1
|
Xiong RH, Yang SQ, Li JW, Shen XK, Jin LM, Chen CY, Yue YT, Yu ZC, Sun QY, Jiang W, Jiang MZ, Wang XY, Song SX, Cao D, Ye HL, Zhao LR, Huang LP, Bu L. Identification of immune-associated biomarker for predicting lung adenocarcinoma: bioinformatics analysis and experiment verification of PTK6. Discov Oncol 2024; 15:102. [PMID: 38573548 PMCID: PMC10994900 DOI: 10.1007/s12672-024-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Abnormal expression of protein tyrosine kinase 6 (PTK6) has been proven to be involved in the development of gynecological tumors. However, its immune-related carcinogenic mechanism in other tumors remains unclear. OBJECTIVE The aim of this study was to identify PTK6 as a novel prognostic biomarker in pan-cancer, especially in lung adenocarcinoma (LUAD), which is correlated with immune infiltration, and to clarify its clinicopathological and prognostic significance. METHODS The prognostic value and immune relevance of PTK6 were investigated by using bio-informatics in this study. PTK6 expression was validated in vitro experiments (lung cancer cell lines PC9, NCI-H1975, and HCC827; human normal lung epithelial cells BEAS-2B). Western blot (WB) revealed the PTK6 protein expression in lung cancer cell lines. PTK6 expression was inhibited by Tilfrinib. Colony formation and the Cell Counting Kit-8 (CCK-8) assay were used to detect cell proliferation. The wound healing and trans-well were performed to analyze the cell migration capacity. Then flow cytometry was conducted to evaluate the cell apoptosis. Eventually, the relationship between PTK6 and immune checkpoints was examined. WB was used to estimate the PD-L1 expression at different Tilfrinib doses. RESULTS PTK6 was an independent predictive factor for LUAD and was substantially expressed in LUAD. Pathological stage was significantly correlated with increased PTK6 expression. In accordance with survival analysis, poor survival rate in LUAD was associated with a high expression level of PTK6. Functional enrichment of the cell cycle and TGF-β signaling pathway was demonstrated by KEGG and GSEA analysis. Moreover, PTK6 expression considerably associated with immune infiltration in LUAD, as determined by immune analysis. Thus, the result of vitro experiments indicated that cell proliferation and migration were inhibited by the elimination of PTK6. Additionally, PTK6 suppression induced cell apoptosis. Obviously, PD-L1 protein expression level up-regulated while PTK6 was suppressed. CONCLUSION PTK6 has predictive value for LUAD prognosis, and could up regulated PD-L1.
Collapse
Affiliation(s)
- Ren-Hui Xiong
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Shuo-Qi Yang
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Ji-Wei Li
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Xun-Kai Shen
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Lu-Ming Jin
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Chao-Yang Chen
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Yu-Ting Yue
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Zhi-Chen Yu
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Qing-Yu Sun
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Wen Jiang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ming-Zheng Jiang
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Xiao-Yan Wang
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Shi-Xu Song
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Dai Cao
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Hong-Li Ye
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Li-Ran Zhao
- School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China
| | - Li-Peng Huang
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| | - Liang Bu
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| |
Collapse
|
2
|
Chen Y, Qu W, Tu J, Yang L, Gui X. Prognostic impact of PTK6 expression in triple negative breast cancer. BMC Womens Health 2023; 23:575. [PMID: 37932734 PMCID: PMC10629122 DOI: 10.1186/s12905-023-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of PTK6 in different groups of triple negative breast cancer and its impact on prognosis. METHODS Retrospective study of a total of 209 surgical specimens of breast cancer were identified by IHC or FISH methods as triple negative,and divided into a lymph node metastasis positive (LNM +)group (n = 102) and a lymph node metastasis negative(LNM-) group (n = 107) according to the lymph node status of the surgical specimen. PTK6 expression was detected by IHC technique in all surgical specimens. PTK6 expression and clinicopathological features was explored by Chi-square test. The prognosis of different groups of patients was analyzed by Kaplan-Meier survival analysis and COX analysis. RESULTS The incidence of PTK6 expression in the LNM + group (78.4%) was significantly higher than in the LNM- group (28%). Clinicopathological analysis showed that PTK6 expression in the LNM + group was negatively correlated with the 5-year survival of patients. Kaplan-Meier analysis showed that only PTK6 expression in the LNM + group was negatively correlated with OS and DFS. COX analysis also showed that PTK6 expression and N stage were independent prognostic factors for DFS in the LNM + group. No correlation was observed between HER2 and PTK6 expression in any of the groups. CONCLUSIONS This study suggests that PTK6 promotes tumor development and was associated with poor prognosis in the LNM + group of triple negative breast cancer. Inhibition of PTK6 may be a new approach for the treatment of triple negative breast cancer patients, especially those with metastasis.
Collapse
Affiliation(s)
- Yuexia Chen
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Wei Qu
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Jianhong Tu
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Liu Yang
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China
| | - Xingxing Gui
- Department of Pathology, Nanchang People's Hospital(formerly The Third Hospital of Nanchang), No.1268 Jiuzhou Street, Chaoyang New City, Nanchang City, 333000, Jiangxi, China.
| |
Collapse
|
3
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
4
|
Hsieh YP, Chen KC, Chen MY, Huang LY, Su AY, Chiang WF, Huang WT, Huang TT. Epigenetic Deregulation of Protein Tyrosine Kinase 6 Promotes Carcinogenesis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23094495. [PMID: 35562900 PMCID: PMC9104624 DOI: 10.3390/ijms23094495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral cancers and causes considerable morbidity and mortality. Epigenetic deregulation is a common mechanism underlying carcinogenesis. DNA methylation deregulation is the epigenetic change observed during the transformation of normal cells to precancerous and eventually cancer cells. This study investigated the DNA methylation patterns of PTK6 during the development of OSCC. Bisulfite genomic DNA sequencing was performed to determine the PTK6 methylation level. OSCC animal models were established to examine changes in PTK6 expression in the different stages of OSCC development. The DNA methylation of PTK6 was decreased during the development of OSCC. The mRNA and protein expression of PTK6 was increased in OSCC cell lines compared with human normal oral keratinocytes. In mice, the methylation level of PTK6 decreased after treatment with 4-nitroquinoline 1-oxide and arecoline, and the mRNA and protein expression of PTK6 was increased. PTK6 hypomethylation can be a diagnostic marker of OSCC. Upregulation of PTK6 promoted the proliferation, migration, and invasion of OSCC cells. PTK6 promoted carcinogenesis and metastasis by increasing STAT3 phosphorylation and ZEB1 expression. The epigenetic deregulation of PTK6 can serve as a biomarker for the early detection of OSCC and as a treatment target.
Collapse
Affiliation(s)
- Yi-Ping Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Ken-Chung Chen
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| | - Meng-Yen Chen
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| | - Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - An-Yu Su
- Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wei-Fan Chiang
- Chi Mei Medical Center, Liouying, Tainan 72263, Taiwan;
- School of Dentistry, National Yang Ming University, Taipei 11221, Taiwan
| | - Wen-Tsung Huang
- Chi Mei Medical Center, Liouying, Tainan 72263, Taiwan;
- Correspondence: (W.-T.H.); (T.-T.H.); Tel.: +886-6-6226999 (W.-T.H.); +886-6-2353535 (ext. 2964) (T.-T.H.); Fax: +886-6-6226999 (W.-T.H.); +886-6-2359885 (T.-T.H.)
| | - Tze-Ta Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
- Institute of Oral Medicine, Department of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (K.-C.C.); (M.-Y.C.)
- Division of Oral and Maxillofacial Surgery, Department of Stomatology, National Cheng Kung University Hospital, Tainan 701401, Taiwan
- Correspondence: (W.-T.H.); (T.-T.H.); Tel.: +886-6-6226999 (W.-T.H.); +886-6-2353535 (ext. 2964) (T.-T.H.); Fax: +886-6-6226999 (W.-T.H.); +886-6-2359885 (T.-T.H.)
| |
Collapse
|
5
|
Burmi RS, Box GM, Wazir U, Hussain HA, Davies JA, Court WJ, Eccles SA, Jiang WG, Mokbel K, Harvey AJ. Breast Tumour Kinase (Brk/PTK6) Contributes to Breast Tumour Xenograft Growth and Modulates Chemotherapeutic Responses In Vitro. Genes (Basel) 2022; 13:genes13030402. [PMID: 35327957 PMCID: PMC8950834 DOI: 10.3390/genes13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/07/2022] Open
Abstract
Breast tumour kinase (Brk/PTK6) is overexpressed in up to 86% of breast cancers and is associated with poorer patient outcomes. It is considered a potential therapeutic target in breast cancer, even though the full spectrum of its kinase activity is not known. This study investigated the role of the kinase domain in promoting tumour growth and its potential in sensitising triple negative breast cancer cells to standard of care chemotherapy. Triple negative human xenograft models revealed that both kinase-inactive and wild-type Brk promoted xenograft growth. Suppression of Brk activity in cells subsequently co-treated with the chemotherapy agents doxorubicin or paclitaxel resulted in an increased cell sensitivity to these agents. In triple negative breast cancer cell lines, the inhibition of Brk kinase activity augmented the effects of doxorubicin or paclitaxel. High expression of the alternatively spliced isoform, ALT-PTK6, resulted in improved patient outcomes. Our study is the first to show a role for kinase-inactive Brk in human breast tumour xenograft growth; therefore, it is unlikely that kinase inhibition of Brk, in isolation, would halt tumour growth in vivo. Breast cancer cell responses to chemotherapy in vitro were kinase-dependent, indicating that treatment with kinase inhibitors could be a fruitful avenue for combinatorial treatment. Of particular prognostic value is the ratio of ALT-PTK6:Brk expression in predicating patient outcomes.
Collapse
Affiliation(s)
- Rajpal S. Burmi
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK; (R.S.B.); (H.A.H.); (J.A.D.)
| | - Gary M. Box
- The Cancer Research UK Cancer Therapeutics Unit, McElwain Laboratories, The Institute of Cancer Research, Sutton SM2 5NG, UK; (G.M.B.); (W.J.C.); (S.A.E.)
| | - Umar Wazir
- The London Breast Institute, Princess Grace Hospital, London W1U 5NY, UK; (U.W.); (K.M.)
| | - Haroon A. Hussain
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK; (R.S.B.); (H.A.H.); (J.A.D.)
| | - Julie A. Davies
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK; (R.S.B.); (H.A.H.); (J.A.D.)
| | - William J. Court
- The Cancer Research UK Cancer Therapeutics Unit, McElwain Laboratories, The Institute of Cancer Research, Sutton SM2 5NG, UK; (G.M.B.); (W.J.C.); (S.A.E.)
| | - Suzanne A. Eccles
- The Cancer Research UK Cancer Therapeutics Unit, McElwain Laboratories, The Institute of Cancer Research, Sutton SM2 5NG, UK; (G.M.B.); (W.J.C.); (S.A.E.)
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK;
| | - Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London W1U 5NY, UK; (U.W.); (K.M.)
| | - Amanda J. Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK; (R.S.B.); (H.A.H.); (J.A.D.)
- Correspondence: ; Tel.: +44-(0)1895-267264
| |
Collapse
|
6
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
7
|
Wang Y, Shen SY, Liu L, Zhang XD, Liu DY, Liu N, Liu BH, Shen L. Jolkinolide B inhibits proliferation or migration and promotes apoptosis of MCF-7 or BT-474 breast cancer cells by downregulating the PI3K-Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114581. [PMID: 34464697 DOI: 10.1016/j.jep.2021.114581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diterpenoids extracted from Euphorbia kansui S.L. Liou ex S.B.Ho, Euphorbia fischeriana Steud. have good antitumor effects. Jolkinolide B has anti-breast cancer effect, but it is unclear whether it has different therapeutic effects between luminal A subtype and luminal B subtype breast cancer. AIM OF THE STUDY This study investigated the Jolkinolide B has different therapeutic, important targets and pathways effects between luminal A subtype and luminal B subtype breast cancer. MATERIALS AND METHODS We used bioinformatics to predict the biological process and molecular mechanism of Jolkinolide B in treating two types of breast cancer. Then, in vitro, cultured MCF-7 cells and BT-474 cells were divided into control group, PI3K inhibitor + control group, Jolkinolide B group and PI3K inhibitor + Jolkinolide B group. The CCK-8 assay, Flow cytometric analysis and Transwell cell migration assay was used to detect the cell proliferation, apoptosis, and migration in each group, respectively. ELISA was used to measure the content of Akt and phosphorylated Akt (p-Akt) in cell lysis buffer. RESULTS Compared to luminal A breast cancer, Jolkinolide B had more targets, proliferation, migration processes and KEGG pathways when treating luminal B subtype breast cancer. Jolkinolide B significantly prolonged the survival time of luminal B subtype breast cancer patients. Compared to the control group, the cell proliferation absorbance value (A value) and migration number of the two kinds of breast cancer cells in the Jolkinolide B group were decreased (P < 0.01, n = 6), and the number of apoptotic cells was increased (P < 0.01, n = 6). Compared to the Jolkinolide B group, the A value and migration number of the two types of breast cancer cells were significantly decreased in the PI3K inhibitor + Jolkinolide B group (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). In addition, compared to MCF-7 cells, the A value and migration number of BT-474 cells stimulated with Jolkinolide B were significantly decreased (P < 0.01, n = 6), and the number of apoptotic cells was significantly increased (P < 0.01, n = 6). Akt and p-Akt protein levels in the two breast cancer cell lines in the Jolkinolide B group were all decreased (P < 0.01, n = 6), especially in BT-474 cells stimulated by Jolkinolide B. CONCLUSION Jolkinolide B regulates the luminal A and luminal B subtypes of breast cancer through PI3K-Akt, EGFR and other pathways. Jolkinolide B has more significant therapeutic effect on luminal B subtype breast cancer. In vitro, experiments verified that Jolkinolide B significantly inhibited the proliferation and migration activity of BT-474 breast cancer cells by downregulating the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Yang Wang
- Department of Physiology, Qiqihar Medical College, Qiqihar, 161006, PR China; Department of Research Section of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, PR China
| | - Shi-Yang Shen
- Grade 2019 of Acupuncture and Massage, Heilongjiang University of Chinese Medicine, Harbin, 150040, PR China
| | - Lei Liu
- Academy of Medical Sciences, Qiqihar Medical College, Qiqihar, 161006, PR China
| | - Xiao-Dong Zhang
- Department of Anatomy, Qiqihar Medical College, Qiqihar, 161006, PR China
| | - Dan-Yang Liu
- Department of Histology and Embryology, Qiqihar Medical College, Qiqihar, 161006, PR China
| | - Na Liu
- Department of Anatomy, Jiamusi University, Jiamusi, 154007, PR China
| | - Bing-Hua Liu
- Experimental Teaching of Clinical Skills, Qiqihar Medical College, Qiqihar, 161006, PR China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical College, Qiqihar, 161006, PR China.
| |
Collapse
|
8
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
9
|
Xu Q, Zhang J, Telfer BA, Zhang H, Ali N, Chen F, Risa B, Pearson AJ, Zhang W, Finegan KG, Ucar A, Giurisato E, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene 2021; 40:3929-3941. [PMID: 33981002 PMCID: PMC8195737 DOI: 10.1038/s41388-021-01798-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
There is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.
Collapse
Affiliation(s)
- Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Blanca Risa
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
11
|
Ang HL, Yuan Y, Lai X, Tan TZ, Wang L, Huang BB, Pandey V, Huang RYJ, Lobie PE, Goh BC, Sethi G, Yap CT, Chan CW, Lee SC, Kumar AP. Putting the BRK on breast cancer: From molecular target to therapeutics. Am J Cancer Res 2021; 11:1115-1128. [PMID: 33391524 PMCID: PMC7738883 DOI: 10.7150/thno.49716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
BReast tumor Kinase (BRK, also known as PTK6) is a non-receptor tyrosine kinase that is highly expressed in breast carcinomas while having low expression in the normal mammary gland, which hints at the oncogenic nature of this kinase in breast cancer. In the past twenty-six years since the discovery of BRK, an increasing number of studies have strived to understand the cellular roles of BRK in breast cancer. Since then, BRK has been found both in vitro and in vivo to activate a multitude of oncoproteins to promote cell proliferation, metastasis, and cancer development. The compelling evidence concerning the oncogenic roles of BRK has also led, since then, to the rapid and exponential development of inhibitors against BRK. This review highlights recent advances in BRK biology in contributing to the “hallmarks of cancer”, as well as BRK's therapeutic significance. Importantly, this review consolidates all known inhibitors of BRK activity and highlights the connection between drug action and BRK-mediated effects. Despite the volume of inhibitors designed against BRK, none have progressed into clinical phase. Understanding the successes and challenges of these inhibitor developments are crucial for the future improvements of new inhibitors that can be clinically relevant.
Collapse
|
12
|
Dwyer AR, Kerkvliet CP, Krutilina RI, Playa HC, Parke DN, Thomas WA, Smeester BA, Moriarity BS, Seagroves TN, Lange CA. Breast Tumor Kinase (Brk/PTK6) Mediates Advanced Cancer Phenotypes via SH2-Domain Dependent Activation of RhoA and Aryl Hydrocarbon Receptor (AhR) Signaling. Mol Cancer Res 2020; 19:329-345. [PMID: 33172975 DOI: 10.1158/1541-7786.mcr-20-0295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Protein tyrosine kinase 6 (PTK6; also called Brk) is overexpressed in 86% of patients with breast cancer; high PTK6 expression predicts poor outcome. We reported PTK6 induction by HIF/GR complexes in response to either cellular or host stress. However, PTK6-driven signaling events in the context of triple-negative breast cancer (TNBC) remain undefined. In a mouse model of TNBC, manipulation of PTK6 levels (i.e., via knock-out or add-back) had little effect on primary tumor volume, but altered lung metastasis. To delineate the mechanisms of PTK6 downstream signaling, we created kinase-dead (KM) and kinase-intact domain structure mutants of PTK6 via in-frame deletions of the N-terminal SH3 or SH2 domains. While the PTK6 kinase domain contributed to soft-agar colony formation, PTK6 kinase activity was entirely dispensable for cell migration. Specifically, TNBC models expressing a PTK6 variant lacking the SH2 domain (SH2-del PTK6) were unresponsive to growth factor-stimulated cell motility relative to SH3-del, KM, or wild-type PTK6 controls. Reverse-phase protein array revealed that while intact PTK6 mediates spheroid formation via p38 MAPK signaling, the SH2 domain of PTK6 limits this biology, and instead mediates TNBC cell motility via activation of the RhoA and/or AhR signaling pathways. Inhibition of RhoA and/or AhR blocked TNBC cell migration as well as the branching/invasive morphology of PTK6+/AhR+ primary breast tumor tissue organoids. Inhibition of RhoA also enhanced paclitaxel cytotoxicity in TNBC cells, including in a taxane-refractory TNBC model. IMPLICATIONS: The SH2-domain of PTK6 is a potent effector of advanced cancer phenotypes in TNBC via RhoA and AhR, identified herein as novel therapeutic targets in PTK6+ breast tumors.
Collapse
Affiliation(s)
- Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hilaire C Playa
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Deanna N Parke
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Warner A Thomas
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | | | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
13
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
14
|
Hoang VT, Matossian MD, Ucar DA, Elliott S, La J, Wright MK, Burks HE, Perles A, Hossain F, King CT, Browning VE, Bursavich J, Fang F, Del Valle L, Bhatt AB, Cavanaugh JE, Flaherty PT, Anbalagan M, Rowan BG, Bratton MR, Nephew KP, Miele L, Collins-Burow BM, Martin EC, Burow ME. ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer. Front Oncol 2020; 10:1164. [PMID: 32850332 PMCID: PMC7416559 DOI: 10.3389/fonc.2020.01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
Collapse
Affiliation(s)
- Van T. Hoang
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Margarite D. Matossian
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Steven Elliott
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jacqueline La
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Maryl K. Wright
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hope E. Burks
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Aaron Perles
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Fokhrul Hossain
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Valentino E. Browning
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Fang Fang
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Luis Del Valle
- Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Melyssa R. Bratton
- Cellular and Molecular Biology Core, Xavier University, New Orleans, LA, United States
| | - Kenneth P. Nephew
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Lucio Miele
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Bridgette M. Collins-Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
15
|
Dwyer AR, Truong TH, Ostrander JH, Lange CA. 90 YEARS OF PROGESTERONE: Steroid receptors as MAPK signaling sensors in breast cancer: let the fates decide. J Mol Endocrinol 2020; 65:T35-T48. [PMID: 32209723 PMCID: PMC7329584 DOI: 10.1530/jme-19-0274] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Steroid hormone receptors (SRs) are classically defined as ligand-activated transcription factors that function as master regulators of gene programs important for a wide range of processes governing adult physiology, development, and cell or tissue homeostasis. A second function of SRs includes the ability to activate cytoplasmic signaling pathways. Estrogen (ER), androgen (AR), and progesterone (PR) receptors bind directly to membrane-associated signaling molecules including mitogenic protein kinases (i.e. c-SRC and AKT), G-proteins, and ion channels to mediate context-dependent actions via rapid activation of downstream signaling pathways. In addition to making direct contact with diverse signaling molecules, SRs are further fully integrated with signaling pathways by virtue of their N-terminal phosphorylation sites that act as regulatory hot-spots capable of sensing the signaling milieu. In particular, ER, AR, PR, and closely related glucocorticoid receptors (GR) share the property of accepting (i.e. sensing) ligand-independent phosphorylation events by proline-directed kinases in the MAPK and CDK families. These signaling inputs act as a 'second ligand' that dramatically impacts cell fate. In the face of drugs that reliably target SR ligand-binding domains to block uncontrolled cancer growth, ligand-independent post-translational modifications guide changes in cell fate that confer increased survival, EMT, migration/invasion, stemness properties, and therapy resistance of non-proliferating SR+ cancer cell subpopulations. The focus of this review is on MAPK pathways in the regulation of SR+ cancer cell fate. MAPK-dependent phosphorylation of PR (Ser294) and GR (Ser134) will primarily be discussed in light of the need to target changes in breast cancer cell fate as part of modernized combination therapies.
Collapse
Affiliation(s)
- Amy R. Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Thu H. Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Julie H. Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
| | - Carol A. Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis MN 55455
- Department of Pharmacology, University of Minnesota, Minneapolis MN 55455
- Corresponding author: Carol A Lange, Professor, ; 612-626-0621 (phone), University of Minnesota Masonic Cancer Center, Delivery Code 2812, Cancer and Cardiovascular Research Building, 2231 6th St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication 2019; 11:045013. [DOI: 10.1088/1758-5090/ab30b4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
18
|
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, Raj GV, Cidlowski JA, Ostrander JH, Schwertfeger KL, Seagroves TN, Lange CA. Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF-driven Signaling Axis. Mol Cancer Res 2018; 16:1761-1772. [PMID: 29991529 PMCID: PMC6214723 DOI: 10.1158/1541-7786.mcr-18-0410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023]
Abstract
The metastatic cascade is a complex process that requires cancer cells to survive despite conditions of high physiologic stress. Previously, cooperation between the glucocorticoid receptor (GR) and hypoxia-inducible factors (HIF) was reported as a point of convergence for host and cellular stress signaling. These studies indicated p38 MAPK-dependent phosphorylation of GR on Ser134 and subsequent p-GR/HIF-dependent induction of breast tumor kinase (PTK6/Brk), as a mediator of aggressive cancer phenotypes. Herein, p-Ser134 GR was quantified in human primary breast tumors (n = 281) and the levels of p-GR were increased in triple-negative breast cancer (TNBC) relative to luminal breast cancer. Brk was robustly induced following exposure of TNBC model systems to chemotherapeutic agents (Taxol or 5-fluorouracil) and growth in suspension [ultra-low attachment (ULA)]. Notably, both Taxol and ULA resulted in upregulation of the Aryl hydrocarbon receptor (AhR), a known mediator of cancer prosurvival phenotypes. Mechanistically, AhR and GR copurified and following chemotherapy and ULA, these factors assembled at the Brk promoter and induced Brk expression in an HIF-dependent manner. Furthermore, Brk expression was upregulated in Taxol-resistant breast cancer (MCF-7) models. Ultimately, Brk was critical for TNBC cell proliferation and survival during Taxol treatment and in the context of ULA as well as for basal cancer cell migration, acquired biological phenotypes that enable cancer cells to successfully complete the metastatic cascade. These studies nominate AhR as a p-GR binding partner and reveal ways to target epigenetic events such as adaptive and stress-induced acquisition of cancer skill sets required for metastatic cancer spread.Implication: Breast cancer cells enlist intracellular stress response pathways that evade chemotherapy by increasing cancer cell survival and promoting migratory phenotypes. Mol Cancer Res; 16(11); 1761-72. ©2018 AACR.
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shihong Ma
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carlos Perez Kerkvliet
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Taylor M Helle
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raisa I Krutilina
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ganesh V Raj
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Julie H Ostrander
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, Masonic Cancer Center and Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Carol A Lange
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
19
|
Souid S, Elsayed HE, Ebrahim HY, Mohyeldin MM, Siddique AB, Karoui H, El Sayed KA, Essafi-Benkhadir K. 13 1 -Oxophorbine protopheophorbide A from Ziziphus lotus as a novel mesenchymal-epithelial transition factor receptor inhibitory lead for the control of breast tumor growth in vitro and in vivo. Mol Carcinog 2018; 57:1507-1524. [PMID: 29978911 DOI: 10.1002/mc.22874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
The failure of chemotherapy especially in triple negative breast cancer (TNBC) patients has been correlated with the overexpression of the mesenchymal-epithelial transition factor (c-Met) receptor. Thus, the hepatocyte growth factor (HGF)/c-Met signaling axis has gained considerable attention as a valid molecular target for breast cancer therapy. This study reports for the first time the discovery of the 131 -oxophorbines pheophorbide A and protopheophorbide A along with chlorophyllide A from Ziziphus lotus, an edible typical Tunisian plant, as the potent antiproliferative compounds against the human breast cancer cells MDA-MB-231 and MCF-7. Compared to other compounds, protopheophorbide A exerted the highest light-independent antiproliferative effect against the metastatic TNBC MDA-MB-231 cells (IC50 = 6.5 μM). In silico, this compound targeted the kinase domain of multiple c-Met crystal structures. It potently inhibited the kinase domain phosphorylation of wild and mutant c-Met in Z-LYTE kinase assay. Protopheophorbide A inhibited HGF-induced downstream c-Met-dependent cell proliferation, survival, adhesion and migration through RAF/MEK/ERK and PI3K/PTEN/AKT signaling pathways modulation, ROS generation and activation of JNK and p38 pathways. Interestingly, this compound impaired the ability of the MDA-MB-231 cells to adhere at different extracellular matrix proteins by reducing the HGF-induced expression of integrins αv, β3, α2, and β1. Moreover, protopheophorbide A exhibited anti-migratory properties (IC50 = 2.2 μM) through impacting the expression levels of E-cadherin, vimentin, β-catenin, FAK, Brk, Rac, and Src proteins. Importantly, treatment with protopheophorbide A significantly inhibited the MDA-MB-231 tumor growth in vivo. Our results suggest that protopheophorbide A could be a novel c-Met inhibitory lead with promise to control c-Met/HGF-dependent breast malignancies.
Collapse
Affiliation(s)
- Soumaya Souid
- Institut Pasteur de Tunis, LR11IPT04, LR16IPT04 Laboratoire d'Epidémiologie Moléculaire et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Heba E Elsayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Mohamed M Mohyeldin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana.,Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Habib Karoui
- Institut Pasteur de Tunis, LR11IPT04, LR16IPT04 Laboratoire d'Epidémiologie Moléculaire et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Khadija Essafi-Benkhadir
- Institut Pasteur de Tunis, LR11IPT04, LR16IPT04 Laboratoire d'Epidémiologie Moléculaire et Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, Tunis, Tunisia.,Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
20
|
Karmakar S, Dey P, Vaz AP, Bhaumik SR, Ponnusamy MP, Batra SK. PD2/PAF1 at the Crossroads of the Cancer Network. Cancer Res 2018; 78:313-319. [PMID: 29311159 DOI: 10.1158/0008-5472.can-17-2175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Pancreatic differentiation 2 (PD2)/RNA polymerase II-associated factor 1 (PAF1) is the core subunit of the human PAF1 complex (PAF1C) that regulates the promoter-proximal pausing of RNA polymerase II as well as transcription elongation and mRNA processing and coordinates events in mRNA stability and quality control. As an integral part of its transcription-regulatory function, PD2/PAF1 plays a role in posttranslational histone covalent modifications as well as regulates expression of critical genes of the cell-cycle machinery. PD2/PAF1 alone, and as a part of PAF1C, provides distinct roles in the maintenance of self-renewal of embryonic stem cells and cancer stem cells, and in lineage differentiation. Thus, PD2/PAF1 malfunction or its altered abundance is likely to affect normal cellular functions, leading to disease states. Indeed, PD2/PAF1 is found to be upregulated in poorly differentiated pancreatic cancer cells and has the capacity for neoplastic transformation when ectopically expressed in mouse fibroblast cells. Likewise, PD2/PAF1 is upregulated in pancreatic and ovarian cancer stem cells. Here, we concisely describe multifaceted roles of PD2/PAF1 associated with oncogenic transformation and implicate PD2/PAF1 as an attractive target for therapeutic development to combat malignancy. Cancer Res; 78(2); 313-9. ©2018 AACR.
Collapse
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Parama Dey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Arokia P Vaz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
21
|
Mohyeldin MM, Akl MR, Ebrahim HY, Dragoi AM, Dykes S, Cardelli JA, El Sayed KA. The oleocanthal-based homovanillyl sinapate as a novel c-Met inhibitor. Oncotarget 2017; 7:32247-73. [PMID: 27086914 PMCID: PMC5078011 DOI: 10.18632/oncotarget.8681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
The hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-Met) signaling axis has gained considerable attention as an attractive molecular target for therapeutic blockade of cancer. Inspired by the chemical structure of S (-)-oleocanthal, a natural secoiridoid from extra-virgin olive oil with documented anticancer activity against c-Met-dependent malignancies, the research presented herein reports on the discovery of the novel olive-derived homovanillyl sinapate (HVS) as a promising c-Met inhibitor. HVS was distinguished for its remarkable potency against wild-type c-Met and its oncogenic variant in cell-free assays and confirmed by in silico docking studies. Furthermore, HVS substantially impaired the c-Met-mediated growth across a broad spectrum of breast cancer cells, while similar treatment doses had no effect on the non-tumorigenic mammary epithelial cell growth. In addition, HVS caused a dose-dependent inhibition of HGF-induced, but not epidermal growth factor (EGF)-induced, cell scattering in addition to HGF-mediated migration, invasion, and 3-dimensional (3D) proliferation of tumor cell spheroids. HVS treatment effects were mediated via inhibition of ligand-mediated c-Met activation and its downstream mitogenic signaling and blocking molecular mediators involved in cellular motility across different cellular contexts. An interesting feature of HVS is its good selectivity for c-Met and Abelson murine leukemia viral oncogene homolog 1 (ABL1) when profiled against a panel of kinases. Docking studies revealed interactions likely to impart high dual affinity for both ABL1 and c-Met kinases. HVS markedly reduced tumor growth, showed excellent pharmacodynamics, and suppressed cell proliferation and microvessel density in an orthotopic model of triple negative breast cancer. Collectively, the present findings suggested that the oleocanthal-based HVS is a promising c-Met inhibitor lead entity with excellent therapeutic potential to control malignancies with aberrant c-Met activity.
Collapse
Affiliation(s)
- Mohamed M Mohyeldin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Mohamed R Akl
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Ana Maria Dragoi
- Department of Microbiology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Samantha Dykes
- Department of Microbiology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - James A Cardelli
- Department of Microbiology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana, USA
| |
Collapse
|
22
|
Simões AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21:1654-1663. [PMID: 27320690 DOI: 10.1016/j.drudis.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
23
|
Ito K, Park SH, Nayak A, Byerly JH, Irie HY. PTK6 Inhibition Suppresses Metastases of Triple-Negative Breast Cancer via SNAIL-Dependent E-Cadherin Regulation. Cancer Res 2016; 76:4406-17. [DOI: 10.1158/0008-5472.can-15-3445] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
|
24
|
Regan Anderson TM, Ma SH, Raj GV, Cidlowski JA, Helle TM, Knutson TP, Krutilina RI, Seagroves TN, Lange CA. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res 2016; 76:1653-63. [PMID: 26825173 DOI: 10.1158/0008-5472.can-15-2510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
Cancer cells use stress response pathways to sustain their pathogenic behavior. In breast cancer, stress response-associated phenotypes are mediated by the breast tumor kinase, Brk (PTK6), via the hypoxia-inducible factors HIF-1α and HIF-2α. Given that glucocorticoid receptor (GR) is highly expressed in triple-negative breast cancer (TNBC), we investigated cross-talk between stress hormone-driven GR signaling and HIF-regulated physiologic stress. Primary TNBC tumor explants or cell lines treated with the GR ligand dexamethasone exhibited robust induction of Brk mRNA and protein that was HIF1/2-dependent. HIF and GR coassembled on the BRK promoter in response to either hypoxia or dexamethasone, indicating that Brk is a direct GR/HIF target. Notably, HIF-2α, not HIF-1α, expression was induced by GR signaling, and the important steroid receptor coactivator PELP1 was also found to be induced in a HIF-dependent manner. Mechanistic investigations showed how PELP1 interacted with GR to activate Brk expression and demonstrated that physiologic cell stress, including hypoxia, promoted phosphorylation of GR serine 134, initiating a feed-forward signaling loop that contributed significantly to Brk upregulation. Collectively, our findings linked cellular stress (HIF) and stress hormone (cortisol) signaling in TNBC, identifying the phospho-GR/HIF/PELP1 complex as a potential therapeutic target to limit Brk-driven progression and metastasis in TNBC patients.
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shi Hong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Taylor M Helle
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Todd P Knutson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee HSC, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee HSC, Memphis, Tennessee
| | - Carol A Lange
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
25
|
Zhai L, Ma C, Li W, Yang S, Liu Z. miR-143 suppresses epithelial-mesenchymal transition and inhibits tumor growth of breast cancer through down-regulation of ERK5. Mol Carcinog 2015; 55:1990-2000. [PMID: 26618772 DOI: 10.1002/mc.22445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/05/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of cancer invasion and metastasis. Many studies have significantly enhanced the knowledge on EMT through the characterization of microRNAs (miRNAs) influencing the signaling pathways and downstream events that define EMT on a molecular level. In this study, we found that miR-143 suppressed EMT. Up-regulating miR-143 enhanced E-cadherin-mediated cell-cell adhesion ability, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, the xenograft mouse model also unveiled the suppressive effects of miR-143 on tumor growth. Additionally, we demonstrated that up-regulating extracellular signal regulated kinase 5 (ERK5) was associated with poor prognosis of breast cancer patients. Moreover, we observed an inverse correlation between miR-143 and ERK5 in breast cancer tissues. miR-143 directly targeted seed sequences in the 3'-untranslated regions of ERK5. Furthermore, we revealed that the downstream molecules of glycogen synthase kinase 3 beta (GSK-3β)/Snail signaling were involved in EMT and modulated by ERK5. In summary, our findings demonstrated that miR-143 down-regulated its target ERK5, leading to the suppression of EMT induced by GSK-3β/Snail signaling of breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Limin Zhai
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chuanxiang Ma
- Department of Pathology, Afflidated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shuo Yang
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhijun Liu
- Department of Medical Biology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| |
Collapse
|
26
|
Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS, Gu C, Cai G, Ouyang W, Sen G, Stark GR, Su B, Vines CM, Tournier C, Hamilton TA, Vidimos A, Gastman B, Liu C, Li X. A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. ACTA ACUST UNITED AC 2015; 212:1571-87. [PMID: 26347473 PMCID: PMC4577838 DOI: 10.1084/jem.20150204] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/07/2015] [Indexed: 01/04/2023]
Abstract
Wu et al. report a novel IL-17–mediated cascade via the IL-17R–TRAF4–ERK5 axis that directly stimulates keratinocyte proliferation and skin tumor formation in mice. Although IL-17 is emerging as an important cytokine in cancer promotion and progression, the underlining molecular mechanism remains unclear. Previous studies suggest that IL-17 (IL-17A) sustains a chronic inflammatory microenvironment that favors tumor formation. Here we report a novel IL-17–mediated cascade via the IL-17R–Act1–TRAF4–MEKK3–ERK5 positive circuit that directly stimulates keratinocyte proliferation and tumor formation. Although this axis dictates the expression of target genes Steap4 (a metalloreductase for cell metabolism and proliferation) and p63 (a transcription factor for epidermal stem cell proliferation), Steap4 is required for the IL-17–induced sustained expansion of p63+ basal cells in the epidermis. P63 (a positive transcription factor for the Traf4 promoter) induces TRAF4 expression in keratinocytes. Thus, IL-17–induced Steap4-p63 expression forms a positive feedback loop through p63-mediated TRAF4 expression, driving IL-17–dependent sustained activation of the TRAF4–ERK5 axis for keratinocyte proliferation and tumor formation.
Collapse
Affiliation(s)
- Ling Wu
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Pathology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Xing Chen
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Junjie Zhao
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Pathology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Bradley Martin
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Pathology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Jarod A Zepp
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Pathology and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Jennifer S Ko
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Chunfang Gu
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Institute of Immunology, and Department of Immunobiology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080
| | - Ganes Sen
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - George R Stark
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Bing Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Institute of Immunology, and Department of Immunobiology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Department of Laboratory Medicine, Ruijin Hospital, Shanghai Institute of Immunology, and Department of Immunobiology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China Department of Immunobiology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520 Department of Immunobiology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520
| | | | - Cathy Tournier
- University of Manchester, Manchester M13 9PL, England, UK
| | - Thomas A Hamilton
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Allison Vidimos
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Brian Gastman
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195 Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Caini Liu
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Xiaoxia Li
- Department of Immunology, Department of Anatomical Pathology and Clinical Pathology, Department of Cancer Biology, Department of Dermatology, and Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
27
|
Park SH, Ito K, Olcott W, Katsyv I, Halstead-Nussloch G, Irie HY. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim. Breast Cancer Res 2015; 17:86. [PMID: 26084280 PMCID: PMC4496943 DOI: 10.1186/s13058-015-0594-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2+ (Her2+) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2+ breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2+ breast cancer, either intrinsically or acquired after continuous drug exposure. Methods To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2+ breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Results Lapatinib treatment of “sensitive” Her2+ cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively “resistant” Her2+ cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these “resistant” cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D MatrigelTM cultures, and also inhibits growth of Her2+ primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. Conclusions PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2+ breast cancer cells by enhancing Bim expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6 inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0594-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun Hee Park
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - William Olcott
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Igor Katsyv
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
28
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
29
|
Tsui T, Miller WT. Cancer-Associated Mutations in Breast Tumor Kinase/PTK6 Differentially Affect Enzyme Activity and Substrate Recognition. Biochemistry 2015; 54:3173-82. [PMID: 25940761 DOI: 10.1021/acs.biochem.5b00303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brk (breast tumor kinase, also known as PTK6) is a nonreceptor tyrosine kinase that is aberrantly expressed in several cancers and promotes cell proliferation and transformation. Genome sequencing studies have revealed a number of cancer-associated somatic mutations in the Brk gene; however, their effect on Brk activity has not been examined. We analyzed a panel of cancer-associated mutations and determined that several of the mutations activate Brk, while two eliminated enzymatic activity. Three of the mutations (L16F, R131L, and P450L) are located in important regulatory domains of Brk (the SH3, SH2 domains, and C-terminal tail, respectively). Biochemical data suggest that they activate Brk by disrupting intramolecular interactions that normally maintain Brk in an autoinhibited conformation. We also observed differential effects on recognition and phosphorylation of substrates, suggesting that the mutations can influence downstream Brk signaling by multiple mechanisms.
Collapse
Affiliation(s)
- Tiffany Tsui
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
30
|
Javaid S, Zhang J, Smolen GA, Yu M, Wittner BS, Singh A, Arora KS, Madden MW, Desai R, Zubrowski MJ, Schott BJ, Ting DT, Stott SL, Toner M, Maheswaran S, Shioda T, Ramaswamy S, Haber DA. MAPK7 Regulates EMT Features and Modulates the Generation of CTCs. Mol Cancer Res 2015; 13:934-43. [PMID: 25678598 PMCID: PMC4433453 DOI: 10.1158/1541-7786.mcr-14-0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epithelial-to-mesenchymal transition (EMT) has been implicated in models of tumor cell migration, invasion, and metastasis. In a search for candidate therapeutic targets to reverse this process, nontumorigenic MCF10A breast epithelial cells were infected with an arrayed lentiviral kinome shRNA library and screened for either suppression or enhancement of a 26-gene EMT RNA signature. No individual kinase gene knockdown was sufficient to induce EMT. In contrast, grouped epithelial markers were induced by knockdown of multiple kinases, including mitogen activated protein kinase 7 (MAPK7). In breast cancer cells, suppression of MAPK7 increased E-cadherin (CDH1) expression and inhibited cell migration. In an orthotopic mouse model, MAPK7 suppression reduced the generation of circulating tumor cells and the appearance of lung metastases. Together, these observations raise the possibility that targeting kinases that maintain mesenchymal cell properties in cancer cells, such as MAPK7, may lessen tumor invasiveness. IMPLICATIONS Suppression of MAPK7 induces epithelial markers, reduces generation of circulating tumor cells and appearance of lung metastases.
Collapse
Affiliation(s)
- Sarah Javaid
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jianmin Zhang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Gromoslaw A Smolen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Min Yu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Anurag Singh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Kshitij S Arora
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Marissa W Madden
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Rushil Desai
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Matthew J Zubrowski
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Benjamin J Schott
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts. BioMEMS Resource Center, Massachusetts General Hospital Center for Bioengineering in Medicine, Charlestown, Massachusetts
| | - Mehmet Toner
- BioMEMS Resource Center, Massachusetts General Hospital Center for Bioengineering in Medicine, Charlestown, Massachusetts. Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Toshi Shioda
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| |
Collapse
|
31
|
Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Oncotarget 2015; 5:3145-58. [PMID: 24762669 PMCID: PMC4102798 DOI: 10.18632/oncotarget.1865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Our understanding of breast cancer heterogeneity at the protein level is limited despite proteins being the ultimate effectors of cellular functions. We investigated the heterogeneity of breast cancer (41 primary tumors and 15 breast cancer cell lines) at the protein and phosphoprotein levels to identify activated oncogenic pathways and developing targeted therapeutic strategies. Heterogeneity was observed not only across histological subtypes, but also within subtypes. Tumors of the Triple negative breast cancer (TNBC) subtype distributed across four different clusters where one cluster (cluster ii) showed high deregulation of many proteins and phosphoproteins. The majority of TNBC cell lines, particularly mesenchymal lines, resembled the cluster ii TNBC tumors. Indeed, TNBC cell lines were more sensitive than non-TNBC cell lines when treated with targeted inhibitors selected based on upregulated pathways in cluster ii. In line with the enrichment of the upregulated pathways with onco-clients of Hsp90, we found synergy in combining Hsp90 inhibitors with several kinase inhibitors, particularly Erk5 inhibitors. The combination of Erk5 and Hsp90 inhibitors was effective in vitro and in vivo against TNBC leading to upregulation of pro-apoptotic effectors. Our studies contribute to proteomic profiling and improve our understanding of TNBC heterogeneity to provide therapeutic opportunities for this disease.
Collapse
|
32
|
Pires IM, Blokland NJG, Broos AWT, Poujade FA, Senra JM, Eccles SA, Span PN, Harvey AJ, Hammond EM. HIF-1α-independent hypoxia-induced rapid PTK6 stabilization is associated with increased motility and invasion. Cancer Biol Ther 2014; 15:1350-7. [PMID: 25019382 PMCID: PMC4130728 DOI: 10.4161/cbt.29822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/30/2022] Open
Abstract
PTK6/Brk is a non-receptor tyrosine kinase overexpressed in cancer. Here we demonstrate that cytosolic PTK6 is rapidly and robustly induced in response to hypoxic conditions in a HIF-1-independent manner. Furthermore, a proportion of hypoxic PTK6 subsequently re-localized to the cell membrane. We observed that the rapid stabilization of PTK6 is associated with a decrease in PTK6 ubiquitylation and we have identified c-Cbl as a putative PTK6 E3 ligase in normoxia. The consequences of hypoxia-induced PTK6 stabilization and subcellular re-localization to the plasma membrane include increased cell motility and invasion, suggesting PTK6 targeting as a therapeutic approach to reduce hypoxia-regulated metastatic potential. This could have particular significance for breast cancer patients with triple negative disease.
Collapse
Affiliation(s)
- Isabel M Pires
- CR-UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
- School of Biological, Biomedical and Environmental Sciences; University of Hull; Hull, UK
| | - Nina JG Blokland
- CR-UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| | - Agnieke WT Broos
- CR-UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| | - Flore-Anne Poujade
- School of Biological, Biomedical and Environmental Sciences; University of Hull; Hull, UK
| | - Joana M Senra
- CR-UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit; The Institute of Cancer Research; Sutton, UK
| | - Paul N Span
- Radboud University Nijmegen Medical Centre; Radiation Oncology; Nijmegen, the Netherlands
| | - Amanda J Harvey
- Biosciences; Brunel Institute for Cancer Genetics and Pharmacogenomics; Brunel University; Uxbridge, UK
| | - Ester M Hammond
- CR-UK/MRC Oxford Institute for Radiation Oncology; Department of Oncology; University of Oxford; Oxford, UK
| |
Collapse
|
33
|
Hampton KK, Craven RJ. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 2014; 1:504-12. [PMID: 25594057 PMCID: PMC4278327 DOI: 10.18632/oncoscience.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is activated through changes in expression or mutations in a number of tumors and is a driving force in cancer progression. EGFR is targeted by numerous inhibitors, including chimeric antibodies targeting the extracellular domain and small molecule kinase domain inhibitors. The kinase domain inhibitors are particularly active against mutant forms of the receptor, and subsequent mutations drive resistance to the inhibitors. Here, we review recent developments on the trafficking of wild-type and mutant EGFR, focusing on the roles of MIG6, SPRY2, ITSN, SHP2, S2RPGRMC1 and RAK. Some classes of EGFR regulators affect wild-type and mutant EGFR equally, while others are specific for either the wild-type or mutant form of the receptor. Below we summarize multiple signaling-associated pathways that are important in trafficking wild-type and mutant EGFR with the goal being stimulation of new approaches for targeting the distinct forms of the receptor.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
34
|
Olive phenolics as c-Met inhibitors: (-)-Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models. PLoS One 2014; 9:e97622. [PMID: 24849787 PMCID: PMC4029740 DOI: 10.1371/journal.pone.0097622] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/18/2014] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the Hepatocyte growth factor (HGF)/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT), angiogenesis, invasion, and metastasis. (-)-Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (-)-oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (-)-oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (-)-oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (-)-oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (-)-oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (-)-oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.
Collapse
|
35
|
Ono H, Basson MD, Ito H. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling. PLoS One 2014; 9:e96060. [PMID: 24788754 PMCID: PMC4006869 DOI: 10.1371/journal.pone.0096060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/02/2014] [Indexed: 02/06/2023] Open
Abstract
Protein Tyrosine Kinase 6 (PTK6) is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each). In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05). Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Surgery, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
| | - Marc D. Basson
- Department of Surgery, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
| | - Hiromichi Ito
- Department of Surgery, Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
36
|
Regan Anderson TM, Peacock DL, Daniel AR, Hubbard GK, Lofgren KA, Girard BJ, Schörg A, Hoogewijs D, Wenger RH, Seagroves TN, Lange CA. Breast tumor kinase (Brk/PTK6) is a mediator of hypoxia-associated breast cancer progression. Cancer Res 2013; 73:5810-20. [PMID: 23928995 DOI: 10.1158/0008-5472.can-13-0523] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basal-type triple-negative breast cancers (TNBC) are aggressive and difficult to treat relative to luminal-type breast cancers. TNBC often express abundant Met receptors and are enriched for transcriptional targets regulated by hypoxia-inducible factor-1α (HIF-1α), which independently predict cancer relapse and increased risk of metastasis. Brk/PTK6 is a critical downstream effector of Met signaling and is required for hepatocyte growth factor (HGF)-induced cell migration. Herein, we examined the regulation of Brk by HIFs in TNBC in vitro and in vivo. Brk mRNA and protein levels are upregulated strongly in vitro by hypoxia, low glucose, and reactive oxygen species. In HIF-silenced cells, Brk expression relied upon both HIF-1α and HIF-2α, which we found to regulate BRK transcription directly. HIF-1α/2α silencing in MDA-MB-231 cells diminished xenograft growth and Brk reexpression reversed this effect. These findings were pursued in vivo by crossing WAP-Brk (FVB) transgenic mice into the MET(Mut) knockin (FVB) model. In this setting, Brk expression augmented MET(Mut)-induced mammary tumor formation and metastasis. Unexpectedly, tumors arising in either MET(Mut) or WAP-Brk × MET(Mut) mice expressed abundant levels of Sik, the mouse homolog of Brk, which conferred increased tumor formation and decreased survival. Taken together, our results identify HIF-1α/2α as novel regulators of Brk expression and suggest that Brk is a key mediator of hypoxia-induced breast cancer progression. Targeting Brk expression or activity may provide an effective means to block the progression of aggressive breast cancers.
Collapse
MESH Headings
- Animals
- Apoptosis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/mortality
- Carcinoma, Lobular/pathology
- Cell Proliferation
- Chromatin Immunoprecipitation
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoenzyme Techniques
- Interleukin Receptor Common gamma Subunit/physiology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Authors' Affiliations: Division of Hematology, Oncology, and Transplantation, Department of Medicine and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Cancer Research, Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee; and Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng Y, Wang Z, Bie W, Brauer PM, Perez White BE, Li J, Nogueira V, Raychaudhuri P, Hay N, Tonetti DA, Macias V, Kajdacsy-Balla A, Tyner AL. PTK6 activation at the membrane regulates epithelial-mesenchymal transition in prostate cancer. Cancer Res 2013; 73:5426-37. [PMID: 23856248 DOI: 10.1158/0008-5472.can-13-0443] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The intracellular tyrosine kinase protein tyrosine kinase 6 (PTK6) lacks a membrane-targeting SH4 domain and localizes to the nuclei of normal prostate epithelial cells. However, PTK6 translocates from the nucleus to the cytoplasm in human prostate tumor cells. Here, we show that while PTK6 is located primarily within the cytoplasm, the pool of active PTK6 in prostate cancer cells localizes to membranes. Ectopic expression of membrane-targeted active PTK6 promoted epithelial-mesenchymal transition in part by enhancing activation of AKT, thereby stimulating cancer cell migration and metastases in xenograft models of prostate cancer. Conversely, siRNA-mediated silencing of endogenous PTK6 promoted an epithelial phenotype and impaired tumor xenograft growth. In mice, PTEN deficiency caused endogenous active PTK6 to localize at membranes in association with decreased E-cadherin expression. Active PTK6 was detected at membranes in some high-grade human prostate tumors, and PTK6 and E-cadherin expression levels were inversely correlated in human prostate cancers. In addition, high levels of PTK6 expression predicted poor prognosis in patients with prostate cancer. Our findings reveal novel functions for PTK6 in the pathophysiology of prostate cancer, and they define this kinase as a candidate therapeutic target. Cancer Res; 73(17); 5426-37. ©2013 AACR.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry, Biopharmaceutical Sciences, and Pathology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu LN, Huang PY, Lin ZR, Hu LJ, Liang JZ, Li MZ, Tang LQ, Zeng MS, Zhong Q, Zeng BH. Protein tyrosine kinase 6 is associated with nasopharyngeal carcinoma poor prognosis and metastasis. J Transl Med 2013; 11:140. [PMID: 23758975 PMCID: PMC3686693 DOI: 10.1186/1479-5876-11-140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/03/2013] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to analyze the expression of protein tyrosine kinase 6 (PTK6) in nasopharyngeal carcinoma (NPC) samples, and to identify whether PTK6 can serve as a biomarker for the diagnosis and prognosis of NPC. Methods We used quantitative RT-PCR and Western blotting analysis to detect mRNA and protein expression of PTK6 in NPC cell lines and immortalized nasopharyngeal epithelial cell lines. 31 NPC and 16 non-tumorous nasopharyngeal mucosa biopsies were collected to detect the difference in the expression of mRNA level of PTK6 by quantitative RT-PCR. We also collected 178 NPC and 10 normal nasopharyngeal epithelial cases with clinical follow-up data to investigate the expression of PTK6 by immunohistochemistry staining (IHC). PTK6 overexpression on cell growth and colony formation ability were measured by the method of cell proliferation assay and colony formation assay. Results The expression of PTK6 was higher in most of NPC cell lines at both mRNA and protein levels than in immortalized nasopharyngeal epithelial cell lines (NPECs) induced by Bmi-1 (Bmi-1/NPEC1, and Bmi-1/NPEC2). The mRNA level of PTK6 was high in NPC biopsies compared to non-tumorous nasopharyngeal mucosa biopsies. IHC results showed the expression of PTK6 was significantly correlated to tumor size (P<0.001), clinical stage (P<0.001), and metastasis (P=0.016). The patients with high-expression of PTK6 had a significantly poor prognosis compared to those of low-expression (47.8% versus 80.0%, P<0.001), especially in the patients at the advanced stages (42.2% versus 79.1%, P<0.001). Multivariate analysis indicated that the level of PTK6 expression was an independent prognostic factor for the overall survival of patients with NPC (P <0.001). Overexpression of PTK6 in HNE1 cells enhanced the ability of cell proliferation and colony formation. Conclusions Our results suggest that high-expression of PTK6 is an independent factor for NPC patients and it might serve as a potential prognostic biomarker for patients with NPC.
Collapse
Affiliation(s)
- Li-na Liu
- Department of Oncology, Second Affiliated Hospital of Guangzhou medical college, 250 Changgang Road East, Guangzhou 510260, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest 2013; 43:397-404. [PMID: 23398121 PMCID: PMC3602132 DOI: 10.1111/eci.12050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to SRC family kinases. PTK6 is nuclear in normal prostate epithelia, but nuclear localization is lost in prostate tumours. Increased expression of PTK6 is detected in human prostate cancer, especially at metastatic stages, and in other types of cancers, including breast, colon, head and neck cancers, and serous carcinoma of the ovary. MATERIALS AND METHODS Potential novel substrates of PTK6 identified by mass spectrometry were validated in vitro. The significance of PTK6-induced phosphorylation of these substrates was addressed using human prostate cell lines by knockdown of endogenous PTK6 or overexpression of targeted PTK6 to different intracellular compartments. RESULTS We identified AKT, p130CAS and focal adhesion kinase (FAK) as novel PTK6 substrates and demonstrated their roles in promoting cell proliferation, migration and resistance to anoikis. In prostate cancer cells, active PTK6 is primarily associated with membrane compartments, although the majority of total PTK6 is localized within the cytoplasm. Ectopic expression of membrane-targeted PTK6 transforms immortalized fibroblasts. Knockdown of endogenous cytoplasmic PTK6 in PC3 prostate cancer cells impairs proliferation, migration and anoikis resistance. However, re-introduction of PTK6 into the nucleus significantly decreases cell proliferation, suggesting context-specific functions for nuclear PTK6. CONCLUSIONS In human prostate cancer, elevated PTK6 expression, translocation of PTK6 from the nucleus to the cytoplasm and its activation at the plasma membrane contribute to increased phosphorylation and activation of its substrates such as AKT, p130CAS and FAK, thereby promoting prostate cancer progression.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
40
|
Kang SA, Lee ST. PTK6 promotes degradation of c-Cbl through PTK6-mediated phosphorylation. Biochem Biophys Res Commun 2013; 431:734-9. [PMID: 23352614 DOI: 10.1016/j.bbrc.2013.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
PTK6 (also known as Brk) is an intracellular tyrosine kinase which induces proliferation, anti-apoptosis, migration, and anchorage-independent growth. Herein we report that PTK6 phosphorylates and down-regulates E3 ubiquitin ligase c-Cbl. Tyr(700), Tyr(731), and Tyr(774) residues in the C-terminal domain of c-Cbl are major phosphorylation sites targeted by PTK6. The phosphorylated c-Cbl is subjected to auto-ubiquitination and degraded through the ubiquitin-proteasome pathway. These results provide evidence for a novel mechanism demonstrating the oncogenic potential of PTK6 through degradation of c-Cbl, which is an E3 ligase important in down-regulation of oncoproteins.
Collapse
Affiliation(s)
- Shin-Ae Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | |
Collapse
|
41
|
Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 2012; 32:4304-12. [PMID: 23027128 PMCID: PMC3940264 DOI: 10.1038/onc.2012.427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/24/2012] [Accepted: 08/04/2012] [Indexed: 01/18/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase expressed in epithelial cancers. Disruption of Ptk6 decreases AOM-induced colon tumorigenesis in mice by preventing STAT3 activation. Relocalization of PTK6 in prostate cancers contributes to increased growth. Although not expressed in normal breast or ovary, PTK6 promotes anchorage-independent survival of breast and ovarian tumor cells. We identified several potential PTK6 substrates in the human SW620 colon cancer cell line using mass spectrometry, including FAK (focal adhesion kinase). We show that FAK is a direct substrate of PTK6 in vitro and in vivo. Expression of membrane targeted active PTK6 (Palm-PTK6-YF) induces constitutive activation of FAK and cell morphology changes, which are independent of SRC family kinases in Src−/−, Yes−/−, Fyn−/− (SYF) mouse embryonic fibroblasts (MEFs). Palm-PTK6-YF expressing SYF cells are transformed and overcome contact inhibition, form colonies in transformation assays, proliferate in suspension, and form tumors in a xenograft model. Expression of FAK and Palm-PTK6-YF in Fak−/− MEFs synergistically activates AKT and protects cells against anoikis. However, expression of Palm-PTK6-YF in Akt1/2−/− MEFs fails to protect cells from anoikis, indicating AKT is critical in PTK6 and FAK mediated survival signaling. In a conditional Pten knockout murine prostate cancer model, we identify prostate epithelial cells with enhanced activation of endogenous PTK6 and FAK at the plasma membrane. Knockdown of PTK6 in the PC3 human prostate cancer cell line disrupts FAK and AKT activation and promotes anoikis, which can be rescued by exogenous expression of FAK. Our data reveal important roles for a PTK6-FAK-AKT signaling axis in promoting anchorage-independent cell survival.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gierut JJ, Mathur PS, Bie W, Han J, Tyner AL. Targeting protein tyrosine kinase 6 enhances apoptosis of colon cancer cells following DNA damage. Mol Cancer Ther 2012; 11:2311-20. [PMID: 22989419 DOI: 10.1158/1535-7163.mct-12-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that has distinct functions in normal epithelia and cancer. It is expressed primarily in nondividing epithelial cells in the normal intestine, where it promotes differentiation. However, after DNA damage, PTK6 is induced in proliferating progenitor cells, where it contributes to apoptosis. We examined links between PTK6 and the tumor suppressor p53 in the isogenic p53(+/+) and p53(-/-) HCT116 colon tumor cell lines. We found that p53 promotes expression of PTK6 in HCT116 cells, and short hairpin RNA-mediated knockdown of PTK6 leads to reduced induction of the cyclin-dependent kinase inhibitor p21. Knockdown of PTK6 enhances apoptosis in HCT116 cells with wild-type p53, following treatment of cells with γ-radiation, doxorubicin, or 5-fluorouracil. No differences in the activation of AKT, ERK1/2, or ERK5, known PTK6-regulated prosurvival signaling proteins, were detected. However, activity of STAT3, a PTK6 substrate, was impaired in cells with knockdown of PTK6 following DNA damage. In contrast to its role in the normal epithelium following DNA damage, PTK6 promotes survival of cancer cells with wild-type p53 by promoting p21 expression and STAT3 activation. Targeting PTK6 in combination with use of chemotherapeutic drugs or radiation may enhance death of colon tumor cells with wild-type p53.
Collapse
Affiliation(s)
- Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, M/C 669, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
43
|
Accornero P, Miretti S, Bersani F, Quaglino E, Martignani E, Baratta M. Met receptor acts uniquely for survival and morphogenesis of EGFR-dependent normal mammary epithelial and cancer cells. PLoS One 2012; 7:e44982. [PMID: 23028720 PMCID: PMC3441651 DOI: 10.1371/journal.pone.0044982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022] Open
Abstract
Mammary gland development and breast cancer growth require multiple factors both of endocrine and paracrine origin. We analyzed the roles of Epidermal Growth Factor Receptor (EGFR) and Hepatocyte Growth Factor Receptor (Met) in mammary epithelial cells and mammary tumor cells derived from a mutated-ErbB2 transgenic mice. By using highly specific tyrosine kinase inhibitors we found that MCF-10A and NMuMG mammary epithelial cell lines are totally dependent on EGFR activation for their growth and survival. Proliferation and 3D-morphogenesis assays showed that HGF had no role in maintaining mammary cell viability, but was the only cytokine able to rescue EGFR-inhibited mammary cells. Insulin-Like Growth Factor-I (IGF-I), basic-Fibroblast Growth Factor (b-FGF) and Neuregulin, which are well known mammary morphogenic factors, did not rescue proliferation or morphogenesis in these cell lines, following EGFR inhibition. Similarly, ErbB2-driven tumor cells are EGFR-dependent and also display HGF-mediated rescue. Western-blot analysis of the signaling pathways involved in rescue after EGFR inhibition indicated that concomitant ERK1/2 and AKT activation was exclusively driven by Met, but not by IGF-I or b-FGF. These results describe a unique role for EGFR and Met in mammary epithelial cells by showing that similar pathways can be used by tumorigenic cells to sustain growth and resist to EGFR-directed anti-tumorigenic drugs.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Enzyme Activation/drug effects
- Epidermal Growth Factor/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Hepatocyte Growth Factor/pharmacology
- Humans
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mice
- Mice, Transgenic
- Morphogenesis/drug effects
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-met/metabolism
- Receptor, ErbB-2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Paolo Accornero
- Department of Veterinary Science, University of Torino, Grugliasco (TO), Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Discov Oncol 2012; 3:14-25. [PMID: 22124844 DOI: 10.1007/s12672-011-0097-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Signal transduction pathways downstream of receptor tyrosine kinases (RTKs) are often deregulated during oncogenesis, tumor progression, and metastasis. In particular, the peptide growth factor hormone, hepatocyte growth factor (HGF), and its specific receptor, Met tyrosine kinase, regulate cancer cell migration, thereby conferring an aggressive phenotype (Nakamura et al., J Clin Invest 106(12):1511-1519, 2000; Huh et al., Proc Natl Acad Sci U S A 101:4477-4482, 2004). Additionally, overexpression of Met is associated with enhanced invasiveness of breast cancer cells (Edakuni et al., Pathol Int 51(3):172-178, 2001; Jin et al., Cancer 79(4):749-760, 1997; Tuck et al., Am J Pathol 148(1):225-232, 1996). Here, we review the regulation of recently identified novel downstream mediators of HGF/Met signaling, Breast tumor kinase (Brk/PTK6), and Src-associated substrate during mitosis of 68 kDa (Sam68), and discuss their relevance to mechanisms of breast cancer progression.
Collapse
Affiliation(s)
- Alessia Locatelli
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | |
Collapse
|
45
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
46
|
Abstract
The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the 'hallmarks of cancer' as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.
Collapse
|
47
|
Hu B, Ren D, Su D, Lin H, Xian Z, Wan X, Zhang J, Fu X, Jiang L, Diao D, Fan X, Wang L, Wang J. Expression of the phosphorylated MEK5 protein is associated with TNM staging of colorectal cancer. BMC Cancer 2012; 12:127. [PMID: 22458985 PMCID: PMC3337320 DOI: 10.1186/1471-2407-12-127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/30/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activation of MEK5 in many cancers is associated with carcinogenesis through aberrant cell proliferation. In this study, we determined the level of phosphorylated MEK5 (pMEK5) expression in human colorectal cancer (CRC) tissues and correlated it with clinicopathologic data. METHODS pMEK5 expression was examined by immunohistochemistry in a tissue microarray (TMA) containing 335 clinicopathologic characterized CRC cases and 80 cases of nontumor colorectal tissues. pMEK5 expression of 19 cases of primary CRC lesions and paired with normal mucosa was examined by Western blotting. The relationship between pMEK5 expression in CRC and clinicopathologic parameters, and the association of pMEK5 expression with CRC survival were analyzed respectively. RESULTS pMEK5 expression was significantly higher in CRC tissues (185 out of 335, 55.2%) than in normal tissues (6 out of 80, 7.5%; P < 0.001). Western blotting demonstrated that pMEK5 expression was upregulated in 12 of 19 CRC tissues (62.1%) compared to the corresponding adjacent nontumor colorectal tissues. Overexpression of pMEK5 in CRC tissues was significantly correlated to the depth of invasion (P = 0.001), lymph node metastasis (P < 0.001), distant metastasis (P < 0.001) and high preoperative CEA level (P < 0.001). Consistently, the pMEK5 level in CRC tissues was increased following stage progression of the disease (P < 0.001). Analysis of the survival curves showed a significantly worse 5-year disease-free (P = 0.002) and 5-year overall survival rate (P < 0.001) for patients whose tumors overexpressed pMEK5. However, in multivariate analysis, pMEK5 was not an independent prognostic factor for CRC (DFS: P = 0.139; OS: P = 0.071). CONCLUSIONS pMEK5 expression is correlated with the staging of CRC and its expression might be helpful to the TNM staging system of CRC.
Collapse
Affiliation(s)
- Bang Hu
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zheng Y, Asara JM, Tyner AL. Protein-tyrosine kinase 6 promotes peripheral adhesion complex formation and cell migration by phosphorylating p130 CRK-associated substrate. J Biol Chem 2011; 287:148-158. [PMID: 22084245 DOI: 10.1074/jbc.m111.298117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein-tyrosine kinase 6 (PTK6) is a non-myristoylated intracellular tyrosine kinase evolutionarily related to Src kinases. Aberrant PTK6 expression and intracellular localization have been detected in human prostate tumors. In the PC3 prostate cancer cell line, the pool of endogenous activated PTK6, which is phosphorylated on tyrosine residue 342, is localized at the membrane. Expression of ectopic membrane-targeted PTK6 led to dramatic morphology changes and formation of peripheral adhesion complexes in PC3 cells. Peripheral adhesion complex formation was dependent upon PTK6 kinase activity. We demonstrated that p130 CRK-associated substrate (p130CAS) is a novel direct substrate of PTK6, and it works as a crucial adapter protein in inducing peripheral adhesion complexes. Activation of ERK5 downstream of p130CAS was indispensable for this process. Knockdown of endogenous PTK6 led to reduced cell migration and p130CAS phosphorylation, whereas knockdown of p130CAS attenuated oncogenic signaling induced by membrane-targeted PTK6, including ERK5 and AKT activation. Expression of membrane-targeted PTK6 promoted cell migration, which could be impaired by knockdown of p130CAS or ERK5. Our study reveals a novel function for PTK6 at the plasma membrane and suggests that the PTK6-p130CAS-ERK5 signaling cascade plays an important role in cancer cell migration and invasion.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607.
| |
Collapse
|
49
|
Lofgren KA, Ostrander JH, Housa D, Hubbard GK, Locatelli A, Bliss RL, Schwertfeger KL, Lange CA. Mammary gland specific expression of Brk/PTK6 promotes delayed involution and tumor formation associated with activation of p38 MAPK. Breast Cancer Res 2011; 13:R89. [PMID: 21923922 PMCID: PMC3262201 DOI: 10.1186/bcr2946] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/23/2011] [Accepted: 09/17/2011] [Indexed: 01/20/2023] Open
Abstract
Introduction Protein tyrosine kinases (PTKs) are frequently overexpressed and/or activated in human malignancies, and regulate cancer cell proliferation, cellular survival, and migration. As such, they have become promising molecular targets for new therapies. The non-receptor PTK termed breast tumor kinase (Brk/PTK6) is overexpressed in approximately 86% of human breast tumors. The role of Brk in breast pathology is unclear. Methods We expressed a WAP-driven Brk/PTK6 transgene in FVB/n mice, and analyzed mammary glands from wild-type (wt) and transgenic mice after forced weaning. Western blotting and immunohistochemistry (IHC) studies were conducted to visualize markers of mammary gland involution, cell proliferation and apoptosis, as well as Brk, STAT3, and activated p38 mitogen-activated protein kinase (MAPK) in mammary tissues and tumors from WAP-Brk mice. Human (HMEC) or mouse (HC11) mammary epithelial cells were stably or transiently transfected with Brk cDNA to assay p38 MAPK signaling and cell survival in suspension or in response to chemotherapeutic agents. Results Brk-transgenic dams exhibited delayed mammary gland involution and aged mice developed infrequent tumors with reduced latency relative to wt mice. Consistent with delayed involution, mammary glands of transgenic animals displayed decreased STAT3 phosphorylation, a marker of early-stage involution. Notably, p38 MAPK, a pro-survival signaling mediator downstream of Brk, was activated in mammary glands of Brk transgenic relative to wt mice. Brk-dependent signaling to p38 MAPK was recapitulated by Brk overexpression in the HC11 murine mammary epithelial cell (MEC) line and human MEC, while Brk knock-down in breast cancer cells blocked EGF-stimulated p38 signaling. Additionally, human or mouse MECs expressing Brk exhibited increased anchorage-independent survival and resistance to doxorubicin. Finally, breast tumor biopsies were subjected to IHC analysis for co-expression of Brk and phospho-p38 MAPK; ductal and lobular carcinomas expressing Brk were significantly more likely to express elevated phospho-p38 MAPK. Conclusions These studies illustrate that forced expression of Brk/PTK6 in non-transformed mammary epithelial cells mediates p38 MAPK phosphorylation and promotes increased cellular survival, delayed involution, and latent tumor formation. Brk expression in human breast tumors may contribute to progression by inducing p38-driven pro-survival signaling pathways.
Collapse
Affiliation(s)
- Kristopher A Lofgren
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, 420 Delaware St. SE, MMC 806, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zeng H, Belanger DB, Curran PJ, Shipps GW, Miao H, Bracken JB, Arshad Siddiqui M, Malkowski M, Wang Y. Discovery of novel imidazo[1,2-a]pyrazin-8-amines as Brk/PTK6 inhibitors. Bioorg Med Chem Lett 2011; 21:5870-5. [PMID: 21855335 DOI: 10.1016/j.bmcl.2011.07.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/05/2023]
Abstract
A series of substituted imidazo[1,2-a]pyrazin-8-amines were discovered as novel breast tumor kinase (Brk)/protein tyrosine kinase 6 (PTK6) inhibitors. Tool compounds with low-nanomolar Brk inhibition activity, high selectivity towards other kinases and desirable DMPK properties were achieved to enable the exploration of Brk as an oncology target.
Collapse
Affiliation(s)
- Hongbo Zeng
- Department of Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|