1
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
2
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
3
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
4
|
Blatti C, de la Fuente J, Gao H, Marín-Goñi I, Chen Z, Zhao SD, Tan W, Weinshilboum R, Kalari KR, Wang L, Hernaez M. Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer. Cancer Res 2023; 83:1361-1380. [PMID: 36779846 PMCID: PMC10102853 DOI: 10.1158/0008-5472.can-22-1910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/29/2022] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.
Collapse
Affiliation(s)
- Charles Blatti
- NCSA, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Irene Marín-Goñi
- Computational Biology Program, CIMA University of Navarra, Navarra, Spain
| | - Zikun Chen
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Sihai D. Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Winston Tan
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Krishna R. Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mikel Hernaez
- Computational Biology Program, CIMA University of Navarra, Navarra, Spain
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
5
|
Tadi S, Ka-Yan Cheung V, Lee CS, Nguyen K, Luk PP, Low THH, Palme C, Clark J, Gupta R. MYB RNA detection by in situ hybridisation has high sensitivity and specificity for the diagnosis of adenoid cystic carcinoma. Pathology 2023; 55:456-465. [PMID: 37055331 DOI: 10.1016/j.pathol.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common primary salivary gland cancers. ACC has several benign and malignant mimics amongst salivary gland neoplasms. An accurate diagnosis of ACC is essential for optimal management of the patients and their follow-up. Upregulation of MYB has been described in 85-90% of ACC, but not in other salivary gland neoplasms. In ACC, MYB upregulation can occur as a result of a genetic rearrangement t(6;9) (q22-23;p23-24), MYB copy number variation (CNV), or enhancer hijacking of MYB. All mechanisms of MYB upregulation result in increased RNA transcription that can be detected using RNA in situ hybridisation (ISH) methods. In this study, utilising 138 primary salivary gland neoplasms including 78 ACC, we evaluate the diagnostic utility of MYB RNA ISH for distinguishing ACC from other primary salivary gland neoplasms with a prominent cribriform architecture including pleomorphic adenoma, basal cell adenoma, basal cell adenocarcinoma, epithelial myoepithelial carcinoma, and polymorphous adenocarcinoma. Fluorescent in situ hybridisation and next generation sequencing were also performed to evaluate the sensitivity and specificity of RNA ISH for detecting increased MYB RNA when MYB gene alterations were present. Detection of MYB RNA has 92.3% sensitivity and 98.2% specificity for a diagnosis of ACC amongst salivary gland neoplasms. The sensitivity of MYB RNA detection by ISH (92.3%) is significantly higher than that of the FISH MYB break-apart probe (42%) for ACC. Next generation sequencing did not demonstrate MYB alterations in cases that lacked MYB RNA overexpression indicating high sensitivity of MYB RNA ISH for detecting MYB gene alterations. The possibility that the sensitivity may be higher in clinical practice with contemporary samples as compared with older retrospective tissue samples with RNA degradation is not entirely excluded. In addition to the high sensitivity and specificity, MYB RNA testing can be performed using standard IHC platforms and protocols and evaluated using brightfield microscopy making it a time and cost-efficient diagnostic tool in routine clinical practice.
Collapse
Affiliation(s)
- Sahithi Tadi
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Veronica Ka-Yan Cheung
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - C Soon Lee
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW, Australia; Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; CONCERT Biobank, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
| | - Kevin Nguyen
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Peter P Luk
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Tsu-Hui Hubert Low
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Carsten Palme
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jonathan Clark
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Atallah S, Marc M, Schernberg A, Huguet F, Wagner I, Mäkitie A, Baujat B. Beyond Surgical Treatment in Adenoid Cystic Carcinoma of the Head and Neck: A Literature Review. Cancer Manag Res 2022; 14:1879-1890. [PMID: 35693117 PMCID: PMC9176735 DOI: 10.2147/cmar.s355663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Adenoid cystic carcinoma (AdCC) is a rare tumour as it accounts for about 10% of all salivary gland neoplasms. It occurs in all age groups with a predominance of women, but no risk factors have been identified to date. Although AdCC behaves as a slow-growing tumour, it is characterized by multiple and late recurrences. Therefore, we aim to update the knowledge of the treatment options in advanced and recurrent cases. Materials and Methods We performed a systematic literature review to provide a synthesis of the practical knowledge required for AdCC non-surgical management. Altogether, 99 out of the 1208 available publications were selected for analysis. Results AdCC is described as a basaloid tumour consisting of epithelial and myoepithelial cells. Immunohistochemistry is useful for diagnosis (PS100, Vimentin, CD117, CKit, muscle actin, p63) and for prognosis (Ki67). Identified mutations could lead to therapeutic opportunities (MYB-NFIB, Notch 1). The work-up is mainly based on neck and chest CT scan and MRI, and PET-CT with 18-FDG or PSMA can be considered. Surgical treatment remains the gold standard in resectable cases. Post-operative intensity modulated radiotherapy is the standard of care, but hadron therapy may be used in specific situations. Based on the available literature, no standard chemotherapy regimen can be recommended. Conclusion There is currently no consensus on the use of chemotherapy in AdCC, either concomitantly to RT in a postoperative setting or at a metastatic stage. Further, the available targeted therapies do not yet provide significant tumour response.
Collapse
Affiliation(s)
- Sarah Atallah
- Department of Otorhinolaryngology–Head and Neck Surgery, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
- Doctoral School of Public Health, University of Paris Sud, CESP, INSERM U1018, University of Paris-Saclay, UVSQ, Villejuif, France
- Correspondence: Sarah Atallah, Hôpital Tenon, AP-HP, 4 rue de la Chine, Paris, 75020, France, Tel +33 156016417, Email
| | - Morgane Marc
- Department of Otorhinolaryngology–Head and Neck Surgery, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
| | - Antoine Schernberg
- Department of Radiotherapy, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
| | - Florence Huguet
- Department of Radiotherapy, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
| | - Isabelle Wagner
- Department of Otorhinolaryngology–Head and Neck Surgery, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bertrand Baujat
- Department of Otorhinolaryngology–Head and Neck Surgery, Sorbonne University, Tenon Hospital, AP-HP, Paris, France
| |
Collapse
|
7
|
Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front Oncol 2022; 12:855860. [PMID: 35600365 PMCID: PMC9114748 DOI: 10.3389/fonc.2022.855860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. Methods We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. Results We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. Conclusions Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States.,Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
| | - Yate-Ching Yuan
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA, United States
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States.,City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
8
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Dúcka M, Kučeríková M, Trčka F, Červinka J, Biglieri E, Šmarda J, Borsig L, Beneš P, Knopfová L. c-Myb interferes with inflammatory IL1α-NF-κB pathway in breast cancer cells. Neoplasia 2021; 23:326-336. [PMID: 33621853 PMCID: PMC7905261 DOI: 10.1016/j.neo.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The transcription factor c-Myb can be involved in the activation of many genes with protumorigenic function; however, its role in breast cancer (BC) development is still under discussion. c-Myb is considered as a tumor-promoting factor in the early phases of BC, on the other hand, its expression in BC patients relates to a good prognosis. Previously, we have shown that c-Myb controls the capacity of BC cells to form spontaneous lung metastasis. Reduced seeding of BC cells to the lungs is linked to high expression of c-Myb and a decline in expression of a specific set of inflammatory genes. Here, we unraveled a c-Myb-IL1α-NF-κB signaling axis that takes place in tumor cells. We report that an overexpression of c-Myb interfered with the activity of NF-κB in several BC cell lines. We identified IL1α to be essential for this interference since it was abrogated in the IL1α-deficient cells. Overexpression of IL1α, as well as addition of recombinant IL1α protein, activated NF-κB signaling and restored expression of the inflammatory signature genes suppressed by c-Myb. The endogenous levels of c-Myb negatively correlated with IL1α on both transcriptional and protein levels across BC cell lines. We concluded that inhibition of IL1α expression by c-Myb reduces NF-κB activity and disconnects the inflammatory circuit, a potentially targetable mechanism to mimic the antimetastatic effect of c-Myb with therapeutic perspective.
Collapse
Affiliation(s)
- Monika Dúcka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Martina Kučeríková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Filip Trčka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Červinka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Elisabetta Biglieri
- Institute of Physiology, University of Zurich and Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lubor Borsig
- Institute of Physiology, University of Zurich and Comprehensive Cancer Center, Zurich, Switzerland
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
10
|
Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Sci Rep 2019; 9:11634. [PMID: 31406165 PMCID: PMC6690941 DOI: 10.1038/s41598-019-48051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.
Collapse
|
11
|
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 2019; 38:5239-5249. [PMID: 30971760 DOI: 10.1038/s41388-019-0789-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Keck School of Medicine at the Children's Hospital Los Angeles Campus, University of Southern California, Los Angeles, CA, 90027, USA
| | - Devathri Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovations, QUT at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Mater Research/UQ at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,University of Texas Health, San Antonio, Department of Biochemistry and Structural Biology, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Small Subset of Adenoid Cystic Carcinoma of the Skin Is Associated With Alterations of the MYBL1 Gene Similar to Their Extracutaneous Counterparts. Am J Dermatopathol 2019; 40:721-726. [PMID: 29570128 DOI: 10.1097/dad.0000000000001091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenoid cystic carcinoma (ACC) of the skin is a rare malignant neoplasm histologically identical to homonymous tumors in other organs. Cutaneous ACC has been found to harbor MYB gene activations, either through MYB chromosomal abnormalities or by generation of the MYB-NFIB fusion. In salivary gland ACC, in addition to the MYB gene, alterations in MYBL1, the gene closely related to MYB, have been reported. We studied 10 cases of cutaneous ACC (6 women, 4 men; and age range 51-83 years) for alterations in the MYB, NFIB, and MYBL1 genes, using FISH and PCR. MYB break-apart and NFIB break-apart tests were positive in 4 and 5 cases, respectively. MYB-NFIB fusions were found in 4 cases. The break of MYBL1 was found in 2 cases, and in one of them, the NFIB break-apart probe was positive, strongly indicating a MYBL1-NFIB fusion. In 2 cases, the MYB break-apart test was positive, whereas no MYB-NFIB was detected, strongly suggesting another fusion partner. It is concluded that MYBL1 alterations are detected in primary cutaneous ACC but are apparently less common compared with MYB and NFIB alterations.
Collapse
|
13
|
Schütz LF, Hurst RE, Schreiber NB, Spicer LJ. Transcriptome profiling of bovine ovarian theca cells treated with fibroblast growth factor 9. Domest Anim Endocrinol 2018; 63:48-58. [PMID: 29413902 PMCID: PMC5837950 DOI: 10.1016/j.domaniend.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
We reported previously that fibroblast growth factor 9 (FGF9) acts as an antidifferentiation factor, stimulating proliferation of granulosa cells (GCs) and theca cells (TCs) while suppressing hormone-induced steroidogenesis of these cells. How FGF9 acts to simultaneously suppress steroidogenesis and stimulate proliferation remains to be fully elucidated. Thus, this study was undertaken to clarify the effects of FGF9 on the TC transcriptome. Ovaries were obtained from beef heifers at a local abattoir, TCs were isolated from large antral follicles, and cultured with or without 30 ng/mL of FGF9 for 24 h in the presence of LH and IGF-1. After treatment, total RNA was extracted from TC and processed for microarray using Affymetrix GeneChip Bovine Genome Arrays (n = 4/group). Transcriptome analysis comparing FGF9-treated TC with control TC using 1.3-fold cutoff, and a P < 0.05 significance level identified 355 differentially expressed transcripts, with 164 elements upregulated and 191 elements downregulated by FGF9. The ingenuity pathway analysis (IPA) was used to investigate how FGF9 treatment affects molecular pathways, biological functions, and the connection between molecules in bovine TC. The IPA software identified 346 pathways in response to FGF9 in TC involved in several biological functions and unveiled interesting relationships among genes related to cell proliferation (eg, CCND1, FZD5, and MYB), antioxidation/cytoprotection (eg, HMOX1 and NQO1), and steroidogenesis (eg, CYP11A1 and STAR). Overall, genes, pathways, and networks identified in this study painted a picture of how FGF9 may regulate folliculogenesis, providing novel candidate genes for further investigation of FGF9 functions in ovarian follicular development.
Collapse
Affiliation(s)
- L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - R E Hurst
- Department of Urology, University of Oklahoma College of Medicine, Oklahoma City, OK 73104, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
14
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
15
|
Transcription factor c-Myb inhibits breast cancer lung metastasis by suppression of tumor cell seeding. Oncogene 2017; 37:1020-1030. [PMID: 29084208 DOI: 10.1038/onc.2017.392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
Abstract
Metastasis accounts for most of cancer-related deaths. Paracrine signaling between tumor cells and the stroma induces changes in the tumor microenvironment required for metastasis. Transcription factor c-Myb was associated with breast cancer (BC) progression but its role in metastasis remains unclear. Here we show that increased c-Myb expression in BC cells inhibits spontaneous lung metastasis through impaired tumor cell extravasation. On contrary, BC cells with increased lung metastatic capacity exhibited low c-Myb levels. We identified a specific inflammatory signature, including Ccl2 chemokine, that was expressed in lung metastatic cells but was suppressed in tumor cells with higher c-Myb levels. Tumor cell-derived Ccl2 expression facilitated lung metastasis and rescued trans-endothelial migration of c-Myb overexpressing cells. Clinical data show that the identified inflammatory signature, together with a MYB expression, predicts lung metastasis relapse in BC patients. These results demonstrate that the c-Myb-regulated transcriptional program in BCs results in a blunted inflammatory response and consequently suppresses lung metastasis.
Collapse
|
16
|
Kim D, You E, Jeong J, Ko P, Kim JW, Rhee S. DDR2 controls the epithelial-mesenchymal-transition-related gene expression via c-Myb acetylation upon matrix stiffening. Sci Rep 2017; 7:6847. [PMID: 28754957 PMCID: PMC5533734 DOI: 10.1038/s41598-017-07126-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/23/2017] [Indexed: 02/03/2023] Open
Abstract
Increasing matrix stiffness caused by the extracellular matrix (ECM) deposition surrounding cancer cells is accompanied by epithelial-mesenchymal transition (EMT). Here, we show that expression levels of EMT marker genes along with discoidin domain receptor 2 (DDR2) can increase upon matrix stiffening. DDR2 silencing by short hairpin RNA downregulated EMT markers. Promoter analysis and chromatin immunoprecipitation revealed that c-Myb and LEF1 may be responsible for DDR2 induction during cell culture on a stiff matrix. Mechanistically, c-Myb acetylation by p300, which is upregulated on the stiff matrix, seems to be necessary for the c-Myb-and-LEF1-mediated DDR2 expression. Finally, we found that the c-Myb-DDR2 axis is crucial for lung cancer cell line proliferation and expression of EMT marker genes in a stiff environment. Thus, our results suggest that DDR2 regulation by p300 expression and/or c-Myb acetylation upon matrix stiffening may be necessary for regulation of EMT and invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
17
|
Lourenço AR, Coffer PJ. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 2017; 3:571-582. [PMID: 28780934 DOI: 10.1016/j.trecan.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/03/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental program exploited by cancer cells to gain mesenchymal features. Transcription factors globally regulating processes during EMT are often referred as 'master regulators' of EMT, and include members of the Snail and ZEB transcription factor families. The SRY-related HMG box (SOX) 4 transcription factor can promote tumorigenesis by endowing cells with migratory and invasive properties, stemness, and resistance to apoptosis, thereby regulating key aspects of the EMT program. We propose here that SOX4 should also be considered as a master regulator of EMT, and we review the molecular mechanisms underlying its function.
Collapse
Affiliation(s)
- Ana Rita Lourenço
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Abstract
Determination of cellular neutral lipid levels in yeast is important for both the biotechnology industry and biomedical research. However, many of the currently available methods are labor intensive and time consuming. Here we describe a rapid and repeatable method for the detection of neutral lipids, which can be utilized in both oleaginous and non-oleaginous yeast species. The method utilizes the fluorescent dye, Nile red, which enables neutral lipid levels to either be visualized via microscopy or quantified using a 96-well plate assay.
Collapse
Affiliation(s)
- Kerry Ann Rostron
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, UK
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| | - Clare Louise Lawrence
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK.
| |
Collapse
|
19
|
'Normalizing' the malignant phenotype of luminal breast cancer cells via alpha(v)beta(3)-integrin. Cell Death Dis 2016; 7:e2491. [PMID: 27906177 PMCID: PMC5260995 DOI: 10.1038/cddis.2016.387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023]
Abstract
Reestablishing tissue organization of breast cancer cells into acini was previously shown to override their malignant phenotype. In our study, we demonstrate that alpha(v)beta(3) integrin (Int-αvβ3), previously shown to play a role in cancer progression, promoted differentiation and growth arrest of organoids derived from luminal A breast cancer cells grown in their relevant three-dimensional microenvironment. These organoids differentiated into normal-like acini resembling a benign stage of breast tissue. Likewise, we demonstrate that Int-αvβ3 is selectively expressed in the epithelium of the benign stage of breast tissues, and is lost during the early stages of luminal A breast cancer progression. Notably, the organoids' reversion into normal-like acini was mediated by cancer luminal progenitor-like cells expressing both EpCAMhighCD49flowCD24+ and Int-αvβ3. Furthermore, downregulation of Notch4 expression and downstream signaling was shown to mediate Int-αvβ3-induced reversion. Intriguingly, when luminal A breast cancer cells expressing Int-αvβ3 were injected into a humanized mouse model, differentiated tumors developed when compared with that generated by control cells. Hence, our data suggest that promoting differentiation of luminal A breast cancer cells by signaling emanating from Int-αvβ3 can potentially promote ‘normalization' of their malignant phenotype and may prevent the malignant cells from progressing.
Collapse
|
20
|
Azim S, Zubair H, Srivastava SK, Bhardwaj A, Zubair A, Ahmad A, Singh S, Khushman M, Singh AP. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Sci Rep 2016; 6:28446. [PMID: 27354262 PMCID: PMC4926062 DOI: 10.1038/srep28446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023] Open
Abstract
We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p < 0.05) that were assigned to 25 gene networks by in silico analysis. Further analyses placed genes in our RNA sequencing-generated dataset to several canonical signalling pathways, such as cell-cycle control, DNA-damage and -repair responses, p53 and HIF1α. Importantly, we observed downregulation of the pancreatic adenocarcinoma signaling pathway in MYB-silenced pancreatic cancer cells exhibiting suppression of EGFR and NF-κB. Decreased expression of EGFR and RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Asif Zubair
- Molecular and Computational Biology, School of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Moh'd Khushman
- Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
21
|
Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Ten Dijke P, Zhou F, Zhang L. c-Myb Enhances Breast Cancer Invasion and Metastasis through the Wnt/β-Catenin/Axin2 Pathway. Cancer Res 2016; 76:3364-75. [PMID: 27197202 DOI: 10.1158/0008-5472.can-15-2302] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
The molecular underpinnings of aggressive breast cancers remain mainly obscure. Here we demonstrate that activation of the transcription factor c-Myb is required for the prometastatic character of basal breast cancers. An analysis of breast cancer patients led us to identify c-Myb as an activator of Wnt/β-catenin signaling. c-Myb interacted with the intracellular Wnt effector β-catenin and coactivated the Wnt/β-catenin target genes Cyclin D1 and Axin2 Moreover, c-Myb controlled metastasis in an Axin2-dependent manner. Expression microarray analyses revealed a positive association between Axin2 and c-Myb, a target of the proinflammatory cytokine IL1β that was found to be required for IL1β-induced breast cancer cell invasion. Overall, our results identified c-Myb as a promoter of breast cancer invasion and metastasis through its ability to activate Wnt/β-catenin/Axin2 signaling. Cancer Res; 76(11); 3364-75. ©2016 AACR.
Collapse
Affiliation(s)
- Yihao Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China. Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, the Netherlands
| | - Ke Jin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, the Netherlands. Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiao Yu
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China. Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, the Netherlands. Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, P.R. China.
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Tchoumtchoua J, Makropoulou M, Ateba SB, Boulaka A, Halabalaki M, Lambrinidis G, Meligova AK, Mbanya JC, Mikros E, Skaltsounis AL, Mitsiou DJ, Njamen D, Alexis MN. Estrogenic activity of isoflavonoids from the stem bark of the tropical tree Amphimas pterocarpoides, a source of traditional medicines. J Steroid Biochem Mol Biol 2016; 158:138-148. [PMID: 26706281 DOI: 10.1016/j.jsbmb.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022]
Abstract
Various preparations of the African tree Amphimas pterocarpoides Harms are traditionally used to treat endocrine- related adverse health conditions. In the ovariectomized rat, the enriched in phenolics fraction of the methanol extract of stem bark of A. pterocarpoides acted as vaginotrophic agent of considerably weaker uterotrophic activity compared to estradiol. Evaluation of the fraction and 11 isoflavonoids isolated therefrom using Ishikawa cells and estrogen receptor (ER) isotype-specific reporter cells suggested that the estrogenic activity of the fraction could be attributed primarily to daidzein and dihydroglycitein and secondarily to glycitein. The potency-based selectivity of daidzein, dihydroglycitein and glycitein for gene expression through ERβ versus ERα, expressed relative to estradiol, was 37, 27 and 20, respectively. However, the rank order of relative-to-estradiol potencies of induction of alkaline phosphatase in Ishikawa cells, a reliable marker of estrogenic activity, was daidzein>dihydroglycitein>>glycitein. The considerably higher estrogenic activity of dihydroglycitein compared to glycitein could be attributed to the partial agonist/antagonist activity of dihydroglycitein through ERβ. Calculation of theoretical free energies of binding predicted the partial agonism/antagonism of dihydroglycitein through ERβ. The fraction and the isolated isoflavonoids promoted lactogenic differentiation of HC11 mammary epithelial cells at least as effectively as premenopausal levels of estradiol. This data suggests that the estrogenic activity of the fraction likely depends on the metabolism of glycitein to dihydroglycitein; that the fraction could exert vaginotrophic activity likely without challenging endocrine cancer risk more than estrogen-alone supplementation; and that the fraction's safety for the reproductive track warrants a more detailed evaluation.
Collapse
Affiliation(s)
- Job Tchoumtchoua
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Maria Makropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Sylvain Benjamin Ateba
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Aggeliki K Meligova
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 8046, Yaounde, Cameroon
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dieudonne Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
23
|
Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget 2016; 7:9069-83. [PMID: 26812885 PMCID: PMC4891027 DOI: 10.18632/oncotarget.6997] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/17/2016] [Indexed: 11/25/2022] Open
Abstract
Our previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects. ER(+ve) breast cancer cell lines including MCF-7 were much more sensitive (> 10 times) to killing by CDK9i than ER(-ve)/MYB(-ve) cells. Moreover, surviving cells showed a block at the G2/M phase of the cell cycle. Importantly, ectopic MYB expression conferred resistance to apoptosis induction, cell killing and G2/M accumulation. Expression of relevant MYB target genes including BCL2 and CCNB1 was suppressed by CDK9 inhibition, and this too was reversed by ectopic MYB expression. Nevertheless, inhibition of BCL2 alone either by MYB knockdown or by ABT-199 treatment was insufficient for significant induction of apoptosis. Further studies implied that suppression of MCL-1, a well-documented target of CDK9 inhibition, was additionally required for apoptosis induction, while maximal levels of apoptosis induced by CDK9i are likely to also involve inhibition of BCL2L1 expression. Taken together these data suggest that MYB regulation of BCL2 underlies the heightened sensitivity of ER(+ve) compared to ER(-ve) breast cancer cells to CDK9 inhibition, and that these compounds represent a potential therapeutic for ER(+ve) breast cancers and possibly other MYB-dependent cancers.
Collapse
Affiliation(s)
- Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | - James Sutton
- Novartis Institute for Biomedical Research, Emeryville, CA, USA
| | - Robert G. Ramsay
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas J. Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Overexpression of c-Myb is associated with suppression of distant metastases in colorectal carcinoma. Tumour Biol 2016; 37:10723-9. [DOI: 10.1007/s13277-016-4956-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/02/2016] [Indexed: 01/09/2023] Open
|
25
|
Srivastava SK, Bhardwaj A, Arora S, Singh S, Azim S, Tyagi N, Carter JE, Wang B, Singh AP. MYB is a novel regulator of pancreatic tumour growth and metastasis. Br J Cancer 2015; 113:1694-703. [PMID: 26657649 PMCID: PMC4701995 DOI: 10.1038/bjc.2015.400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MYB encodes for a transcription factor regulating the expression of a wide array of genes involved in cellular functions. It is reported to be amplified in a sub-set of pancreatic cancer (PC) cases; however, its pathobiological association has remained unclear thus far. METHODS Expression of MYB and other cellular proteins was analysed by immunoblot or qRT-PCR analyses. MYB was stably overexpressed in non-expressing (BxPC3) and silenced in highly expressing (MiaPaCa and Panc1) PC cells. Effect on growth was analysed by automated cell counting at 24-h interval. Cell-cycle progression and apoptotic indices of PC cells with altered MYB expression were measured through flow cytometry upon staining with respective biomarkers. Cell motility/invasion was examined in a Boyden's chamber assay using non-coated or Matrigel-coated membranes. Effect on tumorigenicity and metastatic potential was examined by non-invasive imaging and through end-point measurements of luciferase-tagged MYB-altered PC implanted in the pancreas of nude mice. RESULTS MYB was aberrantly expressed in all malignant cases of pancreas, whereas remained undetectable in normal pancreas. All the tested established PC cell lines except BxPC3 also exhibited MYB expression. Forced expression of MYB in BxPC3 cells promoted their growth, cell-cycle progression, survival and malignant behaviour, whereas its silencing in MiaPaCa and Panc1 cells produced converse effects. More importantly, ectopic MYB expression was sufficient to confer tumorigenic and metastatic capabilities to non-tumorigenic BxPC3 cells, while its silencing resulted in significant loss of the same in MYB-overexpressing cells as demonstrated in orthotopic mouse model. We also identified several MYB-regulated genes in PC cells that might potentially mediate its effect on tumour growth and metastasis. CONCLUSIONS MYB is aberrantly overexpressed in PC cells and acts as a key determinant of pancreatic tumour growth and metastasis.
Collapse
Affiliation(s)
- Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
26
|
Mori N, Wildes F, Kakkad S, Jacob D, Solaiyappan M, Glunde K, Bhujwalla ZM. Choline kinase-α protein and phosphatidylcholine but not phosphocholine are required for breast cancer cell survival. NMR IN BIOMEDICINE 2015; 28:1697-1706. [PMID: 26503172 DOI: 10.1002/nbm.3429] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
High levels of total choline and phosphocholine (PC) are consistently observed in aggressive cancers. Choline kinase (Chk) catalyzes choline phosphorylation to produce PC in phosphatidylcholine (PtdCho) biosynthesis. PtdCho is the most abundant phospholipid in eukaryotic cell membranes and plays a dual role as the structural component of membranes and as a substrate to produce lipid second messengers such as phosphatidic acid and diacylglycerol. Chk-α, but not Chk-β, is overexpressed in various cancers, and is closely associated with tumor progression and invasiveness. We have previously shown that downregulation of mRNA using small interfering RNA (siRNA) against Chk-α (siRNA-Chk) or Chk short hairpin RNA, and the resultant decrease of Chk-α protein levels, significantly reduced proliferation in breast cancer cells and tumors. A novel potent and selective small-molecule Chk-α inhibitor, V-11-0711, that inhibits the catalytic activity of Chk has recently been developed. Here, we used triple negative MDA-MB-231 and SUM149 breast cancer cells to further investigate the role of Chk-α in cancer, by examining Chk-α protein levels, cell viability/proliferation, choline phospholipid and lipid metabolism, lipid droplet formation, and apoptosis, following treatment with V-11-0711. Under the conditions used in this study, treatment with V-11-0711 significantly decreased PC levels but did not reduce cell viability as long as Chk-α protein and PtdCho levels were not reduced, suggesting that Chk-α protein and PtdCho, but not PC, may be crucial for breast cancer cell survival. These data also support the approach of antitumor strategies that destabilize Chk-α protein or downregulate PtdCho in breast cancer treatment.
Collapse
Affiliation(s)
- Noriko Mori
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Flonné Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Desmond Jacob
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Meiyappan Solaiyappan
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Gao R, Cao C, Zhang M, Lopez MC, Yan Y, Chen Z, Mitani Y, Zhang L, Zajac-Kaye M, Liu B, Wu L, Renne R, Baker HV, El-Naggar A, Kaye FJ. A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets. Oncotarget 2015; 5:12528-42. [PMID: 25587024 PMCID: PMC4350357 DOI: 10.18632/oncotarget.2985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
MYB activation is proposed to underlie development of adenoid cystic cancer (ACC), an aggressive salivary gland tumor with no effective systemic treatments. To discover druggable targets for ACC, we performed global mRNA/miRNA analyses of 12 ACC with matched normal tissues, and compared these data with 14 mucoepidermoid carcinomas (MEC) and 11 salivary adenocarcinomas (ADC). We detected a unique ACC gene signature of 1160 mRNAs and 22 miRNAs. MYB was the top-scoring gene (18-fold induction), however we observed the same signature in ACC without detectable MYB gene rearrangements. We also found 4 ACC tumors (1 among our 12 cases and 3 from public databases) with negligible MYB expression that retained the same ACC mRNA signature including over-expression of extracellular matrix (ECM) genes. Integration of this signature with somatic mutational analyses suggests that NOTCH1 and RUNX1 participate with MYB to activate ECM elements including the VCAN/HAPLN1 complex. We observed that forced MYB-NFIB expression in human salivary gland cells alters cell morphology and cell adhesion in vitro and depletion of VCAN blocked tumor cell growth of a short-term ACC tumor culture. In summary, we identified a unique ACC signature with parallel MYB-dependent and independent biomarkers and identified VCAN/HAPLN1 complexes as a potential target.
Collapse
Affiliation(s)
- Ruli Gao
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FL, USA. Genetics & Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chunxia Cao
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Min Zhang
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanqing Yan
- Genetics & Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zirong Chen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Computational Biology and Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Zajac-Kaye
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bin Liu
- Department of Molecular Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederic J Kaye
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, University of Florida, Gainesville, FL, USA. Genetics & Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015; 7:388-401. [PMID: 25948865 DOI: 10.1093/jmcb/mjv027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
It is well known that many genes implicated in the development and progression of breast cancer undergo aberrant alternative splicing events to produce proteins with pro-cancer properties. These changes in alternative splicing can arise from mutations or single-nucleotide polymorphisms (SNPs) within the DNA sequences of cancer-related genes, which can strongly affect the activity of splicing factors and influence the splice site choice. However, it is important to note that absence of mutations is not sufficient to prevent misleading choices in splice site selection. There is now increasing evidence to demonstrate that the expression profile of ten splicing factors (including SRs and hnRNPs) and eight RNA-binding proteins changes in breast cancer cells compared with normal cells. These modifications strongly influence the alternative splicing pattern of many cancer-related genes despite the absence of any detrimental mutations within their DNA sequences. Thus, a comprehensive assessment of the splicing factor status in breast cancer is important to provide insights into the mechanisms that lead to breast cancer development and metastasis. Whilst most studies focus on mutations that affect alternative splicing in cancer-related genes, this review focuses on splicing factors and RNA-binding proteins that are themselves deregulated in breast cancer and implicated in cancer-related alternative splicing events.
Collapse
Affiliation(s)
- Marco Silipo
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hannah Gautrey
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alison Tyson-Capper
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
29
|
Abstract
In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citrate lyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways. Excessive production and accumulation of lipids is often observed in breast cancer tissue. In the current study, we investigate signalling mechanisms regulating this process using a model cell line.
Collapse
|
30
|
Karagoz K, Sinha R, Arga KY. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:115-30. [PMID: 25611337 DOI: 10.1089/omi.2014.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Triple negative breast cancer (TNBC) represents approximately 15% of breast cancers and is characterized by lack of expression of both estrogen receptor (ER) and progesterone receptor (PR), together with absence of human epidermal growth factor 2 (HER2). TNBC has attracted considerable attention due to its aggressiveness such as large tumor size, high proliferation rate, and metastasis. The absence of clinically efficient molecular targets is of great concern in treatment of patients with TNBC. In light of the complexity of TNBC, we applied a systematic and integrative transcriptomics and interactomics approach utilizing transcriptional regulatory and protein-protein interaction networks to discover putative transcriptional control mechanisms of TNBC. To this end, we identified TNBC-driven molecular pathways such as the Janus kinase-signal transducers, and activators of transcription (JAK-STAT) and tumor necrosis factor (TNF) signaling pathways. The multi-omics molecular target and biomarker discovery approach presented here can offer ways forward on novel diagnostics and potentially help to design personalized therapeutics for TNBC in the future.
Collapse
Affiliation(s)
- Kubra Karagoz
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| | | | | |
Collapse
|
31
|
Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2014; 125:273-83. [PMID: 25336632 DOI: 10.1182/blood-2014-05-576470] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids are critical components of combination chemotherapy regimens in pediatric acute lymphoblastic leukemia (ALL). The proapoptotic BIM protein is an important mediator of glucocorticoid-induced apoptosis in normal and malignant lymphocytes, whereas the antiapoptotic BCL2 confers resistance. The signaling pathways regulating BIM and BCL2 expression in glucocorticoid-treated lymphoid cells remain unclear. In this study, pediatric ALL patient-derived xenografts (PDXs) inherently sensitive or resistant to glucocorticoids were exposed to dexamethasone in vivo. Microarray analysis showed that KLF13 and MYB gene expression changes were significantly greater in dexamethasone-sensitive than -resistant PDXs. Chromatin immunoprecipitation (ChIP) analysis detected glucocorticoid receptor (GR) binding at the KLF13 promoter to trigger KLF13 expression only in sensitive PDXs. Next, KLF13 bound to the MYB promoter, deactivating MYB expression only in sensitive PDXs. Sustained MYB expression in resistant PDXs resulted in maintenance of BCL2 expression and inhibition of apoptosis. ChIP sequencing analysis revealed a novel GR binding site in a BIM intronic region (IGR) that was engaged only in dexamethasone-sensitive PDXs. The absence of GR binding at the BIM IGR was associated with BIM silencing and dexamethasone resistance. This study has identified novel mechanisms of opposing BCL2 and BIM gene regulation that control glucocorticoid-induced apoptosis in pediatric ALL cells in vivo.
Collapse
|
32
|
Ye P, Zhao L, McGirr C, Gonda TJ. MYB down-regulation enhances sensitivity of U937 myeloid leukemia cells to the histone deacetylase inhibitor LBH589 in vitro and in vivo. Cancer Lett 2014; 343:98-106. [PMID: 24075958 DOI: 10.1016/j.canlet.2013.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/30/2022]
Abstract
The effect of combining MYB suppression with the histone deacetylase inhibitor LBH589 was studied in human myeloid leukemia cell lines. MYB knockdown inhibited proliferation and induced apoptosis in U937 and K562 cells in vitro, and also sensitized both to the pro-apoptotic effect of LBH589. This was accompanied by enhanced expression of the pro-apoptotic BCL2 family members BOK and BIM. U937 cells carrying inducible MYB shRNA were also transplanted into NOD/SCID mice. The combination of MYB knockdown and LBH589 prolonged survival compared to either treatment alone, suggesting that further development of such combinations might lead to effective and safe leukemia therapies.
Collapse
Affiliation(s)
- Ping Ye
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia; The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Crystal McGirr
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia; The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
| | - Thomas J Gonda
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia; The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
33
|
Histone deacetylase inhibitor- and PMA-induced upregulation of PMCA4b enhances Ca2+ clearance from MCF-7 breast cancer cells. Cell Calcium 2014; 55:78-92. [DOI: 10.1016/j.ceca.2013.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/23/2022]
|
34
|
MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett 2014; 347:65-74. [PMID: 24486218 DOI: 10.1016/j.canlet.2014.01.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
MicroRNA-195 (miR-195) has been implicated in several other cancers; however, its role in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated that miR-195 was significantly down-regulated in NSCLC samples and cell lines compared with corresponding normal counterparts. In vitro and in vivo functional assays demonstrated that modulation of miR-195 expression affected NSCLC cell proliferation, migration and invasion. Using miRNA target prediction algorithms and reporter assays, we demonstrated that miR-195 suppressed the expression of MYB both at the mRNA and protein level, and was directly bound to the 3'untranslated region of MYB mRNA. Overexpression of MYB in NSCLC cells using an ectopic expression vector restored the decreased cell proliferation, migration and invasion effects induced by miR-195. Finally, we observed an inverse correlation between MYB and miR-195 in NSCLC. Taken together, our findings indicated that miR-195 functions as tumour suppressor in NSCLC, and the miR-195/MYB axis might represent a potential therapeutic target for NSCLC intervention.
Collapse
|
35
|
Ma C, Chen HIH, Flores M, Huang Y, Chen Y. BRCA-Monet: a breast cancer specific drug treatment mode-of-action network for treatment effective prediction using large scale microarray database. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S5. [PMID: 24564956 PMCID: PMC4029357 DOI: 10.1186/1752-0509-7-s5-s5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Connectivity map (cMap) is a recent developed dataset and algorithm for uncovering and understanding the treatment effect of small molecules on different cancer cell lines. It is widely used but there are still remaining challenges for accurate predictions. METHOD Here, we propose BRCA-MoNet, a network of drug mode of action (MoA) specific to breast cancer, which is constructed based on the cMap dataset. A drug signature selection algorithm fitting the characteristic of cMap data, a quality control scheme as well as a novel query algorithm based on BRCA-MoNet are developed for more effective prediction of drug effects. RESULT BRCA-MoNet was applied to three independent data sets obtained from the GEO database: Estrodial treated MCF7 cell line, BMS-754807 treated MCF7 cell line, and a breast cancer patient microarray dataset. In the first case, BRCA-MoNet could identify drug MoAs likely to share same and reverse treatment effect. In the second case, the result demonstrated the potential of BRCA-MoNet to reposition drugs and predict treatment effects for drugs not in cMap data. In the third case, a possible procedure of personalized drug selection is showcased. CONCLUSIONS The results clearly demonstrated that the proposed BRCA-MoNet approach can provide increased prediction power to cMap and thus will be useful for identification of new therapeutic candidates.
Collapse
Affiliation(s)
- Chifeng Ma
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Hung-I Harry Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mario Flores
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
| | - Yufei Huang
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
36
|
Mendoza PR, Jakobiec FA, Krane JF. Immunohistochemical features of lacrimal gland epithelial tumors. Am J Ophthalmol 2013; 156:1147-1158.e1. [PMID: 23972314 DOI: 10.1016/j.ajo.2013.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the immunohistochemical features of ocular adnexal pleomorphic adenoma and adenoid cystic carcinoma. DESIGN Retrospective clinicopathologic study. METHODS Clinical records and microscopic slides of 7 cases of each tumor type were reviewed. Immunohistochemical probes for Ki-67 and p53, and newer nuclear markers MYB for adenoid cystic carcinoma and PLAG1 for pleomorphic adenoma, were employed. RESULTS Pleomorphic adenomas were asymptomatic, whereas adenoid cystic carcinomas were painful. No pleomorphic adenomas recurred; 4 adenoid cystic carcinomas recurred, resulting in 3 deaths. Unusual histopathologic variants for which immunohistochemistry proved useful included a myoepithelioma, an atypical pleomorphic adenoma, tubular and solid/basaloid variants of adenoid cystic carcinoma, and a morphologically heterogeneous adenoid cystic carcinoma of a Wolfring gland. For the pleomorphic adenomas, the average Ki-67 proliferation index was 3.8%; p53 was weakly staining, with an average positivity of 18.5%; PLAG1 was strongly positive in all cases; MYB was negative in 5 cases and weakly focally positive in 2 cases. For the adenoid cystic carcinomas, the average Ki-67 proliferation index was 29.1%; p53 stained positively and strongly with an average of 39%; none stained positively for PLAG1; and 6 out of 7 were MYB positive. CONCLUSIONS Between pleomorphic adenoma and adenoid cystic carcinoma, there was no overlap in Ki-67 positivity. Positivity for p53 showed overlap in only one lesion of each type. PLAG1 and MYB positivity were highly discriminating between pleomorphic adenoma and adenoid cystic carcinoma. Immunohistochemical analysis should be investigated further for its role in the evaluation of pleomorphic adenoma and adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Pia R Mendoza
- David G. Cogan Laboratory of Ophthalmic Pathology, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
37
|
Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NPAD, Pinto C, Soo ETL, van Denderen BJW, Hill P, Ramsay RG, Sarcevic B, Newgreen DF, Thompson EW. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 2013; 15:R113. [PMID: 24283570 PMCID: PMC3979034 DOI: 10.1186/bcr3580] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. METHODS MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann-Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). RESULTS Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. CONCLUSIONS This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Collapse
|
38
|
Beck J, Hennecke S, Bornemann-Kolatzki K, Urnovitz HB, Neumann S, Ströbel P, Kaup FJ, Brenig B, Schütz E. Genome aberrations in canine mammary carcinomas and their detection in cell-free plasma DNA. PLoS One 2013; 8:e75485. [PMID: 24098698 PMCID: PMC3787092 DOI: 10.1371/journal.pone.0075485] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Mammary tumors are the most frequent cancers in female dogs exhibiting a variety of histopathological differences. There is lack of knowledge about the genomes of these common dog tumors. Five tumors of three different histological subtypes were evaluated. Massive parallel sequencing (MPS) was performed in comparison to the respective somatic genome of each animal. Copy number and structural aberrations were validated using droplet digital PCR (ddPCR). Using mate-pair sequencing chromosomal aneuploidies were found in two tumors, frequent smaller deletions were found in one, inter-chromosomal fusions in one other, whereas one tumor was almost normal. These aberrations affect several known cancer associated genes such as cMYC, and KIT. One common deletion of the proximal end of CFA27, harboring the tumor suppressor gene PFDN5 was detected in four tumors. Using ddPCR, this deletion was validated and detected in 50% of tumors (N = 20). Breakpoint specific dPCRs were established for four tumors and tumor specific cell-free DNA (cfDNA) was detected in the plasma. In one animal tumor-specific cfDNA was found >1 year after surgery, attributable to a lung metastasis. Paired-end sequencing proved that copy-number imbalances of the tumor are reflected by the cfDNA. This report on chromosomal instability of canine mammary cancers reveals similarities to human breast cancers as well as special canine alterations. This animal model provides a framework for using MPS for screening for individual cancer biomarkers with cost effective confirmation and monitoring using ddPCR. The possibility exists that ddPCR can be expanded to screening for common cancer related variants.
Collapse
|
39
|
Huang Y, Jiang Y, Lu W, Zhang Y. Nemo-like kinase associated with proliferation and apoptosis by c-Myb degradation in breast cancer. PLoS One 2013; 8:e69148. [PMID: 23935942 PMCID: PMC3720543 DOI: 10.1371/journal.pone.0069148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/11/2013] [Indexed: 01/14/2023] Open
Abstract
Nemo-like kinase (NLK), a mediator of the Wnt signaling pathway, binds directly to c-Myb, leading to its phosphorylation, ubiquitination and proteasome-dependent degradation. NLK was significantly downregulated in the breast cancer tissues compared to corresponding normal tissues. NLK expression was negatively correlated with c-Myb expression. NLK suppressed proliferation, induced apoptosis and mediated c-Myb degradation in MCF-7 cells via a mechanism that seems to involve c-myc and Bcl2. These findings might provide a novel target for therapeutic intervention in patients with breast cancer.
Collapse
Affiliation(s)
- Yeqing Huang
- Department of Tumor Chemotherapy, Affiliated Hospital of Nantong University, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail:
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Expression and prognostic role of c-Myb as a novel cell cycle protein in esophageal squamous cell carcinoma. Clin Transl Oncol 2013; 15:796-801. [PMID: 23658056 DOI: 10.1007/s12094-013-1009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/13/2013] [Indexed: 01/03/2023]
Abstract
PURPOSE The c-Myb transcription factor controls differentiation and proliferation in hematopoietic and other cell types, and has latent in regulation during the cell cycle. Recent studies suggested that deregulation of c-Myb expression plays a key role in oncogenesis. To investigate the potential roles of c-Myb in esophageal carcinoma, expression of c-Myb was examined in human esophageal carcinoma samples. METHODS Immunohistochemistry and Western blot analysis were performed for c-Myb in 87 esophageal carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. RESULTS c-Myb was overexpressed in esophageal carcinoma as compared with the adjacent normal tissue. High expression of c-Myb was associated with histological grade and was positively correlated with proliferation marker Ki-67 (P = 0.001). Univariate analysis showed that c-Myb expression was associated with poor prognosis (P < 0.001). Multivariate analysis indicated that c-Myb was an independent prognostic marker for esophageal carcinoma (P < 0.001). While in vitro, following release from serum starvation of TE-1 esophageal carcinoma cell, the expression of c-Myb was upregulated. CONCLUSIONS Our results suggested that c-Myb overexpression is involved in the pathogenesis of esophageal carcinoma; it may be a favorable independent poor prognostic parameter for esophageal carcinoma.
Collapse
|
41
|
Ye P, Zhao L, Gonda TJ. The MYB oncogene can suppress apoptosis in acute myeloid leukemia cells by transcriptional repression of DRAK2 expression. Leuk Res 2013; 37:595-601. [PMID: 23398943 DOI: 10.1016/j.leukres.2013.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
RNA interference-mediated suppression of MYB expression promoted apoptosis in the AML cell line U937, without affecting expression of the anti-apoptotic MYB target BCL2. This was accompanied by up-regulation of the pro-apoptotic gene DRAK2 and stimulation of caspase-9 activity. Moreover, RNA interference-mediated suppression of DRAK2 in U937 cells alleviated apoptosis induced by MYB down-regulation. Finally ChIP assays showed that in U937 cells MYB binds to a conserved element upstream of the DRAK2 transcription start site. Together, these findings identify a novel mechanism by which MYB suppresses apoptosis in an AML model cell line.
Collapse
Affiliation(s)
- Ping Ye
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
42
|
Myb and the Regulation of Stem Cells in the Intestine and Brain: A Tale of Two Niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:353-68. [DOI: 10.1007/978-94-007-6621-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Lungova V, Buchtova M, Janeckova E, Tucker AS, Knopfova L, Smarda J, Matalova E. Localization of c-MYB in differentiated cells during postnatal molar and alveolar bone development. Eur J Oral Sci 2012; 120:495-504. [DOI: 10.1111/j.1600-0722.2012.01004.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Abigail S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, and Department of Orthodontics; KCL; London; UK
| | - Lucia Knopfova
- Department of Experimental Biology; Faculty of Science; Masaryk University; Brno; Czech Republic
| | - Jan Smarda
- Department of Experimental Biology; Faculty of Science; Masaryk University; Brno; Czech Republic
| | | |
Collapse
|
44
|
Abstract
The identification of common tumor signatures can discover the shared molecular mechanisms underlying tumorgenesis whereby we can prevent and treat tumors by a system intervention. We identified tumor-associated signatures including pathways, transcription factors, microRNAs and gene ontology categories by analyzing gene sets for differential expression between normal vs. tumor phenotypes classes in various tumor gene expression datasets. We obtained the common tumor signatures based on their identified frequencies for different tumor types. Some shared signatures important for various tumor types were uncovered and discussed. We proposed that the interventions aiming at both the shared tumor signatures and the tissue-specific tumor signatures might be a potential approach to overcoming cancer.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
45
|
Mitra P, Pereira LA, Drabsch Y, Ramsay RG, Gonda TJ. Estrogen receptor-α recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene. Nucleic Acids Res 2012; 40:5988-6000. [PMID: 22492511 PMCID: PMC3401469 DOI: 10.1093/nar/gks286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 12/22/2022] Open
Abstract
The MYB proto-oncogene is expressed in most estrogen receptor-positive (ERα(+)) breast tumors and cell lines. Expression of MYB is controlled, in breast cancer and other cell types, by a transcriptional pausing mechanism involving an attenuation site located ∼1.7 kb downstream from the transcription start site. In breast cancer cells, ligand-bound ERα binds close to, and drives transcription beyond this attenuation site, allowing synthesis of complete transcripts. However, little is known, in general, about the factors involved in relieving transcriptional attenuation, or specifically how ERα coordinates such factors to promote transcriptional elongation. Using cyclin dependent kinase 9 (CDK9) inhibitors, reporter gene assays and measurements of total and intronic MYB transcription, we show that functionally active CDK9 is required for estrogen-dependent transcriptional elongation. We further show by ChIP and co-immunoprecipitation studies that the P-TEFb complex (CDK9/CyclinT1) is recruited to the attenuation region by ligand-bound ERα, resulting in increased RNA polymerase II Ser-2 phosphorylation. These data provide new insights into MYB regulation, and given the critical roles of MYB in tumorigenesis, suggest targeting MYB elongation as potential therapeutic strategy.
Collapse
Affiliation(s)
- Partha Mitra
- University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002 and Department of Pathology, The University of Melbourne, Victoria, 3010 Australia
| | - Lloyd A. Pereira
- University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002 and Department of Pathology, The University of Melbourne, Victoria, 3010 Australia
| | - Yvette Drabsch
- University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002 and Department of Pathology, The University of Melbourne, Victoria, 3010 Australia
| | - Robert G. Ramsay
- University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002 and Department of Pathology, The University of Melbourne, Victoria, 3010 Australia
| | - Thomas J. Gonda
- University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne 3002 and Department of Pathology, The University of Melbourne, Victoria, 3010 Australia
| |
Collapse
|
46
|
Knopfová L, Beneš P, Pekarčíková L, Hermanová M, Masařík M, Pernicová Z, Souček K, Smarda J. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 2012; 11:15. [PMID: 22439866 PMCID: PMC3325857 DOI: 10.1186/1476-4598-11-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells. Results Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix in vitro. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner. Conclusions This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, and International Clinical Research Center, CBCE, St. Anne's University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abalsamo L, Spadaro F, Bozzuto G, Paris L, Cecchetti S, Lugini L, Iorio E, Molinari A, Ramoni C, Podo F. Inhibition of phosphatidylcholine-specific phospholipase C results in loss of mesenchymal traits in metastatic breast cancer cells. Breast Cancer Res 2012; 14:R50. [PMID: 22429397 PMCID: PMC3446384 DOI: 10.1186/bcr3151] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/01/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
Introduction Acquisition of mesenchymal characteristics confers to breast cancer (BC) cells the capability of invading tissues different from primary tumor site, allowing cell migration and metastasis. Regulators of the mesenchymal-epithelial transition (MET) may represent targets for anticancer agents. Accruing evidence supports functional implications of choline phospholipid metabolism in oncogene-activated cell signaling and differentiation. We investigated the effects of D609, a xanthate inhibiting phosphatidylcholine-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS), as a candidate regulator of cell differentiation and MET in the highly metastatic BC cell line MDA-MB-231. Methods PC-PLC expression and activity were investigated using confocal laser scanning microscopy (CLSM), immunoblotting and enzymatic assay on human MDA-MB-231 compared with MCF-7 and SKBr3 BC cells and a nontumoral immortalized counterpart (MCF-10A). The effects of D609 on PC-PLC and SMS activity, loss of mesenchymal markers and changes in migration and invasion potential were monitored in MDA-MB-231 cells by enzymatic assays, CLSM, immunoblotting and transwell chamber invasion combined with scanning electron microscopy examinations. Cell proliferation, formation and composition of lipid bodies and cell morphology were investigated in D609-treated BC cells by cell count, CLSM, flow-cytometry of BODIPY-stained cells, nuclear magnetic resonance and thin-layer chromatography. Results PC-PLC (but not phospholipase D) showed 2- to 6-fold activation in BC compared with nontumoral cells, the highest activity (up to 0.4 pmol/μg protein/min) being detected in the poorly-differentiated MDA-MB-231 cells. Exposure of the latter cells to D609 (50 μg/mL, 24-72 h) resulted into 60-80% PC-PLC inhibition, while SMS was transiently inhibited by a maximum of 21%. These features were associated with progressive decreases of mesenchymal traits such as vimentin and N-cadherin expression, reduced galectin-3 and milk fat globule EGF-factor 8 levels, β-casein formation and decreased in vitro cell migration and invasion. Moreover, proliferation arrest, changes in cell morphology and formation of cytosolic lipid bodies typical of cell differentiation were induced by D609 in all investigated BC cells. Conclusions These results support a critical involvement of PC-PLC in controlling molecular pathways responsible for maintaining a mesenchymal-like phenotype in metastatic BC cells and suggests PC-PLC deactivation as a means to promote BC cell differentiation and possibly enhance the effectiveness of antitumor treatments.
Collapse
Affiliation(s)
- Laura Abalsamo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, 00161, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012; 498:135-46. [PMID: 22381618 DOI: 10.1016/j.gene.2012.01.095] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Collapse
|
49
|
Bell D, Roberts D, Karpowicz M, Hanna EY, Weber RS, El-Naggar AK. Clinical significance of Myb protein and downstream target genes in salivary adenoid cystic carcinoma. Cancer Biol Ther 2011; 12:569-73. [PMID: 21785271 DOI: 10.4161/cbt.12.7.17008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most frequent malignancy of the major and minor salivary glands, comprise of approximately 15-23% of all carcinomas at these locations. ACC is uniquely formed of dual epithelial and myoepithelial cells that give rise to different phenotypic patterns. We hypothesize that the dual myoepithelial/ epithelial composition of ACCs underlie their biological heterogeneity and may impact on their therapeutic management. A recurrent reciprocal translocation of t(6;9)(q22-23; p23-24) resulting in fusion gene partners comprising MYB gene the transcription factor NFIB has been reported in ACC of breast, salivary, lachrymal and ceruminal glands. In fusion positive and a subset of fusion negative ACCs, high expression of the transcript Myb was found. However, the role of Myb protein expression and the potential effect on the downstream targets have not been investigated. To investigate the biological and prognostic significance of use of elevated levels of Myb and its downstream target genes (c-kit, cox-2, bcl-2), we analyzed, by immunohistochemistry, the protein expression of these genes in 156 ACCs. We have found that 55% of ACCs have increased Myb expression mainly confined to myoepithelial cells. We validated Myb expression on a large cohort of ACCs (156 patients). Although no significant effects of the individual Myb and downstream targets c-kit, bcl-2 and cox-2 on survival was noticed, the combinations survival curve for Myb+/c-kit+/cox-2+ showed better survival than combination Myb-/c-kit+/cox-2+. Myb may serve as a new target for the management of this disease, and future therapeutic trials of these tumors may be better based on biomarker stratification and the cellular composition of these tumors.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bhattarai G, Lee YH, Lee NH, Yun JS, Hwang PH, Yi HK. c-myb mediates inflammatory reaction against oxidative stress in human breast cancer cell line, MCF-7. Cell Biochem Funct 2011; 29:686-93. [DOI: 10.1002/cbf.1808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/15/2011] [Accepted: 08/24/2011] [Indexed: 12/23/2022]
Affiliation(s)
- Govinda Bhattarai
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Nan-Hee Lee
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Ji-Soo Yun
- Molecular Science and Technology Research Center; Ajou University; Suwon; Korea
| | - Pyoung-Han Hwang
- Department of Pediatrics; Chonbuk National Medical School, Chonbuk National University; Joenju; Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| |
Collapse
|