = 5, range = 3-5) (P < 0.001). There were no significant differences in the number of involved systems in BRCA2 carriers compared with non-carriers with prostate cancer (P = 1.0). There was an absence of locoregional disease (6.5%) compared with distant disease (93.5%) among the three cancer subtypes (P < 0.001). The majority of metastatic deposits (97%) collected during the autopsy were identified by recent diagnostic imaging. CONCLUSION Even though a major limitation of this study is that our numbers are small, especially in the breast cancer carrier group, the metastatic patterns of breast and ovarian cancers may be impacted by BRCA1/2 carrier status, suggesting that tumours derived from patients with these mutations use different mechanisms of dissemination. The findings may focus clinical diagnostic imaging for monitoring metastases where whole-body imaging resources are scant.
Collapse
Affiliation(s)
- Heather Thorne
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jason Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathryn Alsop
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Liz Christie
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Courtney T van Geelen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nikki Burdett
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathleen I Pishas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Noel Woodford
- The Victorian Institute of Forensic Medicine, Southbank, Australia
- Department of Forensic Medicine, Monash University, Clayton, Australia
| | - Jodie Leditschke
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | | | - Kate Strachan
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Gregory Young
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Rufaro D Jaravaza
- The Victorian Institute of Forensic Medicine, Southbank, Australia
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Anatomical Pathology, Stellenbosch University, Stellenbosch, South Africa
| | - Mohammed S Madadin
- The Victorian Institute of Forensic Medicine, Southbank, Australia
- Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Melanie Archer
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Joanna Glengarry
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Linda Iles
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | | | - Clare Hampson
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | | | - Michael Burke
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Pradeep Bandara
- The Victorian Institute of Forensic Medicine, Southbank, Australia
- Base Hospital Dambulla, Dambulla, Sri Lanka
- Base Hospital Puttlam, Puttlam, Sri Lanka
| | - David Ranson
- The Victorian Institute of Forensic Medicine, Southbank, Australia
| | - Essa Saeedi
- The Victorian Institute of Forensic Medicine, Southbank, Australia
- Abu Dhabi Police, Abu Dhabi, United Arab Emirates
| | - Orla McNally
- The Royal Women's Hospital, Parkville, Australia
- The University of Melbourne, Parkville, Australia
| | - Linda Mileshkin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anne Hamilton
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sumitra Ananda
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - George Au-Yeung
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Yoland Antill
- Department of Medical Oncology, Cabrini Health, Malvern, Australia
- Department of Medical Oncology, Peninsula Health, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Prudence A Francis
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ross Jennens
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Clare Scott
- The University of Melbourne, Parkville, Australia
- The Walter and Eliza Hall Institute, Parkville, Australia
| | - Kate Moodie
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Cancer Imaging Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Margaret Cummings
- Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Andrew Reid
- Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- State-Wide Forensic Medical Services, Hobart, Tasmania, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- University of Queensland, Brisbane, Australia
| | - Amy McCart Reed
- Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - David Bowtell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sunil R Lakhani
- Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Stephen Fox
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
- Research Department, Peter MacCallum Cancer Centre, Melbourne, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
16
|
Rosin J, Svegrup E, Valachis A, Zerdes I. Discordance of PIK3CA mutational status between primary and metastatic breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2023:10.1007/s10549-023-07010-1. [PMID: 37392328 PMCID: PMC10361863 DOI: 10.1007/s10549-023-07010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION In light of the clinically meaningful results of the PI3K inhibitors in PIK3CA-mutated metastatic breast cancer (BC) patients, the reliable identification of PIK3CA mutations is of outmost importance. However, lack of evidence on the optimal site and timing of assessment, presence of temporal heterogeneity and analytical factors pose several challenges in clinical routine. We aimed to study the discordance rates of PIK3CA mutational status between primary and matched metastatic tumors. METHODS A systematic literature search was performed in three different databases (Embase, Pubmed, Web of Science) and-upon screening-a total of 25 studies reporting PIK3CA mutational status both on primary breast tumors and their matched metastases were included in this meta-analysis. The random-effects model was used for pooled analyses of discordance of PIK3CA mutational status. RESULTS The overall discordance rate of PIK3CA mutational status was 9.8% (95% CI, 7.0-13.0; n = 1425) and did not significantly differ within BC subtypes or metastatic sites. The change was bi-directional, more commonly observed from PIK3CA mutated to wild-type status (14.9%, 95% CI 11.8-18.2; n tumor pairs = 453) rather than the opposite direction (8.9%, 95% CI 6.1-12.1; n tumor pairs = 943). CONCLUSIONS Our results indicate the need of obtaining metastatic biopsies for PIK3CA-mutation analysis and the possibility of testing of the primary tumor, in case a re-biopsy deemed non-feasible.
Collapse
Affiliation(s)
- Justus Rosin
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ella Svegrup
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Antonios Valachis
- Department of Oncology, Faculty of Medicine and Health, Örebro University Hospital, Örebro University, Örebro, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Theme Cancer, Karolinska University Hospital & Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
17
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Hessey S, Fessas P, Zaccaria S, Jamal-Hanjani M, Swanton C. Insights into the metastatic cascade through research autopsies. Trends Cancer 2023; 9:490-502. [PMID: 37059687 DOI: 10.1016/j.trecan.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Metastasis is a complex process and the leading cause of cancer-related death globally. Recent studies have demonstrated that genomic sequencing data from paired primary and metastatic tumours can be used to trace the evolutionary origins of cells responsible for metastasis. This approach has yielded new insights into the genomic alterations that engender metastatic potential, and the mechanisms by which cancer spreads. Given that the reliability of these approaches is contingent upon how representative the samples are of primary and metastatic tumour heterogeneity, we review insights from studies that have reconstructed the evolution of metastasis within the context of their cohorts and designs. We discuss the role of research autopsies in achieving the comprehensive sampling necessary to advance the current understanding of metastasis.
Collapse
Affiliation(s)
- Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Petros Fessas
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
19
|
Wessels PH, Boelens MC, Monkhorst K, Sonke GS, van den Broek D, Brandsma D. A review on genetic alterations in CNS metastases related to breast cancer treatment. Is there a role for liquid biopsies in CSF? J Neurooncol 2023; 162:1-13. [PMID: 36820955 DOI: 10.1007/s11060-023-04261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Acquired mutations or altered gene expression patterns in brain metastases (BM) and/or leptomeningeal metastases (LM) of breast cancer may play a role in therapy-resistance and offer new molecular targets and treatment options. Despite expanding knowledge of genetic alterations in breast cancer and their metastases, clinical applications for patients with central nervous system (CNS) metastases are currently limited. An emerging tool are DNA-techniques that may detect genetic alterations of the CNS metastases in the cerebrospinal fluid (CSF). In this review we discuss genetic studies in breast cancer and CNS metastases and the role of liquid biopsies in CSF.
Collapse
Affiliation(s)
- Peter H Wessels
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands. .,Department of Neurology, St. Antonius Hospital, Utrecht, Nieuwegein, The Netherlands.
| | - Mirjam C Boelens
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute-Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Zhai J, Wu Y, Ma F, Kaklamani V, Xu B. Advances in medical treatment of breast cancer in 2022. CANCER INNOVATION 2023; 2:1-17. [PMID: 38090370 PMCID: PMC10686187 DOI: 10.1002/cai2.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 10/15/2024]
Abstract
Breast cancer has replaced lung cancer as the most common malignancy worldwide. The 5-year survival rate of breast cancer has reached 90%. Systemic treatment of breast cancer has developed into a mature system including chemotherapy, targeted therapy, endocrine therapy and immunotherapy. This article summarizes the annual progress of breast cancer chemotherapy, targeted therapy, endocrine therapy and immunotherapy in 2022, providing valuable information for future research to better guide individualized treatment of breast cancer, thereby improving the prognosis and quality of life of breast cancer patients.
Collapse
Affiliation(s)
- Jingtong Zhai
- Department of Medical OncologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yun Wu
- Department of Medical OncologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ma
- Department of Medical OncologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Virginia Kaklamani
- Division of Hematology, OncologyUT Health San Antonio MD Anderson Cancer CenterSan AntonioTexasUSA
| | - Binghe Xu
- Department of Medical OncologyNational Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
22
|
Kaleem M, Dalhat MH, Azmi L, Asar TO, Ahmad W, Alghanmi M, Almostadi A, Zughaibi TA, Tabrez S. An Insight into Molecular Targets of Breast Cancer Brain Metastasis. Int J Mol Sci 2022; 23:ijms231911687. [PMID: 36232989 PMCID: PMC9569595 DOI: 10.3390/ijms231911687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain metastasis is one of the major reasons of death in breast cancer (BC) patients, significantly affecting the quality of life, physical activity, and interdependence on several individuals. There is no clear evidence in scientific literature that depicts an exact mechanism relating to brain metastasis in BC patients. The tendency to develop breast cancer brain metastases (BCBMs) differs by the BC subtype, varying from almost half with triple-negative breast cancer (TNBC) (HER2- ER- PR-), one-third with HER2+ (human epidermal growth factor receptor 2-positive, and around one-tenth with luminal subclass (ER+ (estrogen positive) or PR+ (progesterone positive)) breast cancer. This review focuses on the molecular pathways as possible therapeutic targets of BCBMs and their potent drugs under different stages of clinical trial. In view of increased numbers of clinical trials and systemic studies, the scientific community is hopeful of unraveling the underlying mechanisms of BCBMs that will help in designing an effective treatment regimen with multiple molecular targets.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Faculty of Pharmacy, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Mahmood Hassan Dalhat
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru 560091, India
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Torki A. Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
23
|
Ippolitov D, Arreza L, Munir MN, Hombach-Klonisch S. Brain Microvascular Pericytes—More than Bystanders in Breast Cancer Brain Metastasis. Cells 2022; 11:cells11081263. [PMID: 35455945 PMCID: PMC9028330 DOI: 10.3390/cells11081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in the brain metastatic process.
Collapse
Affiliation(s)
- Danyyl Ippolitov
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Leanne Arreza
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Maliha Nuzhat Munir
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
- Department of Pathology, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
- Correspondence:
| |
Collapse
|
24
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
25
|
Lim M, Nguyen TH, Niland C, Reid LE, Jat PS, Saunus JM, Lakhani SR. Landscape of Epidermal Growth Factor Receptor Heterodimers in Brain Metastases. Cancers (Basel) 2022; 14:cancers14030533. [PMID: 35158800 PMCID: PMC8833370 DOI: 10.3390/cancers14030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary HER2+ breast cancer patients are treated with agents that tag HER2+ tumour cells for elimination by the immune system, down-modulate HER2 activity and/or block the formation of HER2 dimers, including the neuregulin-1 receptor, HER2-HER3. HER2-targeted therapies prolong survival by lowering the risk of relapse, but do not prevent brain metastases. The reasons for this are not fully understood. We quantified HER2-HER3 dimers in 203 brain metastases, and 34 primary breast tumour samples. Dimer frequency was relatively high in brain metastases from breast, ovarian, lung and kidney cancers, and in brain metastases compared to patient-matched breast tumours; but did not reliably correlate with HER2/HER3 expression or activation. In in vitro experiments, pertuzumab failed to suppress HER2-HER3 dimers in HER2+ breast cancer cells provided with a saturating concentration of neuregulin-1. These findings may provide insights about the differences in intracranial versus extracranial efficacy of HER2-targeted therapies. Abstract HER2+ breast cancer patients have an elevated risk of developing brain metastases (BM), despite adjuvant HER2-targeted therapy. The mechanisms underpinning this reduced intracranial efficacy are unclear. We optimised the in situ proximity ligation assay (PLA) for detection of the high-affinity neuregulin-1 receptor, HER2-HER3 (a key target of pertuzumab), in archival tissue samples and developed a pipeline for high throughput extraction of PLA data from fluorescent microscope image files. Applying this to a large BM sample cohort (n = 159) showed that BM from breast, ovarian, lung and kidney cancers have higher HER2-HER3 levels than other primary tumour types (melanoma, colorectal and prostate cancers). HER2 status, and tumour cell membrane expression of pHER2(Y1221/1222) and pHER3(Y1222) were positively, but not exclusively, associated with HER2-HER3 frequency. In an independent cohort (n = 78), BM had significantly higher HER2-HER3 levels than matching primary tumours (p = 0.0002). For patients who had two craniotomy procedures, HER2-HER3 dimer levels were lower in the consecutive lesion (n = 7; p = 0.006). We also investigated the effects of trastuzumab and pertuzumab on five different heterodimers in vitro: HER2-EGFR, HER2-HER4, HER2-HER3, HER3-HER4, HER3-EGFR. Treatment significantly altered the absolute frequencies of individual complexes in SKBr3 and/or MDA-MB-361 cells, but in the presence of neuregulin-1, the overall distribution was not markedly altered, with HER2-HER3 and HER2-HER4 remaining predominant. Together, these findings suggest that markers of HER2 and HER3 expression are not always indicative of dimerization, and that pertuzumab may be less effective at reducing HER2-HER3 dimerization in the context of excess neuregulin.
Collapse
Affiliation(s)
- Malcolm Lim
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.L.); (C.N.); (L.E.R.)
| | - Tam H. Nguyen
- Flow Cytometry and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Colleen Niland
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.L.); (C.N.); (L.E.R.)
| | - Lynne E. Reid
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.L.); (C.N.); (L.E.R.)
| | - Parmjit S. Jat
- Department of Neurodegenerative Disease and MRC Prion Unit, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK;
| | - Jodi M. Saunus
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.L.); (C.N.); (L.E.R.)
- Correspondence: (J.M.S.); (S.R.L.)
| | - Sunil R. Lakhani
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia; (M.L.); (C.N.); (L.E.R.)
- Pathology Queensland, Royal Brisbane Women’s Hospital, Herston, QLD 4029, Australia
- Correspondence: (J.M.S.); (S.R.L.)
| |
Collapse
|
26
|
Identification of potential genes related to breast cancer brain metastasis in breast cancer patients. Biosci Rep 2021; 41:229807. [PMID: 34541602 PMCID: PMC8521534 DOI: 10.1042/bsr20211615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023] Open
Abstract
Brain metastases (BMs) usually develop in breast cancer (BC) patients. Thus, the molecular mechanisms of breast cancer brain metastasis (BCBM) are of great importance in designing therapeutic strategies to treat or prevent BCBM. The present study attempted to identify novel diagnostic and prognostic biomarkers of BCBM. Two datasets (GSE125989 and GSE100534) were obtained from the Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs) in cases of BC with and without brain metastasis (BM). A total of 146 overlapping DEGs, including 103 up-regulated and 43 down-regulated genes, were identified. Functional enrichment analysis showed that these DEGs were mainly enriched for functions including extracellular matrix (ECM) organization and collagen catabolic fibril organization. Using protein-protein interaction (PPI) and principal component analysis (PCA) analysis, we identified ten key genes, including LAMA4, COL1A1, COL5A2, COL3A1, COL4A1, COL5A1, COL5A3, COL6A3, COL6A2, and COL6A1. Additionally, COL5A1, COL4A1, COL1A1, COL6A1, COL6A2, and COL6A3 were significantly associated with the overall survival of BC patients. Furthermore, COL6A3, COL5A1, and COL4A1 were potentially correlated with BCBM in human epidermal growth factor 2 (HER2) expression. Additionally, the miR-29 family might participate in the process of metastasis by modulating the cancer microenvironment. Based on datasets in the GEO database, several DEGs have been identified as playing potentially important roles in BCBM in BC patients.
Collapse
|
27
|
Salkeni MA, Rizvi W, Hein K, Higa GM. Neu Perspectives, Therapies, and Challenges for Metastatic HER2-Positive Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:539-557. [PMID: 34602823 PMCID: PMC8481821 DOI: 10.2147/bctt.s288344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Even though gene amplification or protein overexpression occurs in approximately one-fifth of all breast cancers, the discovery of HER2 has, nevertheless, had profound implications for the disease. Indeed, the characterization of the receptor resulted in a number of significant advances. Structurally, unique features provided avenues for the development of numerous compounds with target-specificity; molecularly, biological constructs revealed a highly complex, internal signal transduction pathway with regulatory effects on tumor proliferation, survival, and perhaps, even resistance; and clinically, disease outcomes manifested its predictive and prognostic value. Yet despite the receptor’s utility, the beneficial effects are diminished by tumor recurrence after neo- or adjuvant therapy as well as losses resulting from the inability to cure patients with metastatic disease. What these observations suggest is that while tumor response may be partially linked to uncoupling cell surface message reception and nuclear gene expression, as well as recruitment of the innate immune system, disease progression and/or resistance may involve a reprogrammable signaling mainframe that elicits alternative growth and survival signals. This review attempts to meld current perceptions related to HER2-positive metastatic breast cancer with particular attention to current biological insights and therapeutic challenges.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wajeeha Rizvi
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | - Kyaw Hein
- Department of Business, Lamar University, Houston, TX, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
28
|
Brain Metastasis Treatment: The Place of Tyrosine Kinase Inhibitors and How to Facilitate Their Diffusion across the Blood-Brain Barrier. Pharmaceutics 2021; 13:pharmaceutics13091446. [PMID: 34575525 PMCID: PMC8468523 DOI: 10.3390/pharmaceutics13091446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of brain metastases has been increasing constantly for the last 20 years, because of better control of metastases outside the brain, and the failure of most drugs to cross the blood–brain barrier at relevant pharmacological concentrations. Recent advances in the molecular biology of cancer have led to the identification of numerous molecular alterations, some of them targetable with the development of specific targeted therapies, including tyrosine kinase inhibitors. In this narrative review, we set out to describe the state-of-the-art in the use of tyrosine kinase inhibitors for the treatment of melanoma, lung cancer, and breast cancer brain metastases. We also report preclinical and clinical pharmacological data on brain exposure to tyrosine kinase inhibitors after oral administration and describe the most recent advances liable to facilitate their penetration of the blood–brain barrier at relevant concentrations and limit their physiological efflux.
Collapse
|
29
|
Bergen ES, Scherleitner P, Ferreira P, Kiesel B, Müller C, Widhalm G, Dieckmann K, Prager G, Preusser M, Berghoff AS. Primary tumor side is associated with prognosis of colorectal cancer patients with brain metastases. ESMO Open 2021; 6:100168. [PMID: 34098230 PMCID: PMC8190486 DOI: 10.1016/j.esmoop.2021.100168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background Brain metastases (BM) are a rare complication in colorectal cancer (CRC) patients and associated with an unfavorable survival prognosis. Primary tumor side (PTS) was shown to act as a prognostic and predictive biomarker in several trials including metastatic CRC (mCRC) patients. Here, we aim to investigate whether PTS is also associated with the outcome of CRC patients with BM. Methods Patients treated for CRC BM between 1988 and 2017 at an academic care center were included. Right-sided CRC was defined as located in the appendix, cecum and ascending colon and left-sided CRC was defined as located in the descending colon, sigma and rectum. Results Two hundred and eighty-one CRC BM patients were available for this analysis with 239/281 patients (85.1%) presenting with a left-sided and 42/281 patients (14.9%) with a right-sided primary CRC. BM-free survival (BMFS) was significantly longer in left-sided compared with right-sided CRC patients (33 versus 20 months, P = 0.009). Overall survival from CRC diagnosis as well as from diagnosis of BM was significantly longer in patients with a left-sided primary (42 versus 25 months, P = 0.002 and 5 versus 4 months, P = 0.005, respectively). In a multivariate analysis including graded prognostic assessment, PTS remained significantly associated with prognosis after BM (hazard ratio 0.65; 95% confidence interval: 0.46-0.92 months, P = 0.0016). Conclusions PTS was associated with survival times after the rare event of BM development in CRC patients. Therefore, its prognostic value remains significant even thereafter. Primary tumor side is a relevant and independent prognostic factor in mCRC. Left-sided CRC was associated with a significantly longer BMFS compared with right-sided CRC. OS from initial diagnosis of CRC as well as from BM was significantly longer in patients with left-sided primaries.
Collapse
Affiliation(s)
- E S Bergen
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - P Scherleitner
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - P Ferreira
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - B Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - C Müller
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - G Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - K Dieckmann
- Department of Radiooncology, Medical University of Vienna, Vienna, Austria
| | - G Prager
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Matossian MD, Hoang VT, Burks HE, La J, Elliott S, Brock C, Rusch DB, Buechlein A, Nephew KP, Bhatt A, Cavanaugh JE, Flaherty PT, Collins-Burow BM, Burow ME. Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer. Oncoscience 2021; 8:64-71. [PMID: 34026925 PMCID: PMC8131078 DOI: 10.18632/oncoscience.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.
Collapse
Affiliation(s)
- Margarite D. Matossian
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Van T. Hoang
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Hope E. Burks
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Jacqueline La
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Steven Elliott
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| | - Courtney Brock
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN
47405, USA
| | - Aaron Buechlein
- Medical Sciences Program, Indiana University School of Medicine-Bloomington,
Bloomington, IN 47405, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington,
Bloomington, IN 47405, USA
| | - Akshita Bhatt
- Department of Pharmacology, Duquesne University School of Pharmacy, Pittsburgh,
PA 15282, USA
| | - Jane E. Cavanaugh
- Department of Pharmacology, Duquesne University School of Pharmacy, Pittsburgh,
PA 15282, USA
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, Duquesne University School of Pharmacy,
Pittsburgh, PA 15282, USA
| | - Bridgette M. Collins-Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| |
Collapse
|
31
|
Watase C, Shiino S, Shimoi T, Noguchi E, Kaneda T, Yamamoto Y, Yonemori K, Takayama S, Suto A. Breast Cancer Brain Metastasis-Overview of Disease State, Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:cancers13051078. [PMID: 33802424 PMCID: PMC7959316 DOI: 10.3390/cancers13051078] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary In this review, we present the latest information on the pathophysiology, diagnosis, and local and systemic treatment of brain metastases from breast cancer, with a focus on recent publications. Improving the local treatment and subtype-specific systemic therapies through advancements in basic and translational research will contribute to better clinical outcomes for patients with breast cancer brain metastasis. Abstract Breast cancer is the second most common origin of brain metastasis after lung cancer. Brain metastasis in breast cancer is commonly found in patients with advanced course disease and has a poor prognosis because the blood–brain barrier is thought to be a major obstacle to the delivery of many drugs in the central nervous system. Therefore, local treatments including surgery, stereotactic radiation therapy, and whole-brain radiation therapy are currently considered the gold standard treatments. Meanwhile, new targeted therapies based on subtype have recently been developed. Some drugs can exceed the blood–brain barrier and enter the central nervous system. New technology for early detection and personalized medicine for metastasis are warranted. In this review, we summarize the historical overview of treatment with a focus on local treatment, the latest drug treatment strategies, and future perspectives using novel therapeutic agents for breast cancer patients with brain metastasis, including ongoing clinical trials.
Collapse
Affiliation(s)
- Chikashi Watase
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Tatsunori Shimoi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Emi Noguchi
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Yusuke Yamamoto
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (T.S.); (E.N.); (K.Y.)
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan; (C.W.); (S.S.); (S.T.)
- Correspondence: ; Tel.: +81-3-3542-2511; Fax: +81-3-3545-3567
| |
Collapse
|
32
|
Gao Y, Liu J, Qian X, He X. Identification of markers associated with brain metastasis from breast cancer through bioinformatics analysis and verification in clinical samples. Gland Surg 2021; 10:924-942. [PMID: 33842237 DOI: 10.21037/gs-20-767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Brain metastasis from breast cancer (BC) is an important cause of BC-related death. The present study aimed to identify markers of brain metastasis from BC. Methods Datasets were downloaded from the public databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) was performed to identify metastasis-associated genes (MAGs). Least absolute shrinkage and selection operator (LASSO) Cox proportional hazards regression models were constructed for screening key MAGs. Survival analysis and receiver operating characteristic (ROC) curves were used for evaluating the prognostic value. The factors associated with tumor metastasis were integrated to create a nomogram of TCGA data using R software. Gene Set Enrichment Analyses (GSEA) was performed for detecting the potential mechanisms of identified MAGs. Immunohistochemistry (IHC) was used to verify the expression of the key genes in clinical samples. Results The genes in 2 modules were identified to be significantly associated with metastasis through WGCNA. LASSO Cox proportional hazards regression models were constructed successfully. Subsequently, a clinical prediction model was constructed, and a nomogram was mapped, which had better sensitivity and specificity for BC metastasis. Two key genes, discs large homolog 3 (DLG3) and growth factor independence 1 (GFI1), were highly expressed in clinical samples, and the expression of these 2 genes was associated with patients' survival time. Conclusions We successfully constructed a clinical prediction model for brain metastasis from BC, and identified that the expression of DLG3 and GFI1 were strongly associated with brain metastasis from BC.
Collapse
Affiliation(s)
- Yongchang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianjing Liu
- Department of Nuclear Medicine and Molecular Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiaolong Qian
- Department of Breast Cancer Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Haikala HM, Jänne PA. Thirty Years of HER3: From Basic Biology to Therapeutic Interventions. Clin Cancer Res 2021; 27:3528-3539. [PMID: 33608318 DOI: 10.1158/1078-0432.ccr-20-4465] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
HER3 is a pseudokinase member of the EGFR family having a role in both tumor progression and drug resistance. Although HER3 was discovered more than 30 years ago, no therapeutic interventions have reached clinical approval to date. Because the evidence of the importance of HER3 is accumulating, increased amounts of preclinical and clinical trials with HER3-targeting agents are emerging. In this review article, we discuss the most recent HER3 biology in tumorigenic events and drug resistance and provide an overview of the current and emerging strategies to target HER3.
Collapse
Affiliation(s)
- Heidi M Haikala
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Morgan AJ, Giannoudis A, Palmieri C. The genomic landscape of breast cancer brain metastases: a systematic review. Lancet Oncol 2021; 22:e7-e17. [PMID: 33387511 DOI: 10.1016/s1470-2045(20)30556-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer brain metastases are an increasing clinical problem. Studies have shown that brain metastases from breast cancer have a distinct genomic landscape to that of the primary tumour, including the presence of mutations that are absent in the primary breast tumour. In this Review, we aim to review and evaluate genomic sequencing data for breast cancer brain metastases by searching PubMed, Embase, and Scopus for relevant articles published in English between database inception and May 30, 2020. Extracted information includes data for mutations, receptor status (eg, immunohistochemistry and Prediction Analysis of Microarray 50 [PAM50]), and copy number alterations from published manuscripts and supplementary materials. Of the 431 articles returned by the database search, 13 (3%) breast cancer brain metastases sequencing studies, comprising 164 patients with sequenced brain metastases, met all our inclusion criteria. We identified 268 mutated genes that were present in two or more breast cancer brain metastases samples. Of these 268 genes, 22 (8%) were mutated in five or more patients and pathway enrichment analysis showed their involvement in breast cancer-related signalling pathways, regulation of gene transcription, cell cycle, and DNA repair. Actionability analysis using the Drug Gene Interaction Database revealed that 15 (68%) of these 22 genes are actionable drug targets. In addition, immunohistochemistry and PAM50 data showed receptor discordancy between primary breast cancers and their paired brain metastases. This systematic review provides a detailed overview of the most commonly mutated genes identified in samples of breast cancer brain metastases and their clinical relevance. These data highlight the differences between primary breast cancers and brain metastases and the importance of acquiring and analysing brain metastasis samples for further study.
Collapse
Affiliation(s)
- Alexander J Morgan
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Medical Oncology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
35
|
"Triple-Negative Breast Cancer Central Nervous System Metastases From the Laboratory to the Clinic". ACTA ACUST UNITED AC 2021; 27:76-82. [PMID: 33475296 DOI: 10.1097/ppo.0000000000000503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Triple-negative breast cancer (TNBC) accounts for 15% to 20% of breast cancers and has an incidence as high as 50% of brain metastases once patients develop advanced disease. The lack of targeted and effective therapies, characteristic of this subtype of breast cancer, is especially evident once central nervous system (CNS) metastases occur. Compared with other subtypes of breast cancer, TNBC patients have the shorter interval from diagnosis to development of brain metastases and the shorter overall survival once they occur, a median of 4 to 6 months. Preclinical studies of TNBC and CNS microenvironment are actively ongoing, clarifying mechanisms and orienting more effective approaches to therapy. While the first drugs have been specifically approved for use in metastatic TNBC, data on their CNS effect are still awaited.
Collapse
|
36
|
Sinevici N, Ataeinia B, Zehnder V, Lin K, Grove L, Heidari P, Mahmood U. HER3 Differentiates Basal From Claudin Type Triple Negative Breast Cancer and Contributes to Drug and Microenvironmental Induced Resistance. Front Oncol 2020; 10:554704. [PMID: 33330026 PMCID: PMC7715030 DOI: 10.3389/fonc.2020.554704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is an aggressive form of Breast Cancer (BC). Numerous kinase inhibitors (KI) targeting different pathway nodes have shown limited benefit in the clinical setting. In this study, we aim to characterize the extent of HER3 reliance and to define the effect of Neuregulin (NRG) isoforms in TNBCs. Basal and Claudin type TNBC cell lines were treated with a range of small molecule inhibitors, in the presence or absence of the HER3 ligand NRG. Single agent and combination therapy was also evaluated in human cancer cell lines through viability and biochemical assessment of the AKT/MAPK signaling pathway. We show that Basal (BT20, HCC-70, and MDA-MB-468) and Claudin type (MDA-MB-231, BT-549) TNBC cell lines displayed differential reliance on the HER family of receptors. Expression and dynamic HER3 upregulation was predominant in the Basal TNBC subtype. Furthermore, the presence of the natural ligand NRG showed potent signaling through the HER3-AKT pathway, significantly diminishing the efficacy of the AKT and PI3K inhibitors tested. We report that NRG augments the HER3 feedback mechanism for continued cell survival in TNBC. We demonstrate that combination strategies to effectively block the EGFR-HER3-AKT pathway are necessary to overcome compensatory mechanisms to NRG dependent and independent resistance mechanisms. Our findings suggests that the EGFR-HER3 heterodimer forms a major signaling hub and is a key player in tumorigenesis in Basal but not Claudin type TNBC tested. Thus, HER3 could potentially serve as a biomarker for identifying patients in which targeted therapy against the EGFR-HER3-AKT axis would be most valuable.
Collapse
Affiliation(s)
- Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Veronica Zehnder
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kevin Lin
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lauren Grove
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Pellerino A, Internò V, Mo F, Franchino F, Soffietti R, Rudà R. Management of Brain and Leptomeningeal Metastases from Breast Cancer. Int J Mol Sci 2020; 21:E8534. [PMID: 33198331 PMCID: PMC7698162 DOI: 10.3390/ijms21228534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The management of breast cancer (BC) has rapidly evolved in the last 20 years. The improvement of systemic therapy allows a remarkable control of extracranial disease. However, brain (BM) and leptomeningeal metastases (LM) are frequent complications of advanced BC and represent a challenging issue for clinicians. Some prognostic scales designed for metastatic BC have been employed to select fit patients for adequate therapy and enrollment in clinical trials. Different systemic drugs, such as targeted therapies with either monoclonal antibodies or small tyrosine kinase molecules, or modified chemotherapeutic agents are under investigation. Major aims are to improve the penetration of active drugs through the blood-brain barrier (BBB) or brain-tumor barrier (BTB), and establish the best sequence and timing of radiotherapy and systemic therapy to avoid neurocognitive impairment. Moreover, pharmacologic prevention is a new concept driven by the efficacy of targeted agents on macrometastases from specific molecular subgroups. This review aims to provide an overview of the clinical and molecular factors involved in the selection of patients for local and/or systemic therapy, as well as the results of clinical trials on advanced BC. Moreover, insight on promising therapeutic options and potential directions of future therapeutic targets against BBB and microenvironment are discussed.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Valeria Internò
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Francesca Mo
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, 10126 Turin, Italy; (F.M.); (F.F.); (R.S.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
38
|
Zimmer AS, Van Swearingen AED, Anders CK. HER2‐positive
breast cancer brain metastasis: A new and exciting landscape. Cancer Rep (Hoboken) 2020; 5:e1274. [PMID: 32881421 PMCID: PMC9124511 DOI: 10.1002/cnr2.1274] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Brain metastases (BrM) incidence is 25% to 50% in women with advanced human epidermal growth factor receptor 2 (HER2)‐positive breast cancer. Radiation and surgery are currently the main local treatment approaches for central nervous system (CNS) metastases. Systemic anti‐HER2 therapy following a diagnosis of BrM improves outcomes. Previous preclinical data has helped elucidate HER2 brain trophism, the blood‐brain/blood‐tumor barrier(s), and the brain tumor microenvironment, all of which can lead to development of novel therapeutic options. Recent findings Several anti‐HER2 agents are currently available and reviewed here, some of which have recently shown promising effects in BrM patients, specifically. New strategies driven by and focusing on brain metastasis‐specific genomics, immunotherapy, and preventive strategies have shown promising results and are under development. Conclusions The field of HER2+ breast cancer, particularly for BrM, continues to evolve as new therapeutic strategies show promising results in recent clinical trials. Increasing inclusion of patients with BrM in clinical studies, and a focus on assessing their outcomes both intracranially and extracranially, is changing the landscape for patients with HER2+ CNS metastases by demonstrating the ability of newer agents to improve outcomes.
Collapse
Affiliation(s)
| | | | - Carey K. Anders
- Duke Center for Brain and Spine MetastasisDuke Cancer Institute Durham North Carolina USA
| |
Collapse
|
39
|
Abstract
Metastasis of cancer cells to the brain occurs frequently in patients with certain subtypes of breast cancer. In particular, patients with HER2-positive or triple-negative breast cancer are at high risk for the development of brain metastases. Despite recent advances in the treatment of primary breast tumors, the prognosis of breast cancer patients with brain metastases remains poor. A better understanding of the molecular and cellular mechanisms underlying brain metastasis might be expected to lead to improvements in the overall survival rate for these patients. Recent studies have revealed complex interactions between metastatic cancer cells and their microenvironment in the brain. Such interactions result in the activation of various signaling pathways related to metastasis in both cancer cells and cells of the microenvironment including astrocytes and microglia. In this review, we focus on such interactions and on their role both in the metastatic process and as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mari Hosonaga
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Breast Medical Oncology Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
40
|
Kalita-de Croft P, Lim M, Chittoory H, de Luca XM, Kutasovic JR, Day BW, Al-Ejeh F, Simpson PT, McCart Reed AE, Lakhani SR, Saunus JM. Clinicopathologic significance of nuclear HER4 and phospho-YAP(S 127) in human breast cancers and matching brain metastases. Ther Adv Med Oncol 2020; 12:1758835920946259. [PMID: 33014146 PMCID: PMC7517995 DOI: 10.1177/1758835920946259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Human epidermal growth factor receptor-4 (HER4) and yes-associated protein-1 (YAP) are candidate therapeutic targets in oncology. YAP's transcriptional coactivation function is modulated by the HER4 intracellular domain (HER4-ICD) in vitro, but the clinical relevance of this has not been established. This study investigated the potential for targeting the HER4-YAP pathway in brain metastatic breast cancer. Methods We performed immuno-phenotypic profiling of pathway markers in a consecutive breast cancer series with 25 years of clinical follow up (n = 371), and patient-matched breast and metastatic brain tumours (n = 91; 30 pairs). Results Membrane localisation of phospho-HER4 [pHER4(Y1162)] was infrequent in primary breast cancer, but very frequent in brain metastases (5.9% versus 75% positive), where it was usually co-expressed with pHER3(Y1289) (p < 0.05). The presence of YAP in tumour cell nuclei was associated directly with nuclear pERK5(T218/Y210) (p = 0.003). However, relationships with disease-specific survival depended on oestrogen receptor (ER) status. Nuclear pYAP(S127) was associated with smaller, good prognostic ER+ breast tumours (log-rank hazard-ratio 0.53; p = 9.6E-03), but larger, poor prognostic triple-negative cancers (log-rank hazard-ratio 2.78; p = 1.7E-02), particularly when co-expressed with nuclear HER4-ICD (p = 0.02). This phenotype was associated with stemness and mitotic instability markers (vimentin, SOX9, ID1, SPAG5, TTK, geminin; p < 0.05). YAP expression in brain metastases was higher than matched primary tumours; specifically, nuclear pYAP(S127) in ER-negative cases (p < 0.05). Nuclear YAP was detected in ~70% of ER-negative, HER4-activated brain metastases. Discussion Our findings suggest that the canonical-mechanism where Hippo pathway-mediated phosphorylation of YAP ostensibly excludes it from the nucleus is dysfunctional in breast cancer. The data are consistent with pYAP(S127) having independent transcriptional functions, which may include transducing neuregulin signals in brain metastases. Consistent with mechanistic studies implicating it as an ER co-factor, nuclear pYAP(S127) associations with breast cancer clinical outcomes were dependent on ER status. Conclusion Preclinical studies investigating HER4 and nuclear YAP combination therapy strategies are warranted.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Building 71/98 Royal Brisbane and Women's Hospital, Herston, Qld 4006, Australia
| | - Malcolm Lim
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Haarika Chittoory
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Xavier M de Luca
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Jamie R Kutasovic
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Peter T Simpson
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Amy E McCart Reed
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Sunil R Lakhani
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Jodi M Saunus
- The University of Queensland Faculty of Medicine, UQ Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
41
|
Fukui F, Hayashi SI, Yamaguchi Y. Heregulin controls ERα and HER2 signaling in mammospheres of ERα-positive breast cancer cells and interferes with the efficacy of molecular targeted therapy. J Steroid Biochem Mol Biol 2020; 201:105698. [PMID: 32404282 DOI: 10.1016/j.jsbmb.2020.105698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
Estrogen receptor (ER)α and the human epidermal growth factor receptor (HER) family are inversely expressed in ERα-positive cancer in association with resistance to hormonal therapy, but the mechanism underlying their relationship remains unknown. We analyzed the effect of HER family ligands on the expression of ER and the HER family in ERα-positive MCF-7 and T47D breast cancer cell lines in 3D spheroid culture. Here, we demonstrated for the first time that heregulin-1β (HRG), a HER3 and HER4 ligand, most effectively regulated ER/HER family expression by decreasing ERα mRNA expression and increasing HER family mRNA expression. HRG treatment attenuated fulvestrant-mediated growth inhibition, and promoted the migration of MCF-7 cells. Moreover, HRG increased the CD44+/CD24- cell fraction and side population cells, both of which are recognized as prospective breast cancer stem cell markers. HRG activated both phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways. Inhibitors of these pathways reduced the growth of MCF-7 cells, but the addition of HRG has different effects on these pathways. HRG blocked the inhibitory effect of mTOR inhibitors, such as rapamycin and everolimus, on cell growth but not that of a PI3K inhibitor. Furthermore, HRG slightly decreased the inhibitory effect of an AKT inhibitor on cell growth. In contrast, HRG enhanced the MEK inhibitor-induced inhibition of cell growth. These findings suggest that HRG-stimulated signaling pathways allow ERα-positive breast cancer cells to escape from growth inhibition caused by everolimus, via MAPK signaling and/or other signaling pathways. Everolimus improves progression-free survival in combination with exemestane as second-line therapy for metastatic hormone receptor-positive breast cancer. Our study suggests that HRG is a novel target for ERα-positive breast cancer therapy.
Collapse
Affiliation(s)
- Fumiyo Fukui
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan; Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.
| |
Collapse
|
42
|
Varešlija D, Priedigkeit N, Fagan A, Purcell S, Cosgrove N, O'Halloran PJ, Ward E, Cocchiglia S, Hartmaier R, Castro CA, Zhu L, Tseng GC, Lucas PC, Puhalla SL, Brufsky AM, Hamilton RL, Mathew A, Leone JP, Basudan A, Hudson L, Dwyer R, Das S, O'Connor DP, Buckley PG, Farrell M, Hill ADK, Oesterreich S, Lee AV, Young LS. Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets. J Natl Cancer Inst 2020; 111:388-398. [PMID: 29961873 PMCID: PMC6449168 DOI: 10.1093/jnci/djy110] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease. METHODS Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided. RESULTS Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, Padj < .05). Subsequent bioinformatic analysis for readily druggable targets revealed recurrent gains in RET expression and human epidermal growth factor receptor 2 (HER2) signaling. Small molecule inhibition of RET and HER2 in ex vivo patient BrM models (n = 4) resulted in statistically significantly reduced proliferation (P < .001 in four of four models). Furthermore, RET and HER2 inhibition in a PDX model of BrM led to a statistically significant antitumor response vs control (n = 4, % tumor growth inhibition [mean difference; SD], anti-RET = 86.3% [1176; 258.3], P < .001; anti-HER2 = 91.2% [1114; 257.9], P < .01). CONCLUSIONS RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.
Collapse
Affiliation(s)
- Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nolan Priedigkeit
- Pharmacology and Chemical Biology.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Ailís Fagan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Center, Beaumont Hospital, Dublin, Ireland
| | - Elspeth Ward
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Carlos A Castro
- Women's Cancer Research Center, Magee-Women's Research Institute
| | - Li Zhu
- Biostatistics, University of Pittsburgh Cancer Institute, University of Pittsburgh, PA
| | - George C Tseng
- Biostatistics, University of Pittsburgh Cancer Institute, University of Pittsburgh, PA
| | | | | | | | | | | | | | | | - Lance Hudson
- Surgical Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Róisín Dwyer
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | | | | | | | | | - Arnold D K Hill
- Surgical Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steffi Oesterreich
- Pharmacology and Chemical Biology.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Adrian V Lee
- Pharmacology and Chemical Biology.,Human Genetics.,Women's Cancer Research Center, Magee-Women's Research Institute
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
43
|
Sultana R, Kataki AC, Barthakur BB, Sarma A, Bose S. Clinicopathological and immunohistochemical characteristics of breast cancer patients from Northeast India with special reference to triple negative breast cancer: A prospective study. Curr Probl Cancer 2020; 44:100556. [PMID: 32044043 DOI: 10.1016/j.currproblcancer.2020.100556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Molecular pathogenesis of Triple-negative breast cancer (TNBC) is inconclusively documented from resource limited countries and hence there is a lack of available targeted therapy for clinical interventions. Compared to other breast cancer subtypes, TNBC is more aggressive, higher recurrence rate, and higher prevalence in younger premenopausal women. Sporadic literature indicates predominance of TNBC in all reported breast cancer cases from Northeast India. AIM This study was conducted to evaluate the candidature of panel of key molecular markers involved in the development and progression of TNBC for prognosis and futuristic tailored targeted therapy. MATERIALS AND METHODS We analyzed the clinicopathological characterized and immunohistochemically screened the differential expression of key molecular markers involved in the development and progression of in TNBC cases vis-a-vis non-TNBC and autopsy-based control samples. RESULTS TNBC tends to display at an early reproductive age and is more aggressive in nature. Further, the differential expression of 2 specific markers viz., epidermal growth factor receptor (EGFR) and FolR1 was higher in TNBC cases compared to controls and non-TNBC (both in terms of susceptibility and specificity), clinical staging in TNBC cases (severity) and mortality (outcome). Although Ki67 and vascular endothelial growth factor expression also correlated with severity and outcome of the disease but their differences in non-TNBC cases were not significantly differentiable compared to TNBC. CONCLUSIONS The study indicates that EGFR and FolR1 could serve as useful biomarkers to determine TNBC prognosis. Further studies will be needed to evaluate EGFR and Folate pathways in order to screen out the molecular targets which may be meaningfully used for clinical stratification, intervention, and treatment.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Lobular/epidemiology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/surgery
- ErbB Receptors/metabolism
- Female
- Folate Receptor 1/metabolism
- Follow-Up Studies
- Humans
- India/epidemiology
- Middle Aged
- Prognosis
- Prospective Studies
- Survival Rate
- Triple Negative Breast Neoplasms/epidemiology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/surgery
Collapse
Affiliation(s)
- Rizwana Sultana
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India; Multidisciplinary Research Unit, Department of Health Research, ICMR, Fakhruddin Ali Ahmed Medical College, Barpeta, Assam, India
| | - Amal Ch Kataki
- Department of Gynecologic Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | | | - Anupam Sarma
- Department of Pathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India.
| |
Collapse
|
44
|
How to Make Anticancer Drugs Cross the Blood-Brain Barrier to Treat Brain Metastases. Int J Mol Sci 2019; 21:ijms21010022. [PMID: 31861465 PMCID: PMC6981899 DOI: 10.3390/ijms21010022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of brain metastases has increased in the last 10 years. However, the survival of patients with brain metastases remains poor and challenging in daily practice in medical oncology. One of the mechanisms suggested for the persistence of a high incidence of brain metastases is the failure to cross the blood-brain barrier of most chemotherapeutic agents, including the more recent targeted therapies. Therefore, new pharmacological approaches are needed to optimize the efficacy of anticancer drug protocols. In this article, we present recent findings in molecular data on brain metastases. We then discuss published data from pharmacological studies on the crossing of the blood-brain barrier by anticancer agents. We go on to discuss future developments to facilitate drug penetration across the blood-brain barrier for the treatment of brain metastases among cancer patients, using physical methods or physiological transporters.
Collapse
|
45
|
Carvalho R, Paredes J, Ribeiro AS. Impact of breast cancer cells´ secretome on the brain metastatic niche remodeling. Semin Cancer Biol 2019; 60:294-301. [PMID: 31711993 DOI: 10.1016/j.semcancer.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Brain metastases occur in approximately 10-20% of patients with metastatic breast cancer showing a very poor overall survival. Curiously, different molecular subtypes (that show specific gene expression signatures and differential prognostic significance) are associated with different risks for brain metastases development, suggesting that cancer cells harbor specific molecular programs that award them intrinsic advantages to survive in this specific foreign tissue. Emerging data has been revealing that biophysical and/or mechanical properties of the brain extracellular matrix (ECM), along with those of the brain resident cells, play a crucial role in creating the best conditions for survival, colonization and outgrowth of breast cancer cells in this distinct microenvironment. Although several reports show that cancer cells modulate metastatic niches way before they reach the target organ, few data exist for the brain metastatic niche. Indeed, little is known concerning how factors secreted by cancer cells activate brain resident cells and/or modify brain ECM biomechanical properties and how these modifications impact cells´ ability to metastasize the brain. The brain is a particular organ, protected by the blood brain barrier (BBB), and containing exclusive functional units and very special cell types. Additionally, it is the organ with the most singular ECM and biomechanical properties. Thus, this cancer cell-brain metastatic niche interaction must present distinct properties. Consequently, the search for putative molecular markers that modulate the brain pre-metastatic niche, thus promoting the successful metastatic homing of cancer cells, is urgently needed. In this review, we will discuss key aspects regarding breast cancer cells and the brain pre-metastatic niche paracrine communication that is crucial to initiate the metastatic cascade. We will focus on cancer cell`s secretome influence into the brain microenvironment, specifically on its impact on tissue mechanics and on brain resident cells as regulators of the pre-metastatic niche formation, ultimately promoting metastatic colonization.
Collapse
Affiliation(s)
| | - J Paredes
- i3S/IPATIMUP, 4200-135, Porto, Portugal
| | | |
Collapse
|
46
|
Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol 2019; 20:1439-1449. [PMID: 29566179 DOI: 10.1093/neuonc/noy044] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The development of brain metastasis (BM) of breast cancer is usually a late event with deleterious effect on the prognosis. Treatment options for intracerebral seeding of breast cancer are limited and, so far, nonspecific. Molecular detailing of subsequent events of penetration, seeding, and outgrowth in brain is highly relevant for developing therapeutic strategies to treat, or prevent, BM.We scrutinize recent literature for molecules and pathways that are operative in the formation of breast cancer BM. We also summarize current data on therapeutic efforts to specifically address BM of breast cancer. Data on molecular pathways underlying the formation of BM of breast cancer are sketchy and to some extent inconsistent. The molecular makeup of BM differs from that of the primary tumors, as well as from metastases at other sites. Current efforts to treat breast cancer BM are limited, and drugs used have proven effects on the primary tumors but lack specificity for the intracerebral tumors.More basic research is necessary to better characterize BM of breast cancer. Apart from the identification of drug targets defined by the intracerebral tumors, also targets in the molecular pathways involved in passing the blood-brain barrier and intracerebral tumor cell growth should be revealed.
Collapse
Affiliation(s)
- Rute M S M Pedrosa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Dana A Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, Turin, Italy
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
47
|
Distinct gene expression profiles between primary breast cancers and brain metastases from pair-matched samples. Sci Rep 2019; 9:13343. [PMID: 31527824 PMCID: PMC6746866 DOI: 10.1038/s41598-019-50099-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023] Open
Abstract
Our objectives were to determine whether clinic-pathological markers and immune-related gene signatures in breast cancer exhibit any change upon brain metastasis and whether previously reported genes significantly associated with brain metastases and the epithelial-mesenchymal transition (EMT) were reproducible and consistent in our dataset. Sixteen pair-matched samples from primary breast cancers and brain metastases diagnosed were collected from the Japan Clinical Oncology Group Breast Cancer Study Group. Gene expression profiles for immune-, brain metastases-, and EMT-related genes were compared between primary breast cancers and brain metastases. Potential therapeutic target genes of 41 FDA-approved or under-investigation agents for brain metastases were explored. Immune-related signatures exhibited significantly lower gene expression in brain metastases than in primary breast cancers. No significant differences were detected for the majority of genes associated with brain metastases and EMT in the two groups. Among 41 therapeutic target candidates, VEGFA and DNMT3A demonstrated significantly higher gene expression in brain metastases. We found that distinct patterns of gene expression exist between primary breast cancers and brain metastases. Further studies are needed to explore whether these distinct expression profiles derive from or underlie disease status and compare these features between metastases to the brain and other sites.
Collapse
|
48
|
Kalita-de Croft P, Straube J, Lim M, Al-Ejeh F, Lakhani SR, Saunus JM. Proteomic Analysis of the Breast Cancer Brain Metastasis Microenvironment. Int J Mol Sci 2019; 20:ijms20102524. [PMID: 31121957 PMCID: PMC6567270 DOI: 10.3390/ijms20102524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022] Open
Abstract
Patients with brain-metastatic breast cancer face a bleak prognosis marked by morbidity and premature death. A deeper understanding of molecular interactions in the metastatic brain tumour microenvironment may inform the development of new therapeutic strategies. In this study, triple-negative MDA-MB-231 breast cancer cells or PBS (modelling traumatic brain injury) were stereotactically injected into the cerebral cortex of NOD/SCID mice to model metastatic colonization. Brain cells were isolated from five tumour-associated samples and five controls (pooled uninvolved and injured tissue) by immunoaffinity chromatography, and proteomic profiles were compared using the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) discovery platform. Ontology and cell type biomarker enrichment analysis of the 125 differentially abundant proteins (p < 0.05) showed the changes largely represent cellular components involved in metabolic reprogramming and cell migration (min q = 4.59 × 10-5), with high-throughput PubMed text mining indicating they have been most frequently studied in the contexts of mitochondrial dysfunction, oxidative stress and autophagy. Analysis of mouse brain cell type-specific biomarkers suggested the changes were paralleled by increased proportions of microglia, mural cells and interneurons. Finally, we orthogonally validated three of the proteins in an independent xenograft cohort, and investigated their expression in craniotomy specimens from triple-negative metastatic breast cancer patients, using a combination of standard and fluorescent multiplex immunohistochemistry. This included 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), which is integral for gluconeogenic valine catabolism in the brain, and was strongly induced in both graft-associated brain tissue (13.5-fold by SWATH-MS; p = 7.2 × 10-4), and areas of tumour-associated, reactive gliosis in human clinical samples. HIBCH was also induced in the tumour compartment, with expression frequently localized to margins and haemorrhagic areas. These observations raise the possibility that catabolism of valine is an effective adaptation in metastatic cells able to access it, and that intermediates or products could be transferred from tumour-associated glia. Overall, our findings indicate that metabolic reprogramming dominates the proteomic landscape of graft-associated brain tissue in the intracranial MDA-MB-231 xenograft model. Brain-derived metabolic provisions could represent an exploitable dependency in breast cancer brain metastases.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Malcolm Lim
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| | - Sunil R Lakhani
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
- Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston 4029, QLD, Australia.
| | - Jodi M Saunus
- Faculty of Medicine, the University of Queensland, Centre for Clinical Research, Herston 4029, QLD, Australia.
| |
Collapse
|
49
|
Tyran M, Carbuccia N, Garnier S, Guille A, Adelaïde J, Finetti P, Toulzian J, Viens P, Tallet A, Goncalves A, Metellus P, Birnbaum D, Chaffanet M, Bertucci F. A Comparison of DNA Mutation and Copy Number Profiles of Primary Breast Cancers and Paired Brain Metastases for Identifying Clinically Relevant Genetic Alterations in Brain Metastases. Cancers (Basel) 2019; 11:cancers11050665. [PMID: 31086113 PMCID: PMC6562582 DOI: 10.3390/cancers11050665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Improving the systemic treatment of brain metastases (BM) in primary breast cancer (PBC) is impaired by the lack of genomic characterization of BM. To estimate the concordance of DNA copy-number-alterations (CNAs), mutations, and actionable genetic alterations (AGAs) between paired samples, we performed whole-genome array-comparative-genomic-hybridization, and targeted-next-generation-sequencing on 14 clinical PBC–BM pairs. We found more CNAs, more mutations, and higher tumor mutational burden, and more AGAs in BM than in PBC; 92% of the pairs harbored at least one AGA in the BM not observed in the paired PBC. This concerned various therapeutic classes, including tyrosine-kinase-receptor-inhibitors, phosphatidylinositol 3-kinase/AKT/ mammalian Target of Rapamycin (PI3K/AKT/MTOR)-inhibitors, poly ADP ribose polymerase (PARP)-inhibitors, or cyclin-dependent kinase (CDK)-inhibitors. With regards to the PARP-inhibitors, the homologous recombination defect score was positive in 79% of BM, compared to 43% of PBC, discordant in 7 out of 14 pairs, and positive in the BM in 5 out of 14 cases. CDK-inhibitors were associated with the largest percentage of discordant AGA appearing in the BM. When considering the AGA with the highest clinical-evidence level, for each sample, 50% of the pairs harbored an AGA in the BM not detected or not retained from the analysis of the paired PBC. Thus, the profiling of BM provided a more reliable opportunity, than that of PBC, for diagnostic decision-making based on genomic analysis. Patients with BM deserve an investigation of several targeted therapies.
Collapse
Affiliation(s)
- Marguerite Tyran
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - José Adelaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Julien Toulzian
- Département d'Anatomopathologie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Agnès Tallet
- Département de Radiothérapie, Institut Paoli-Calmettes, 13009 Marseille, France.
| | - Anthony Goncalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| | - Philippe Metellus
- Département de Neurochirurgie et de Neuro-oncologie, Hôpital Privé Clairval, Ramsay-Générale de Santé and Institut de Neurophysiopathologie Equipe 10, UMR0751, CNRS, 13009 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, F-13009 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France.
- Faculté de Médecine, Aix-Marseille Université, 13005 Marseille, France.
| |
Collapse
|
50
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|