1
|
Yin X, Wang J, Shen Z, Jia Q, Bian Y, Yang Z, Liu Y, Li Y, Zhang H. ENAH transcriptionally activated by YY1 promotes growth and invasion of laryngocarcinoma cells through PI3K/AKT signaling. Eur J Pharmacol 2024; 983:176991. [PMID: 39265883 DOI: 10.1016/j.ejphar.2024.176991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Laryngocarcinoma is a common malignancy in the upper respiratory tract. Enabled homolog (ENAH) is an actin-binding protein that is associated with the development of various cancers. However, its role and mechanism in laryngocarcinoma remain unknown. METHODS The ENAH level in laryngocarcinoma was examined in silico, in vitro and in vivo. The prognostic analysis of the ENAH level was assessed on laryngocarcinoma patients. Gain- and loss-of-function assays were conducted in AMC-HN-8 and TU686 cells. Sh-ENAH-containing AMC-HN-8 cells were implanted into naked mice. The role and mechanism of ENAH in laryngocarcinoma were investigated by CCK-8, transwell, immunofluorescence, dual luciferase, RT-qPCR, immunohistochemistry, and western blotting experiments. RESULTS The ENAH level was upregulated in laryngocarcinoma, which predicted a poor prognosis in laryngocarcinoma patients. Gain- and loss-of-function results showed that ENAH promoted proliferation, invasion and EMT of laryngocarcinoma cells. Moreover, ENAH was transcriptionally activated by YY1, and YY1/ENAH axis enhanced these malignant progresses of laryngocarcinoma cells. Besides, ENAH activated the PI3K/AKT pathway, and 740Y-P abolished the accelerative role of ENAH in proliferation, invasion and EMT of laryngocarcinoma cells. Furthermore, knockdown of ENAH reduced tumor size and weight, and the expression level of vimentin and PI3K/AKT pathway in tumor-bearing mice. CONCLUSION ENAH transcriptionally activated by YY1 promotes cell growth, invasion and EMT of laryngocarcinoma through the activation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Jingmiao Wang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Ziyi Shen
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Qiaojing Jia
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yanrui Bian
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Zhichao Yang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yuning Liu
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yan Li
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Haizhong Zhang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China.
| |
Collapse
|
2
|
Cui H, Liang X, Zhu Y, Elayah SA, Qi H, Xie L, Guo Z, Siya F, Ming Y, Yuxin G, Tu J, Na S. Mena as a key enhancer factor of EMT to promote metastasis of human tongue squamous cell carcinoma. Oral Dis 2024; 30:2084-2096. [PMID: 37203597 DOI: 10.1111/odi.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of mammalian-enabled (Mena) on tongue squamous cell carcinoma (TSCC) metastasis and its mechanism. MATERIALS AND METHODS Immunochemistry was performed to investigate the Mena and tumor-related markers expression, and its clinicopathological characteristics in 46 TSCC specimens. TSCC cell SCC9 and Cal27 untransfected or stable transfected with Mena overexpression and small interfering RNA were used to determine the role of Mena in cell proliferation, cell migration, invasion and metastasis, and EMT-related markers in vitro, and the effect of Mena on TSCC growth and metastasis through tumor-bearing and tumor metastasis immunodeficient mice models in vivo. RESULTS Immunochemistry showed that the expression of Mena was significantly correlated with lymphatic metastasis and TNM stage, E-cadherin, Vimentin, and MMP2. Mena did not affect cell proliferation and colony formation in vitro, and tumor growth in vivo. However, it promoted cell migration and invasion in vitro, and TSCC metastasis in vivo. CONCLUSIONS Mena expression is associated with lymphatic metastasis and tumor stage and promotes TSCC invasion and metastasis by inducing the EMT process. Thus, Mena may be a biomarker for prognosis and targeted therapy in TSCC patients.
Collapse
Affiliation(s)
- Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiang Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yifei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sadam Ahmed Elayah
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hong Qi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Pathology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhichen Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Siya
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Ming
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gong Yuxin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Bahri M, Anstee JE, Opzoomer JW, Arnold JN. Perivascular tumor-associated macrophages and their role in cancer progression. Essays Biochem 2023; 67:919-928. [PMID: 37199172 PMCID: PMC10539944 DOI: 10.1042/ebc20220242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Perivascular (Pv) tumor-associated macrophages (TAMs) are a highly specialized stromal subset within the tumor microenvironment (TME) that are defined by their spatial proximity, within one cell thickness, to blood vasculature. PvTAMs have been demonstrated to support a variety of pro-tumoral functions including angiogenesis, metastasis, and modulating the immune and stromal landscape. Furthermore, PvTAMs can also limit the response of anti-cancer and anti-angiogenic therapies and support tumor recurrence post-treatment. However, their role may not exclusively be pro-tumoral as PvTAMs can also have immune-stimulatory capabilities. PvTAMs are derived from a monocyte progenitor that develop and localize to the Pv niche as part of a multistep process which relies on a series of signals from tumor, endothelial and Pv mesenchymal cell populations. These cellular communications and signals create a highly specialized TAM subset that can also form CCR5-dependent multicellular 'nest' structures in the Pv niche. This review considers our current understanding of the role of PvTAMs, their markers for identification, development, and function in cancer. The role of PvTAMs in supporting disease progression and modulating the outcome from anti-cancer therapies highlight these cells as a therapeutic target. However, their resistance to pan-TAM targeting therapies, such as those targeting the colony stimulating factor-1 (CSF1)-CSF1 receptor axis, prompts the need for more targeted therapeutic approaches to be considered for this subset. This review highlights potential therapeutic strategies to target and modulate PvTAM development and function in the TME.
Collapse
Affiliation(s)
- Meriem Bahri
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 1UL, United Kingdom
| | - Joanne E Anstee
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 1UL, United Kingdom
| | - James W Opzoomer
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 1UL, United Kingdom
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, London SE1 1UL, United Kingdom
| |
Collapse
|
4
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. Breast Cancer Res 2023; 25:37. [PMID: 37024946 PMCID: PMC10080980 DOI: 10.1186/s13058-023-01628-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ved P Sharma
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Bio-Imaging Resource Center, The Rockefeller University, Box 209, 1230 York Avenue, New York City, NY, 10065, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John S Condeelis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Iovan L, Liliac IM, Istrate-Ofiteru AM, Rosu CG, Mogoanta L. Clinical and Morphological Study of Cervical Squamous Intraepithelial Lesions. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:220-229. [PMID: 37779826 PMCID: PMC10541069 DOI: 10.12865/chsj.49.02.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/18/2023] [Indexed: 10/03/2023]
Abstract
Squamous intraepithelial lesions (SILs) are cancer precursors targeted by secondary prevention of cervical cancer programs that are sometimes difficult to grade accurately. Mena is an actin regulatory protein involved in membrane protrusion, cell motility, in tumor invasion and metastasis. We studied retrospectively 68 cases of patients diagnosed with squamous intraepithelial lesions that received expedited treatment (treatment without colposcopic biopsy). We analyzed demographic, behavioral data, obstetrical and medical history, from the patients' medical charts and we studied the cervical fragments or cones harvested after the excisional procedure. Our study failed to identify a correlation between SILs and risk factors such as low socioeconomic status, combined oral contraceptive use, intrauterine device use, parity, gravity, except for the tobacco smoking habit that proved to be related to the cervical lesions' development. Mena was expressed in most of the analyzed SILs and its expression was correlated with lesions' grade in terms of both area and intensity, suggesting that Mena stains especially abnormal cells and that its expression intensity correlates with the risk of malignant transformation. Further studies are needed to validate Mena as an early stage of cervical carcinogenesis marker.
Collapse
Affiliation(s)
- Larisa Iovan
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ilona Mihaela Liliac
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | | | | | - Laurentiu Mogoanta
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
7
|
Wang J, Zhao N, Peng S, Zhang T. Circ_0003340 regulates the expression of ENAH to affect the development of esophageal cancer through miR-874-3p. Thorac Cancer 2023; 14:815-826. [PMID: 36737402 PMCID: PMC10040281 DOI: 10.1111/1759-7714.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Esophageal cancer is a malignant tumor with a poor prognosis and high incidence. Circular RNAs (circRNAs) have been shown to be involved in the pathogenesis of cancers, including esophageal cancer. Here, we explored the precise role of circ_0003340 in esophageal cancer development. METHODS The expression levels of circ_0003340, miR-874-3p and enabled homolog (ENAH) were detected by quantitative real-time polymerase chain reaction and western blot. Subcellular localization and RNase R assays were used to characterize circ_0003340. Cell Counting Kit 8, flow cytometry, transwell assays were used to analyze cell proliferation, apoptosis, migration and invasion. The effect of circ_0003340 on tumor growth was assessed by tumor experiments in vivo. Dual-luciferase reporter assay was used to analyze the relationship between miR-874-3p and circ_0003340 or ENAH. RESULTS Circ_0003340 was mainly located in the cytoplasm and was upregulated in esophageal cancer tissues and cells. Circ_0003340 knockdown inhibited cell proliferation, migration, invasion, glucose consumption, and lactate production and induced cell apoptosis in esophageal cancer cells. Moreover, circ_0003340 knockdown suppressed tumor growth in vivo. MiR-874-3p was reduced in esophageal cancer tissues and cells, and it was a molecular mediator of circ_0003340 function in esophageal cancer cells. ENAH was identified as a direct and functional target of miR-874-3p in esophageal cancer cells. The promotion effect of circ_0003340 on ENAH was ameliorated by miR-874-3p. CONCLUSION The data demonstrated that circ_0003340 promoted the progression of esophageal cancer through miR-874-3p/ENAH axis, which might provide novel therapeutic targets for esophageal cancer intervention.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Radiotherapy, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Ning Zhao
- Library and Information Office, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Shengzu Peng
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Tao Zhang
- Morphology Laboratory, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522642. [PMID: 36711751 PMCID: PMC9881873 DOI: 10.1101/2023.01.03.522642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
|
9
|
Na S, Cui H, Guo Z, Liang X, Sakran KA, Guo X, Li X, Xie L, Zhu Y, Qi H, Tu J. Overexpression of Mena is associated with tumor progression and poor prognosis in oral squamous cell carcinoma via EMT. Front Oncol 2022; 12:1052375. [PMID: 36620546 PMCID: PMC9822539 DOI: 10.3389/fonc.2022.1052375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Mena, a cytoskeletal regulatory protein, is involved in actin-based regulation of cell motility and adhesion, and contributes to tumor invasion and metastasis. However, the role of Mena in oral squamous cell carcinoma remains unclear. This is the first research focusing on the prognostic value of Mena in OSCC. In this study, we aimed to investigate the correlation between Mena expression and clinicopathological significance, as well as prognostic value in OSCC. Methods Mena gene expression profiles of OSCC and normal tissues were collected from Oncomine, TCGA, and GEO databases. Biological function was analyzed through GO, KEGG and GSEA enrichment. Further, the expression level of Mena and tumor-related markers in 151 OSCC specimens was examined by IHC staining based on tissue microarray. Kaplan-Meier analysis was used to assess the prognostic performance of Mena in OSCC. Result Mena was generally upregulation in various malignancies, especially OSCC. The functional analyses indicated that Mena was involved in the assembly and regulation of actin, cell movement, and EMT. IHC staining revealed that high expression of Mena in OSCC was correlated with Lymphatic metastasis, TNM stage, E-cadherin, Vimentin, and MMP-2, but insignificantly Ki67. Kaplan-Meier analysis demonstrated that elevated expression of Mena was significantly associated with poor overall survival and disease-free survival of OSCC patients. Conclusion Mena could be a novel biomarker for predicting the prognosis of OSCC patients, which supports a theoretical basis for developing molecular target therapy.
Collapse
Affiliation(s)
- Sijia Na
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hao Cui
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhichen Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiang Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Karim Ahmed Sakran
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomei Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xingqiang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linyang Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yifei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hong Qi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Hong Qi, ; Junbo Tu,
| | - Junbo Tu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Hong Qi, ; Junbo Tu,
| |
Collapse
|
10
|
Sun X, Zhou L, Wang X, Li Y, Liu X, Chen Y, Zhong Z, Chen J. FYCO1 regulates migration, invasion, and invadopodia formation in HeLa cells through CDC42/N-WASP/Arp2/3 signaling pathway. Biochem Cell Biol 2022; 100:458-472. [PMID: 36342046 DOI: 10.1139/bcb-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
FYCO1, an autophagy adaptor, plays an essential role in the trafficking toward the plus-end of microtubules and the fusion of autophagosomes. Autophagic dysfunction is involved in numerous disease states, including cancers. Previous studies have implicated FYCO1 as one of the critical genes involved in the adenoma to carcinoma transition, but the biological function and mechanism of FYCO1 in carcinogenesis remain unclear. This study aims to elucidate the role and mechanism of up- and downregulation of FYCO1 in mediating tumor effects in HeLa cells. Functionally, FYCO1 promotes cellular migration, invasion, epithelial-mesenchymal transition, invadopodia formation, and matrix degradation, which are detected through wound healing, transwell, immunofluorescence, and Western blot approaches. Interestingly, the data show that although FYCO1 does not affect HeLa cell proliferation, cell cycle distribution, nor vessels' formation, FYCO1 can block the apoptotic function. FYCO1 inhibits cleavage of PARP, caspase3, and caspase9 and increases Bcl-2/Bax ratio. Then, we used CK666, an Arp2/3 specific inhibitor, to confirm that FYCO1 may promote the migration and invasion of HeLa cells through the CDC42/N-WASP/Arp2/3 signaling pathway. Taken together, these results provide a new insight that FYCO1, an autophagy adaptor, may also be a new regulator of tumor metastasis.
Collapse
Affiliation(s)
- Xuejiao Sun
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Linlin Zhou
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xinyao Wang
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuying Li
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xiangyuan Liu
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Chen
- Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
11
|
Assessment of MRI to estimate metastatic dissemination risk and prometastatic effects of chemotherapy. NPJ Breast Cancer 2022; 8:101. [PMID: 36056005 PMCID: PMC9440218 DOI: 10.1038/s41523-022-00463-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Metastatic dissemination in breast cancer is regulated by specialized intravasation sites called “tumor microenvironment of metastasis” (TMEM) doorways, composed of a tumor cell expressing the actin-regulatory protein Mena, a perivascular macrophage, and an endothelial cell, all in stable physical contact. High TMEM doorway number is associated with an increased risk of distant metastasis in human breast cancer and mouse models of breast carcinoma. Here, we developed a novel magnetic resonance imaging (MRI) methodology, called TMEM Activity-MRI, to detect TMEM-associated vascular openings that serve as the portal of entry for cancer cell intravasation and metastatic dissemination. We demonstrate that TMEM Activity-MRI correlates with primary tumor TMEM doorway counts in both breast cancer patients and mouse models, including MMTV-PyMT and patient-derived xenograft models. In addition, TMEM Activity-MRI is reduced in mouse models upon treatment with rebastinib, a specific and potent TMEM doorway inhibitor. TMEM Activity-MRI is an assay that specifically measures TMEM-associated vascular opening (TAVO) events in the tumor microenvironment, and as such, can be utilized in mechanistic studies investigating molecular pathways of cancer cell dissemination and metastasis. Finally, we demonstrate that TMEM Activity-MRI increases upon treatment with paclitaxel in mouse models, consistent with prior observations that chemotherapy enhances TMEM doorway assembly and activity in human breast cancer. Our findings suggest that TMEM Activity-MRI is a promising precision medicine tool for localized breast cancer that could be used as a non-invasive test to determine metastatic risk and serve as an intermediate pharmacodynamic biomarker to monitor therapeutic response to agents that block TMEM doorway-mediated dissemination.
Collapse
|
12
|
Borriello L, Coste A, Traub B, Sharma VP, Karagiannis GS, Lin Y, Wang Y, Ye X, Duran CL, Chen X, Friedman M, Sosa MS, Sun D, Dalla E, Singh DK, Oktay MH, Aguirre-Ghiso JA, Condeelis JS, Entenberg D. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat Commun 2022; 13:626. [PMID: 35110548 PMCID: PMC8811052 DOI: 10.1038/s41467-022-28076-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Brian Traub
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Yu Lin
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Madeline Friedman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Sun
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erica Dalla
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak K Singh
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Julio A Aguirre-Ghiso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Cancer Dormancy and Tumor Microenvironment Institute and, Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
Hwang T, Parker SS, Hill SM, Ilunga MW, Grant RA, Mouneimne G, Keating AE. A distributed residue network permits conformational binding specificity in a conserved family of actin remodelers. eLife 2021; 10:e70601. [PMID: 34854809 PMCID: PMC8639148 DOI: 10.7554/elife.70601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Samantha M Hill
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering and Koch Institue for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Dan VM, Raveendran RS, Baby S. Resistance to Intervention: Paclitaxel in Breast Cancer. Mini Rev Med Chem 2021; 21:1237-1268. [PMID: 33319669 DOI: 10.2174/1389557520999201214234421] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Reji Saradha Raveendran
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
15
|
Sharma VP, Williams J, Leung E, Sanders J, Eddy R, Castracane J, Oktay MH, Entenberg D, Condeelis JS. SUN-MKL1 Crosstalk Regulates Nuclear Deformation and Fast Motility of Breast Carcinoma Cells in Fibrillar ECM Microenvironment. Cells 2021; 10:1549. [PMID: 34205257 PMCID: PMC8234170 DOI: 10.3390/cells10061549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Aligned collagen fibers provide topography for the rapid migration of single tumor cells (streaming migration) to invade the surrounding stroma, move within tumor nests towards blood vessels to intravasate and form distant metastases. Mechanisms of tumor cell motility have been studied extensively in the 2D context, but the mechanistic understanding of rapid single tumor cell motility in the in vivo context is still lacking. Here, we show that streaming tumor cells in vivo use collagen fibers with diameters below 3 µm. Employing 1D migration assays with matching in vivo fiber dimensions, we found a dependence of tumor cell motility on 1D substrate width, with cells moving the fastest and the most persistently on the narrowest 1D fibers (700 nm-2.5 µm). Interestingly, we also observed nuclear deformation in the absence of restricting extracellular matrix pores during high speed carcinoma cell migration in 1D, similar to the nuclear deformation observed in tumor cells in vivo. Further, we found that actomyosin machinery is aligned along the 1D axis and actomyosin contractility synchronously regulates cell motility and nuclear deformation. To further investigate the link between cell speed and nuclear deformation, we focused on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex proteins and SRF-MKL1 signaling, key regulators of mechanotransduction, actomyosin contractility and actin-based cell motility. Analysis of The Cancer Genome Atlas dataset showed a dramatic decrease in the LINC complex proteins SUN1 and SUN2 in primary tumor compared to the normal tissue. Disruption of LINC complex by SUN1 + 2 KD led to multi-lobular elongated nuclei, increased tumor cell motility and concomitant increase in F-actin, without affecting Lamin proteins. Mechanistically, we found that MKL1, an effector of changes in cellular G-actin to F-actin ratio, is required for increased 1D motility seen in SUN1 + 2 KD cells. Thus, we demonstrate a previously unrecognized crosstalk between SUN proteins and MKL1 transcription factor in modulating nuclear shape and carcinoma cell motility in an in vivo relevant 1D microenvironment.
Collapse
Affiliation(s)
- Ved P. Sharma
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - James Williams
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Edison Leung
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - Joe Sanders
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Robert Eddy
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
| | - James Castracane
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (J.W.); (J.S.); (J.C.)
| | - Maja H. Oktay
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Entenberg
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (E.L.); (R.E.); (M.H.O.); (D.E.)
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
16
|
Villemin JP, Lorenzi C, Cabrillac MS, Oldfield A, Ritchie W, Luco RF. A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants. BMC Biol 2021; 19:70. [PMID: 33845831 PMCID: PMC8042689 DOI: 10.1186/s12915-021-01002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers. RESULTS Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype. CONCLUSIONS Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Claudio Lorenzi
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Marie-Sarah Cabrillac
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Andrew Oldfield
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| | - Reini F Luco
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proc Natl Acad Sci U S A 2020; 117:29684-29690. [PMID: 33184177 PMCID: PMC7703624 DOI: 10.1073/pnas.2007213117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein–protein interactions mediated by proline-rich motifs are involved in regulation of many important signaling cascades. These motifs belong to the most abundant recognition motifs in the eukaryotic genome and preferentially adopt a left-handed polyproline helix II, a secondary structure element that has been notoriously difficult to mimic with small molecules. Here, we present a structure-guided design effort yielding a toolkit of chemical entities that enables rational construction of selective small molecule inhibitors for these protein domains. We succeeded in developing an inhibitor for the Ena/VASP protein family that is active in vivo and reduces extravasation of invasive breast cancer cells in a zebrafish model. Battling metastasis through inhibition of cell motility is considered a promising approach to support cancer therapies. In this context, Ena/VASP-depending signaling pathways, in particular interactions with their EVH1 domains, are promising targets for pharmaceutical intervention. However, protein–protein interactions involving proline-rich segments are notoriously difficult to address by small molecules. Hence, structure-based design efforts in combination with the chemical synthesis of additional molecular entities are required. Building on a previously developed nonpeptidic micromolar inhibitor, we determined 22 crystal structures of ENAH EVH1 in complex with inhibitors and rationally extended our library of conformationally defined proline-derived modules (ProMs) to succeed in developing a nanomolar inhibitor (Kd=120 nM,MW=734 Da). In contrast to the previous inhibitor, the optimized compounds reduced extravasation of invasive breast cancer cells in a zebrafish model. This study represents an example of successful, structure-guided development of low molecular weight inhibitors specifically and selectively addressing a proline-rich sequence-recognizing domain that is characterized by a shallow epitope lacking defined binding pockets. The evolved high-affinity inhibitor may now serve as a tool in validating the basic therapeutic concept, i.e., the suppression of cancer metastasis by inhibiting a crucial protein–protein interaction involved in actin filament processing and cell migration.
Collapse
|
18
|
He Z, Li W, Zheng T, Liu D, Zhao S. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:140. [PMID: 32698859 PMCID: PMC7374920 DOI: 10.1186/s13046-020-01631-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/29/2020] [Indexed: 01/07/2023]
Abstract
Background Exosomal microRNAs (miRNAs or miRs) from bone marrow-derived mesenchymal stem cells (UCMSCs) have emerged as promising therapeutic strategies for cancer treatment. The current study aimed to elucidate the underlying mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs)-derived exosomal miR-375 in esophageal squamous cell carcinoma (ESCC). Methods After determining the expression of miR-375 and its putative target enabled homolog (ENAH) in ESCC tissues and cells, we tested effects of their altered expression on ESCC proliferation, invasion, migration, and tumorsphere formation was subsequently measured. Transfected hUCMSCs-derived exosomes (hUCMSCs-exo) were isolated and co-cultured with ESCC cells to measure the effects of miR-375 delivered by hUCMSCs-exo on ESCC development. Finally, we investigated the effect of miR-375 on tumor growth in vivo. Results The expression of miR-375 was reduced, while the expression of ENAH was elevated in ESCC. ENAH was identified as a target gene of miR-375. Elevated miR-375 or depleted ENAH expression inhibited ESCC cell proliferation, invasion, migration, tumorsphere formation, and promoted apoptosis. Moreover, miR-375 delivered by hUCMSCs-exo could suppress ESCC cell proliferation, invasion, migration, tumorsphere formation, but promoted apoptosis in vitro, as well as inhibiting tumor growth in vivo. Conclusions Taken together, hUCMSCs-exo can deliver miR-375 to suppress ENAH expression and subsequently inhibit the initiation and progression of ESCC.
Collapse
Affiliation(s)
- Zhanfeng He
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Weihao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Tianliang Zheng
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Donglei Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
19
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
20
|
Christin JR, Wang C, Chung CY, Liu Y, Dravis C, Tang W, Oktay MH, Wahl GM, Guo W. Stem Cell Determinant SOX9 Promotes Lineage Plasticity and Progression in Basal-like Breast Cancer. Cell Rep 2020; 31:107742. [PMID: 32521267 PMCID: PMC7658810 DOI: 10.1016/j.celrep.2020.107742] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Lineage plasticity is important for the development of basal-like breast cancer (BLBC), an aggressive cancer subtype. While BLBC is likely to originate from luminal progenitor cells, it acquires substantial basal cell features and contains a heterogenous collection of cells exhibiting basal, luminal, and hybrid phenotypes. Why luminal progenitors are prone to BLBC transformation and what drives luminal-to-basal reprogramming remain unclear. Here, we show that the transcription factor SOX9 acts as a determinant for estrogen-receptor-negative (ER-) luminal stem/progenitor cells (LSPCs). SOX9 controls LSPC activity in part by activating both canonical and non-canonical nuclear factor κB (NF-κB) signaling. Inactivation of TP53 and RB via expression of SV40 TAg in a BLBC mouse tumor model leads to upregulation of SOX9, which drives luminal-to-basal reprogramming in vivo. Furthermore, SOX9 deletion inhibits the progression of ductal carcinoma in situ (DCIS)-like lesions to invasive carcinoma. These data show that ER- LSPC determinant SOX9 acts as a lineage plasticity driver for BLBC progression.
Collapse
Affiliation(s)
- John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chi-Yeh Chung
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wei Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Perelmuter VM, Tashireva LA, Savelieva OE, Denisov EV, Kaigorodova EV, Zavyalova MV, Cherdyntseva NV. Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment. BREAST CANCER-TARGETS AND THERAPY 2019; 11:209-219. [PMID: 31308736 PMCID: PMC6616300 DOI: 10.2147/bctt.s175161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Chemotherapy, along with surgery and radiotherapy, is a key treatment option for malignant tumors. Neoadjuvant chemotherapy (NACT) reduces the tumor size and enables total tumor resection. In addition, NACT is believed to be more effective in destroying micrometastases than the same chemotherapy performed after surgery. To date, various NACT regimens have been tested and implemented, which provide a favorable outcome in primary tumors and reduce the risk of progression. However, there is increasing evidence of the NACT ability to increase the risk of cancer progression. This review discusses potential mechanisms by which NACT promotes distant metastasis of breast cancer through changes in the microenvironment of tumor cells. We describe prometastatic NACT-mediated changes in angiogenesis, immuno-inflammatory reactions in the stroma, intravasation, and amount of circulating tumor cells. The role of NACT-related cellular stress in cancer metastasis is also discussed.
Collapse
Affiliation(s)
- Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Liubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Olga E Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Biochemistry, Siberian State Medical University, Tomsk 634055, Russia
| | - Marina V Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Pathological Anatomy, Siberian State Medical University, Tomsk 634055, Russia
| | - Nadezhda V Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
22
|
Kettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, Carey JPW, Chen X, Eckols TK, Raghavendra AS, Ibrahim NK, Karuturi MS, Watowich SS, Sahin A, Tweardy DJ, Hunt KK, Tripathy D, Keyomarsi K. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin Cancer Res 2019; 25:3996-4013. [PMID: 30867218 PMCID: PMC6606366 DOI: 10.1158/1078-0432.ccr-18-3274] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Human Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshara S Raghavendra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghan Sri Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Wang DD, Chen YB, Zhao JJ, Zhang XF, Zhu GC, Weng DS, Pan K, Lv L, Pan QZ, Jiang SS, Wang LL, Xia JC. TES functions as a Mena-dependent tumor suppressor in gastric cancer carcinogenesis and metastasis. Cancer Commun (Lond) 2019; 39:3. [PMID: 30728082 PMCID: PMC6366075 DOI: 10.1186/s40880-019-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background In our previous study, we identified a candidate tumor suppressor gene, testin LIM domain protein (TES), in primary gastric cancer (GC). TES contains three LIM domains, which are specific interacting regions for the cell adhesion and cytoskeleton regulatory proteins. Mena is a known cytoskeleton regulator that regulates the assembly of actin filaments and modulates cell adhesion and motility by interacting with Lamellipodin (Lpd). Therefore, we hypothesized that TES plays a role as tumor suppressor in GC through interacting with Mena. This study aimed to investigate the tumor suppressive functions of TES in GC. Methods We explored the tumor suppressive effect of TES in GC by in vitro cell proliferation assay, colony formation assay, cell cycle analysis, Transwell assays, and in vivo tumorigenicity and metastasis assays. The interaction of TES and Mena was investigated through immunoprecipitation-based mass spectrometry. We also analyzed the expression of TES and Mena in 172 GC specimens using immunohistochemistry and investigated the clinicopathological and prognostic significance of TES and Mena in GC. Results TES suppressed GC cell proliferation and colony formation, induced cell cycle arrest, and inhibited tumorigenicity in vitro. Additionally, it inhibited GC cell migration and invasion in vitro and suppressed metastasis in vivo. TES interacted with Mena, and inhibited the interaction of Mena with Lpd. Transwell assays suggested that TES suppressed migration and invasion of GC cells in a Mena-dependent fashion. In GC patients with high Mena expression, the expression of TES was associated with tumor infiltration (P = 0.005), lymph node metastasis (P = 0.003), TNM stage (P = 0.003), and prognosis (P = 0.010). However, no significant association was observed in GC patients with low Mena expression. Conclusions We believe that TES functions as a Mena-dependent tumor suppressor. TES represents a valuable prognostic marker and potential target for GC treatment. Electronic supplementary material The online version of this article (10.1186/s40880-019-0347-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Shandong Medicinal Biotechnology Centre, Back and Neck Pain Hospital, Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, P.R. China
| | - Yi-Bing Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.,Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Jing-Jing Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Xiao-Fei Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Guang-Chao Zhu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - De-Sheng Weng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Ke Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lin Lv
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Qiu-Zhong Pan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Shan-Shan Jiang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China
| | - Lei-Lei Wang
- Key Laboratory for Applied Microbiology of Shandong Province, Ecology Institute of Shandong Academy of Sciences, Jinan, 250014, Shandong, P.R. China
| | - Jian-Chuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Biotherapy, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P.R. China.
| |
Collapse
|
24
|
Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 2019; 106:259-274. [PMID: 30720887 DOI: 10.1002/jlb.mr0218-056rr] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages represent a heterogeneous group of cells, capable of carrying out distinct functions in a variety of organs and tissues. Even within individual tissues, their functions can vary with location. Tumor-associated macrophages (TAMs) specialize into three major subtypes that carry out multiple tasks simultaneously. This is especially true in the context of metastasis, where TAMs establish most of the cellular and molecular prerequisites for successful cancer cell dissemination and seeding to the secondary site. Perivascular TAMs operate in the perivascular niche, where they promote tumor angiogenesis and aid in the assembly of intravasation sites called tumor microenvironment of metastasis (TMEM). Streaming TAMs co-migrate with tumor cells (irrespective of the perivascular niche) and promote matrix remodeling, tumor cell invasiveness, and an immunosuppressive local microenvironment. Premetastatic TAMs are recruited to the premetastatic niche, where they can assist in tumor cell extravasation, seeding, and metastatic colonization. The dynamic interplay between TAMs and tumor cells can also modify the ability of the latter to resist cytotoxic chemotherapy (a phenotype known as environment-mediated drug resistance) and induce chemotherapy-mediated pro-metastatic microenvironmental changes. These observations suggest that future therapeutics should be designed to target TAMs with the aim of suppressing the metastatic potential of tumors and rendering chemotherapy more efficient.
Collapse
Affiliation(s)
- Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pathology, Montefiore Medical Center, Bronx, New York, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
25
|
Enah overexpression is correlated with poor survival and aggressive phenotype in gastric cancer. Cell Death Dis 2018; 9:998. [PMID: 30250066 PMCID: PMC6155292 DOI: 10.1038/s41419-018-1031-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Enabled homolog (Enah), which is a member of the Ena/VASP family that also includes VASP (vasodilator-stimulated phosphoprotein) and Ena/VASP like, is a mammalian ortholog of Drosophila Enabled (Ena). An increasing number of studies demonstrated Enah overexpression is involved in human colorectal carcinomas, breast cancers and hepatocellular carcinoma. However, the significance of Enah expression in gastric cancer (GC) is poorly elucidated. Here, we demonstrate that Enah is upregulated in GC and associated with AJCC stage, depth of invasion and poor overall survival (OS). Knockdown of Enah inhibited GC cell proliferation and metastasis and vice versa. Further experiments suggested that p-Erk1/2, p-AKT, p-p65, Vimentin and Fibronectin were downregulated and E-cadherin was upregulated after Enah silencing, implicating altered functions in GC proliferation and metastasis. Thus, our study suggests that Enah is a harmful factor for GC and a novel target for GC treatment.
Collapse
|
26
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
27
|
Meirson T, Genna A, Lukic N, Makhnii T, Alter J, Sharma VP, Wang Y, Samson AO, Condeelis JS, Gil-Henn H. Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 2018; 9:22158-22183. [PMID: 29774130 PMCID: PMC5955141 DOI: 10.18632/oncotarget.25243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/08/2018] [Indexed: 12/14/2022] Open
Abstract
Metastatic dissemination of cancer cells from the primary tumor and their spread to distant sites in the body is the leading cause of mortality in breast cancer patients. While researchers have identified treatments that shrink or slow metastatic tumors, no treatment that permanently eradicates metastasis exists at present. Here, we show that the ABL kinase inhibitors imatinib, nilotinib, and GNF-5 impede invadopodium precursor formation and cortactin-phosphorylation dependent invadopodium maturation, leading to decreased actin polymerization in invadopodia, reduced extracellular matrix degradation, and impaired matrix proteolysis-dependent invasion. Using a mouse xenograft model we demonstrate that, while primary tumor size is not affected by ABL kinase inhibitors, the in vivo matrix metalloproteinase (MMP) activity, tumor cell invasion, and consequent spontaneous metastasis to lungs are significantly impaired in inhibitor-treated mice. Further proteogenomic analysis of breast cancer patient databases revealed co-expression of the Abl-related gene (Arg) and cortactin across all hormone- and human epidermal growth factor receptor 2 (HER2)-receptor status tumors, which correlates synergistically with distant metastasis and poor patient prognosis. Our findings establish a prognostic value for Arg and cortactin as predictors of metastatic dissemination and suggest that therapeutic inhibition of ABL kinases may be used for blocking breast cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.,Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Alessandro Genna
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Nikola Lukic
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Tetiana Makhnii
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Joel Alter
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| |
Collapse
|
28
|
Don-López CA, Monroy-García A, Weiss-Steider B, Rocha-Zavaleta L, Hernández-Montes J, García-Rocha R, Mora-García MDL. GLMEEMSAL epitope common in different isoforms of hMena elicits in vitro activation of cytotoxic T cells and stimulates specific antitumor immunity in BALB/c mice. Int Immunopharmacol 2018; 56:291-300. [PMID: 29414664 DOI: 10.1016/j.intimp.2018.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Alternative expression of human ortholog of murine Mena (hMena) hMena/hMena11a and hMena/hMenaΔv6 isoforms regulate the invasiveness and metastatic potential of tumor cells. It is then important to identify epitopes of these proteins that can elicit antitumor immune response to contribute to the elimination of cells with metastatic potential. METHODS We assayed the capacity of the peptide GLMEEMSAL, common in hMena/hMena11a and hMena/hMenaΔv6 isoforms, to generate an antitumor immune response through an in vitro vaccination system with mature dendritic cells (MDC) loaded with this peptide and in vivo immunization using a tumor model with the mammary adenocarcinoma JC cell line to induce tumors in BALBc mice. RESULTS MDC loaded with the peptide GLMEEMSAL elicited strong proliferation and activation of CD8+ T lymphocytes. The CTLs generated with this system were capable to lyse specifically BrCa and CeCa cell lines expressing either hMena/hMena11a or hMena/hMenaΔv6. Immunization with GLMEEMSAL provided protective and therapeutic antitumor activity as well as increased survival in BALB/c mice. CONCLUSION These results are highly relevant for the use of common peptides among the different isoforms of hMena to develop immunotherapy protocols to counteract the growth and metastatic potential of tumors with over-expression of hMena.
Collapse
Affiliation(s)
- Christian Azucena Don-López
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Postgraduate Program in Biological Sciences, UNAM, Mexico City, Mexico
| | - Alberto Monroy-García
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico; Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Mexico City, Mexico
| | - Benny Weiss-Steider
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Department of Molecular Biology and Biotechnology, Institute of Biomedicine, UNAM, Mexico City, Mexico
| | - Jorge Hernández-Montes
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | - Rosario García-Rocha
- Immunobiology Laboratory, Cellular Differentiation and Cancer Unit, FES-Zaragoza, UNAM, Mexico City, Mexico
| | | |
Collapse
|
29
|
Harney AS, Karagiannis GS, Pignatelli J, Smith BD, Kadioglu E, Wise SC, Hood MM, Kaufman MD, Leary CB, Lu WP, Al-Ani G, Chen X, Entenberg D, Oktay MH, Wang Y, Chun L, De Palma M, Jones JG, Flynn DL, Condeelis JS. The Selective Tie2 Inhibitor Rebastinib Blocks Recruitment and Function of Tie2 Hi Macrophages in Breast Cancer and Pancreatic Neuroendocrine Tumors. Mol Cancer Ther 2017; 16:2486-2501. [PMID: 28838996 DOI: 10.1158/1535-7163.mct-17-0241] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023]
Abstract
Tumor-infiltrating myeloid cells promote tumor progression by mediating angiogenesis, tumor cell intravasation, and metastasis, which can offset the effects of chemotherapy, radiation, and antiangiogenic therapy. Here, we show that the kinase switch control inhibitor rebastinib inhibits Tie2, a tyrosine kinase receptor expressed on endothelial cells and protumoral Tie2-expressing macrophages in mouse models of metastatic cancer. Rebastinib reduces tumor growth and metastasis in an orthotopic mouse model of metastatic mammary carcinoma through reduction of Tie2+ myeloid cell infiltration, antiangiogenic effects, and blockade of tumor cell intravasation mediated by perivascular Tie2Hi/Vegf-AHi macrophages in the tumor microenvironment of metastasis (TMEM). The antitumor effects of rebastinib enhance the efficacy of microtubule inhibiting chemotherapeutic agents, either eribulin or paclitaxel, by reducing tumor volume, metastasis, and improving overall survival. Rebastinib inhibition of angiopoietin/Tie2 signaling impairs multiple pathways in tumor progression mediated by protumoral Tie2+ macrophages, including TMEM-dependent dissemination and angiopoietin/Tie2-dependent angiogenesis. Rebastinib is a promising therapy for achieving Tie2 inhibition in cancer patients. Mol Cancer Ther; 16(11); 2486-501. ©2017 AACR.
Collapse
Affiliation(s)
- Allison S Harney
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Department of Radiology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - George S Karagiannis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Jeanine Pignatelli
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Bryan D Smith
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Ece Kadioglu
- ISREC, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Scott C Wise
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Molly M Hood
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | | | | | - Wei-Ping Lu
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Gada Al-Ani
- Deciphera Pharmaceuticals, LLC, Waltham, Massachusetts
| | - Xiaoming Chen
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - David Entenberg
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Maja H Oktay
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Department of Pathology Albert Einstein College of Medicine, New York, New York
| | - Yarong Wang
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | | | - Michele De Palma
- ISREC, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Joan G Jones
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York.,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Department of Pathology Albert Einstein College of Medicine, New York, New York.,Department of Epidemiology & Population Health, Albert Einstein College of Medicine, New York, New York
| | | | - John S Condeelis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, New York, New York. .,Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
30
|
Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, Sharma VP, Xue EA, Cheng E, D'Alfonso TM, Jones JG, Anampa J, Rohan TE, Sparano JA, Condeelis JS, Oktay MH. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 2017; 9:eaan0026. [PMID: 28679654 PMCID: PMC5592784 DOI: 10.1126/scitranslmed.aan0026] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
Abstract
Breast cancer cells disseminate through TIE2/MENACalc/MENAINV-dependent cancer cell intravasation sites, called tumor microenvironment of metastasis (TMEM), which are clinically validated as prognostic markers of metastasis in breast cancer patients. Using fixed tissue and intravital imaging of a PyMT murine model and patient-derived xenografts, we show that chemotherapy increases the density and activity of TMEM sites and Mena expression and promotes distant metastasis. Moreover, in the residual breast cancers of patients treated with neoadjuvant paclitaxel after doxorubicin plus cyclophosphamide, TMEM score and its mechanistically connected MENAINV isoform expression pattern were both increased, suggesting that chemotherapy, despite decreasing tumor size, increases the risk of metastatic dissemination. Chemotherapy-induced TMEM activity and cancer cell dissemination were reversed by either administration of the TIE2 inhibitor rebastinib or knockdown of the MENA gene. Our results indicate that TMEM score increases and MENA isoform expression pattern changes with chemotherapy and can be used in predicting prometastatic changes in response to chemotherapy. Furthermore, inhibitors of TMEM function may improve clinical benefits of chemotherapy in the neoadjuvant setting or in metastatic disease.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jessica M Pastoriza
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Allison S Harney
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeanine Pignatelli
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy M D'Alfonso
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus Anampa
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joseph A Sparano
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
31
|
Hu K, Huang P, Luo H, Yao Z, Wang Q, Xiong Z, Lin J, Huang H, Xu S, Zhang P, Liu B. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 2017; 7:1144-1153. [PMID: 28781954 PMCID: PMC5537062 DOI: 10.1002/2211-5463.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023] Open
Abstract
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Kunpeng Hu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Pinzhu Huang
- Department of Gastrointestinal Surgery The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Hui Luo
- Department of Operating Room The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhicheng Yao
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Qingliang Wang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhiyong Xiong
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Jizong Lin
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - He Huang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shilei Xu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Peng Zhang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Bo Liu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| |
Collapse
|
32
|
Oudin MJ, Weaver VM. Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:189-205. [PMID: 28424337 DOI: 10.1101/sqb.2016.81.030817] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer metastasis requires the invasion of tumor cells into the stroma and the directed migration of tumor cells through the stroma toward the vasculature and lymphatics where they can disseminate and colonize secondary organs. Physical and biochemical gradients that form within the primary tumor tissue promote tumor cell invasion and drive persistent migration toward blood vessels and the lymphatics to facilitate tumor cell dissemination. These microenvironment cues include hypoxia and pH gradients, gradients of soluble cues that induce chemotaxis, and ions that facilitate galvanotaxis, as well as modifications to the concentration, organization, and stiffness of the extracellular matrix that produce haptotactic, alignotactic, and durotactic gradients. These gradients form through dynamic interactions between the tumor cells and the resident fibroblasts, adipocytes, nerves, endothelial cells, infiltrating immune cells, and mesenchymal stem cells. Malignant progression results from the integrated response of the tumor to these extrinsic physical and chemical cues. Here, we first describe how these physical and chemical gradients develop, and we discuss their role in tumor progression. We then review assays to study these gradients. We conclude with a discussion of clinical strategies used to detect and inhibit these gradients in tumors and of new intervention opportunities. Clarifying the role of these gradients in tumor evolution offers a unique approach to target metastasis.
Collapse
Affiliation(s)
- Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, California 94143
- UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, California 94143
- Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
33
|
Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol 2017; 27:595-607. [PMID: 28412099 DOI: 10.1016/j.tcb.2017.03.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
Invadopodia are a subset of invadosomes that are implicated in the integration of signals from the tumor microenvironment to support tumor cell invasion and dissemination. Recent progress has begun to define how tumor cells regulate the plasticity necessary for invadopodia to assemble and function efficiently in the different microenvironments encountered during dissemination in vivo. Exquisite mapping by many laboratories of the pathways involved in integrating diverse invadopodium initiation signals, from growth factors, to extracellular matrix (ECM) and cell-cell contact in the tumor microenvironment, has led to insight into the molecular basis of this plasticity. Here, we integrate this new information to discuss how the invadopodium is an important conductor that orchestrates tumor cell dissemination during metastasis.
Collapse
|
34
|
Sparano JA, Gray R, Oktay MH, Entenberg D, Rohan T, Xue X, Donovan M, Peterson M, Shuber A, Hamilton DA, D’Alfonso T, Goldstein LJ, Gertler F, Davidson NE, Condeelis J, Jones J. A metastasis biomarker (MetaSite Breast™ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer. NPJ Breast Cancer 2017; 3:42. [PMID: 29138761 PMCID: PMC5678158 DOI: 10.1038/s41523-017-0043-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/24/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of death in early-stage breast cancer. We evaluated the association between a metastasis biomarker, which we call "Tumor Microenviroment of Metastasis" (TMEM), and risk of recurrence. TMEM are microanatomic structures where invasive tumor cells are in direct contact with endothelial cells and macrophages, and which serve as intravasation sites for tumor cells into the circulation. We evaluated primary tumors from 600 patients with Stage I-III breast cancer treated with adjuvant chemotherapy in trial E2197 (NCT00003519), plus endocrine therapy for hormone receptor (HR)+ disease. TMEM were identified and enumerated using an analytically validated, fully automated digital pathology/image analysis method (MetaSite Breast™), hereafter referred to as MetaSite Score (MS). The objectives were to determine the association between MS and distant relapse free interval (DRFI) and relapse free interval (RFI). MS was not associated with tumor size or nodal status, and correlated poorly with Oncotype DX Recurrence Score (r = 0.29) in 297 patients with HR+/HER2- disease. Proportional hazards models revealed a significant positive association between continuous MS and DRFI (p = 0.001) and RFI (p = 0.00006) in HR+/HER2- disease in years 0-5, and by MS tertiles for DRFI (p = 0.04) and RFI (p = 0.01), but not after year 5 or in triple negative or HER2+ disease. Multivariate models in HR+/HER- disease including continuous MS, clinical covariates, and categorical Recurrence Score (<18, 18-30, > 30) showed MS is an independent predictor for 5-year RFI (p = 0.05). MetaSite Score provides prognostic information for early recurrence complementary to clinicopathologic features and Recurrence Score.
Collapse
Affiliation(s)
- Joseph A. Sparano
- 0000 0001 2152 0791grid.240283.fMontefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Road, 10461 Bronx, NY USA
| | | | - Maja H. Oktay
- 0000 0001 2152 0791grid.240283.fMontefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Road, 10461 Bronx, NY USA
| | - David Entenberg
- 0000 0001 2152 0791grid.240283.fAlbert Einstein College of Medicine, Bronx, NY USA
| | - Thomas Rohan
- 0000 0001 2152 0791grid.240283.fAlbert Einstein College of Medicine, Bronx, NY USA
| | - Xiaonan Xue
- 0000 0001 2152 0791grid.240283.fAlbert Einstein College of Medicine, Bronx, NY USA
| | - Michael Donovan
- 0000 0001 0670 2351grid.59734.3cMt. Sinai School of Medicine, New York, NY USA
| | | | | | | | | | - Lori J. Goldstein
- 0000 0004 0456 6466grid.412530.1Fox Chase Cancer Center, Philadelphia, PA USA
| | - Frank Gertler
- 0000 0001 2341 2786grid.116068.8Massachusetts Institute of Technology, Boston, MA USA
| | - Nancy E. Davidson
- 0000 0004 0456 9819grid.478063.eUniversity of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - John Condeelis
- 0000 0001 2152 0791grid.240283.fAlbert Einstein College of Medicine, Bronx, NY USA
| | - Joan Jones
- 0000 0001 2152 0791grid.240283.fAlbert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
35
|
Pignatelli J, Bravo-Cordero JJ, Roh-Johnson M, Gandhi SJ, Wang Y, Chen X, Eddy RJ, Xue A, Singer RH, Hodgson L, Oktay MH, Condeelis JS. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/Mena INV-initiated invadopodium formation. Sci Rep 2016; 6:37874. [PMID: 27901093 PMCID: PMC5129016 DOI: 10.1038/srep37874] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
The process of intravasation involving transendothelial migration is a key step in metastatic spread. How the triple cell complex composed of a macrophage, Mena over-expressing tumor cell and endothelial cell, called the tumor microenvironment of metastasis (TMEM), facilitates tumor cell transendothelial migration is not completely understood. Previous work has shown that the physical contact between a macrophage and tumor cell results in the formation of invadopodia, actin-rich matrix degrading protrusions, important for tumor cell invasion and transendothelial migration and tumor cell dissemination. Herein, we show that the macrophage-induced invadopodium is formed through a Notch1/MenaINV signaling pathway in the tumor cell upon macrophage contact. This heterotypic tumor cell – macrophage interaction results in the upregulation of MenaINV through the activation of MENA transcription. Notch1 and MenaINV expression are required for tumor cell transendothelial migration, a necessary step during intravasation. Inhibition of the Notch signaling pathway blocked macrophage-induced invadopodium formation in vitro and the dissemination of tumor cells from the primary tumor in vivo. Our findings indicate a novel role for Notch1 signaling in the regulation of MenaINV expression and transendothelial migration and provide mechanistic information essential to the use of therapeutic inhibitors of metastasis.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Minna Roh-Johnson
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Saumil J Gandhi
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Yarong Wang
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Robert J Eddy
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Alice Xue
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Robert H Singer
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Louis Hodgson
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - Maja H Oktay
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Department of Pathology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| | - John S Condeelis
- Department of Anatomy and Structural Biology Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States.,Gruss Lipper Biophotonics Center Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, United States
| |
Collapse
|
36
|
Oudin MJ, Barbier L, Schäfer C, Kosciuk T, Miller MA, Han S, Jonas O, Lauffenburger DA, Gertler FB. MENA Confers Resistance to Paclitaxel in Triple-Negative Breast Cancer. Mol Cancer Ther 2016; 16:143-155. [PMID: 27811011 DOI: 10.1158/1535-7163.mct-16-0413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENAINV, are established drivers of metastasis. MENAINV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENAINV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENAINV-driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR.
Collapse
Affiliation(s)
- Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lucie Barbier
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,ENS-Cachan, Cachan, France
| | - Claudia Schäfer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tatsiana Kosciuk
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Miles A Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sangyoon Han
- Lydia Hill Department for Bioinformatics, UT Southwestern Medical Center, Dallas, Texas
| | - Oliver Jonas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
37
|
Balsamo M, Mondal C, Carmona G, McClain LM, Riquelme DN, Tadros J, Ma D, Vasile E, Condeelis JS, Lauffenburger DA, Gertler FB. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 2016; 6:35298. [PMID: 27748415 PMCID: PMC5066228 DOI: 10.1038/srep35298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.
Collapse
Affiliation(s)
- Michele Balsamo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chandrani Mondal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Carmona
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leslie M McClain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daisy N Riquelme
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Oudin MJ, Miller MA, Klazen JAZ, Kosciuk T, Lussiez A, Hughes SK, Tadros J, Bear JE, Lauffenburger DA, Gertler FB. MenaINV mediates synergistic cross-talk between signaling pathways driving chemotaxis and haptotaxis. Mol Biol Cell 2016; 27:3085-3094. [PMID: 27559126 PMCID: PMC5063616 DOI: 10.1091/mbc.e16-04-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022] Open
Abstract
Directed cell migration, a key process in metastasis, arises from the combined influence of multiple processes, including chemotaxis-the directional movement of cells to soluble cues-and haptotaxis-the migration of cells on gradients of substrate-bound factors. However, it is unclear how chemotactic and haptotactic pathways integrate with each other to drive overall cell behavior. MenaINV has been implicated in metastasis by driving chemotaxis via dysregulation of phosphatase PTP1B and more recently in haptotaxis via interaction with integrin α5β1. Here we find that MenaINV-driven haptotaxis on fibronectin (FN) gradients requires intact signaling between α5β1 integrin and the epidermal growth factor receptor (EGFR), which is influenced by PTP1B. Furthermore, we show that MenaINV-driven haptotaxis and ECM reorganization both require the Rab-coupling protein RCP, which mediates α5β1 and EGFR recycling. Finally, MenaINV promotes synergistic migratory response to combined EGF and FN in vitro and in vivo, leading to hyperinvasive phenotypes. Together our data demonstrate that MenaINV is a shared component of multiple prometastatic pathways that amplifies their combined effects, promoting synergistic cross-talk between RTKs and integrins.
Collapse
Affiliation(s)
- Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Miles A Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Joelle A Z Klazen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tatsiana Kosciuk
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Alisha Lussiez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Shannon K Hughes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jenny Tadros
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - James E Bear
- Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, NC 27514
| | - Douglas A Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
39
|
Abstract
The process of entering the bloodstream, intravasation, is a necessary step in the development of distant metastases. The focus of this review is on the pathways and molecules that have been identified as being important based on current in vitro and in vivo assays for intravasation. Properties of the vasculature which are important for intravasation include microvessel density and also diameter of the vasculature, with increased intravasation correlating with increased vessel diameter in some tumors. TGFB signaling can enhance intravasation at least in part through induction of EMT, and we discuss other TGFB target genes that are important for intravasation. In addition to TGFB signaling, a number of studies have demonstrated that activation of EGF receptor family members stimulates intravasation, with downstream signaling through PI3K, N-WASP, RhoA, and WASP to induce invadopodia. With respect to proteases, there is strong evidence for contributions by uPA/uPAR, while the roles of MMPs in intravasation may be more tumor specific. Other cells including macrophages, fibroblasts, neutrophils, and platelets can also play a role in enhancing tumor cell intravasation. The technology is now available to interrogate the expression patterns of circulating tumor cells, which will provide an important reality check for the model systems being used. With a better understanding of the mechanisms underlying intravasation, the goal is to provide new opportunities for improving prognosis as well as potentially developing new treatments.
Collapse
Affiliation(s)
- Serena P H Chiang
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ramon M Cabrera
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey E Segall
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
40
|
Carmona G, Perera U, Gillett C, Naba A, Law AL, Sharma VP, Wang J, Wyckoff J, Balsamo M, Mosis F, De Piano M, Monypenny J, Woodman N, McConnell RE, Mouneimne G, Van Hemelrijck M, Cao Y, Condeelis J, Hynes RO, Gertler FB, Krause M. Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 2016; 35:5155-69. [PMID: 26996666 PMCID: PMC5031503 DOI: 10.1038/onc.2016.47] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.
Collapse
Affiliation(s)
- G Carmona
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Perera
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - C Gillett
- King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK
| | - A Naba
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A-L Law
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - J Wyckoff
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Balsamo
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F Mosis
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| | - M De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, London, UK
| | - J Monypenny
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK.,King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK.,King's College London, Division of Cancer Studies, Richard Dimbleby Department of Cancer Research, London, UK
| | - N Woodman
- King's College London, Research Oncology, Division of Cancer Studies, Faculty of Life Sciences and Medicine, London, UK
| | - R E McConnell
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - G Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - M Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, London, UK
| | - Y Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - J Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R O Hynes
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F B Gertler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Krause
- King's College London, Randall Division of Cell and Molecular Biophysics, London, UK
| |
Collapse
|
41
|
Oudin MJ, Jonas O, Kosciuk T, Broye LC, Guido BC, Wyckoff J, Riquelme D, Lamar JM, Asokan SB, Whittaker C, Ma D, Langer R, Cima MJ, Wisinski KB, Hynes RO, Lauffenburger DA, Keely PJ, Bear JE, Gertler FB. Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression. Cancer Discov 2016; 6:516-31. [PMID: 26811325 DOI: 10.1158/2159-8290.cd-15-1183] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here, we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and MENA, an actin regulator, and involves increases in focal complex signaling and tumor cell-mediated extracellular matrix (ECM) remodeling. Compared with MENA, higher levels of the prometastatic MENA(INV) isoform associate with α5, which enables 3-D haptotaxis of tumor cells toward the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MENA(INV) and FN levels were correlated in two breast cancer cohorts, and high levels of MENA(INV) were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM-guided directional migration. SIGNIFICANCE Here, we provide new insight into how tumor cell:ECM interactions generate signals and structures that promote directed tumor cell migration, a critical component of metastasis. Our results identify a tumor cell-intrinsic mechanism driven by the actin regulatory protein MENA that promotes ECM remodeling and haptotaxis along FN gradients. Cancer Discov; 6(5); 516-31. ©2016 AACR.See related commentary by Santiago-Medina and Yang, p. 474This article is highlighted in the In This Issue feature, p. 461.
Collapse
Affiliation(s)
- Madeleine J Oudin
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Oliver Jonas
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Tatsiana Kosciuk
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Liliane C Broye
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Bruna C Guido
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Jeff Wyckoff
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Daisy Riquelme
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - John M Lamar
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Sreeja B Asokan
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, North Carolina
| | - Charlie Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Michael J Cima
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts
| | - Kari B Wisinski
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biology, MIT, Cambridge, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Douglas A Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin Madison, Madison, Wisconsin
| | - James E Bear
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, North Carolina. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts. Department of Biology, MIT, Cambridge, Massachusetts.
| |
Collapse
|
42
|
Oudin MJ, Hughes SK, Rohani N, Moufarrej MN, Jones JG, Condeelis JS, Lauffenburger DA, Gertler FB. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression. Clin Exp Metastasis 2015; 33:249-61. [PMID: 26680363 DOI: 10.1007/s10585-015-9775-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 01/16/2023]
Abstract
Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.
Collapse
Affiliation(s)
- Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, MIT, 76-317, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
| | - Shannon K Hughes
- Koch Institute for Integrative Cancer Research, MIT, 76-317, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.,Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Nazanin Rohani
- Koch Institute for Integrative Cancer Research, MIT, 76-317, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mira N Moufarrej
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Joan G Jones
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, MIT, 76-317, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.,Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, MIT, 76-317, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.,Department of Biology, MIT, Cambridge, MA, 02139, USA
| |
Collapse
|
43
|
Hughes SK, Oudin MJ, Tadros J, Neil J, Del Rosario A, Joughin BA, Ritsma L, Wyckoff J, Vasile E, Eddy R, Philippar U, Lussiez A, Condeelis JS, van Rheenen J, White F, Lauffenburger DA, Gertler FB. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol Biol Cell 2015; 26:3867-78. [PMID: 26337385 PMCID: PMC4626070 DOI: 10.1091/mbc.e15-06-0442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The actin-binding protein Mena regulates RTK signaling after growth factor stimulation in tumor cells by a novel mechanism. The alternatively spliced MenaINV isoform disrupts this attenuation to drive sensitivity to growth factors, resistance to targeted inhibitors, and ultimately tumor invasion and metastasis. During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes.
Collapse
Affiliation(s)
- Shannon K Hughes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Madeleine J Oudin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jenny Tadros
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jason Neil
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Amanda Del Rosario
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Laila Ritsma
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Jeff Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Eliza Vasile
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Ulrike Philippar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alisha Lussiez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CX Utrecht, Netherlands
| | - Forest White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Frank B Gertler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
44
|
Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG, Condeelis JS. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov 2015; 5:932-43. [PMID: 26269515 PMCID: PMC4560669 DOI: 10.1158/2159-8290.cd-15-0012] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Dissemination of tumor cells is an essential step in metastasis. Direct contact between a macrophage, mammalian-enabled (MENA)-overexpressing tumor cell, and endothelial cell [Tumor MicroEnvironment of Metastasis (TMEM)] correlates with metastasis in breast cancer patients. Here we show, using intravital high-resolution two-photon microscopy, that transient vascular permeability and tumor cell intravasation occur simultaneously and exclusively at TMEM. The hyperpermeable nature of tumor vasculature is described as spatially and temporally heterogeneous. Using real-time imaging, we observed that vascular permeability is transient, restricted to the TMEM, and required for tumor cell dissemination. VEGFA signaling from TIE2(hi) TMEM macrophages causes local loss of vascular junctions, transient vascular permeability, and tumor cell intravasation, demonstrating a role for the TMEM within the primary mammary tumor. These data provide insight into the mechanism of tumor cell intravasation and vascular permeability in breast cancer, explaining the value of TMEM density as a predictor of distant metastatic recurrence in patients. SIGNIFICANCE Tumor vasculature is abnormal with increased permeability. Here, we show that VEGFA signaling from TIE2(hi) TMEM macrophages results in local, transient vascular permeability and tumor cell intravasation. These data provide evidence for the mechanism underlying the association of TMEM with distant metastatic recurrence, offering a rationale for therapies targeting TMEM.
Collapse
Affiliation(s)
- Allison S Harney
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Department of Radiology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York.
| | - Esther N Arwert
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York. Tumour Cell Biology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Bin-Zhi Qian
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York. Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York. MRC Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine, New York, New York
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York. Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York. MRC Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Department of Pathology, Albert Einstein College of Medicine, New York, New York. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York.
| |
Collapse
|
45
|
Abstract
Ena/VASP tetramer composition was analysed and mixed oligomerization of Mena with EVL was found to be unfavourable, while other paralogue combinations formed without apparent bias. The tetramerization domain of Ena/VASP proteins is responsible for their selective tetramer formation. The members of the actin regulatory family of Ena/VASP proteins form stable tetramers. The vertebrate members of the Ena/VASP family, VASP, Mena and EVL, have many overlapping properties and expression patterns, but functional and regulatory differences between paralogues have been observed. The formation of mixed oligomers may serve a regulatory role to refine Ena/VASP activity. While it has been assumed that family members can form mixed oligomers, this possibility has not been investigated systematically. Using cells expressing controlled combinations of VASP, Mena and EVL, we evaluated the composition of Ena/VASP oligomers and found that VASP forms oligomers without apparent bias with itself, Mena or EVL. However, Mena and EVL showed only weak hetero-oligomerization, suggesting specificity in the association of Ena/VASP family members. Co-expression of VASP increased the ability of Mena and EVL to form mixed oligomers. Additionally, we found that the tetramerization domain (TD) at the C-termini of Ena/VASP proteins conferred the observed selectivity. Finally, we demonstrate that replacement of the TD with a synthetic tetramerizing coiled coil sequence supports homo-oligomerization and normal VASP subcellular localization.
Collapse
|
46
|
Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer 2015; 15:483. [PMID: 26112005 PMCID: PMC4482190 DOI: 10.1186/s12885-015-1468-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 01/17/2023] Open
Abstract
Background Menacalc is an immunofluorescence-based, quantitative method in which expression of the non-invasive Mena protein isoform (Mena11a) is subtracted from total Mena protein expression. Previous work has found a significant positive association between Menacalc and risk of death from breast cancer. Our goal was to determine if Menacalc could be used as an independent prognostic marker for axillary node-negative (ANN) breast cancer. Methods Analysis of the association of Menacalc with overall survival (death from any cause) was performed for 403 ANN tumors using Kaplan Meier survival curves and the univariate Cox proportional hazards (PH) model with the log-rank or the likelihood ratio test. Cox PH models were used to estimate hazard ratios (HRs) for the association of Menacalc with risk of death after adjustment for HER2 status and clinicopathological tumor features. Results High Menacalc was associated with increased risk of death from any cause (P = 0.0199, HR (CI) = 2.18 (1.19, 4.00)). A similarly elevated risk of death was found in the subset of the Menacalc cohort which did not receive hormone or chemotherapy (n = 142) (P = 0.0052, HR (CI) = 3.80 (1.58, 9.97)). There was a trend toward increased risk of death with relatively high Menacalc in the HER2, basal and luminal molecular subtypes. Conclusions Menacalc may serve as an independent prognostic biomarker for the ANN breast cancer patient population. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1468-6) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Pignatelli J, Goswami S, Jones JG, Rohan TE, Pieri E, Chen X, Adler E, Cox D, Maleki S, Bresnick A, Gertler FB, Condeelis JS, Oktay MH. Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. Sci Signal 2014; 7:ra112. [PMID: 25429076 DOI: 10.1126/scisignal.2005329] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is a complex, multistep process of cancer progression that has few treatment options. A critical event is the invasion of cancer cells into blood vessels (intravasation), through which cancer cells disseminate to distant organs. Breast cancer cells with increased abundance of Mena [an epidermal growth factor (EGF)-responsive cell migration protein] are present with macrophages at sites of intravasation, called TMEM sites (for tumor microenvironment of metastasis), in patient tumor samples. Furthermore, the density of these intravasation sites correlates with metastatic risk in patients. We found that intravasation of breast cancer cells may be prevented by blocking the signaling between cancer cells and macrophages. We obtained invasive breast ductal carcinoma cells of various subtypes by fine-needle aspiration (FNA) biopsies from patients and found that, in an in vitro transendothelial migration assay, cells that migrated through a layer of human endothelial cells were enriched for the transcript encoding Mena(INV), an invasive isoform of Mena. This enhanced transendothelial migration required macrophages and occurred with all of the breast cancer subtypes. Using mouse macrophages and the human cancer cells from the FNAs, we identified paracrine and autocrine activation of colony-stimulating factor-1 receptor (CSF-1R). The paracrine or autocrine nature of the signal depended on the breast cancer cell subtype. Knocking down Mena(INV) or adding an antibody that blocks CSF-1R function prevented transendothelial migration. Our findings indicate that Mena(INV) and TMEM frequency are correlated prognostic markers and CSF-1 and Mena(INV) may be therapeutic targets to prevent metastasis of multiple breast cancer subtypes.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA. Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Evan Pieri
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Xiaoming Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esther Adler
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sara Maleki
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA.
| |
Collapse
|
48
|
Patsialou A, Bravo-Cordero JJ, Wang Y, Entenberg D, Liu H, Clarke M, Condeelis JS. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. INTRAVITAL 2014; 2:e25294. [PMID: 25013744 DOI: 10.4161/intv.25294] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023]
Abstract
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: (1) single cells and (2) multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor.
Collapse
Affiliation(s)
- Antonia Patsialou
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
| | - Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA ; Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
| | - David Entenberg
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
| | - Huiping Liu
- The Ben May Department for Cancer Research; University of Chicago; Chicago, IL USA
| | - Michael Clarke
- The Institute for Stem Cell Biology and Regenerative Medicine; Stanford University; Palo Alto, CA USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA ; Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
49
|
Paz H, Pathak N, Yang J. Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene 2014; 33:4193-202. [PMID: 24077283 PMCID: PMC3969876 DOI: 10.1038/onc.2013.393] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
The ability to degrade extracellular matrix is critical for tumor cells to invade and metastasize. Recent studies show that tumor cells use specialized actin-based membrane protrusions termed invadopodia to perform matrix degradation. Invadopodia provide an elegant way for tumor cells to precisely couple focal matrix degradation with directional movement. Here we discuss several key components and regulators of invadopodia that have been uniquely implicated in tumor invasion and metastasis. Furthermore, we discuss existing and new therapeutic opportunities to target invadopodia for anti-metastasis treatment.
Collapse
Affiliation(s)
- Helicia Paz
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Navneeta Pathak
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Duda DG, Ancukiewicz M, Isakoff SJ, Krop IE, Jain RK. Seeds and soil: unraveling the role of local tumor stroma in distant metastasis. J Natl Cancer Inst 2014; 106:dju187. [PMID: 25082335 DOI: 10.1093/jnci/dju187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dan G Duda
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology (DGD, RKJ), and Department of Medicine (SJI), Massachusetts General Hospital and Harvard Medical School, Boston, MA; PAREXEL International, Waltham, MA (MA); Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (IEK)
| | - Marek Ancukiewicz
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology (DGD, RKJ), and Department of Medicine (SJI), Massachusetts General Hospital and Harvard Medical School, Boston, MA; PAREXEL International, Waltham, MA (MA); Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (IEK)
| | - Steven J Isakoff
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology (DGD, RKJ), and Department of Medicine (SJI), Massachusetts General Hospital and Harvard Medical School, Boston, MA; PAREXEL International, Waltham, MA (MA); Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (IEK)
| | - Ian E Krop
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology (DGD, RKJ), and Department of Medicine (SJI), Massachusetts General Hospital and Harvard Medical School, Boston, MA; PAREXEL International, Waltham, MA (MA); Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (IEK)
| | - Rakesh K Jain
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology (DGD, RKJ), and Department of Medicine (SJI), Massachusetts General Hospital and Harvard Medical School, Boston, MA; PAREXEL International, Waltham, MA (MA); Department of Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (IEK).
| |
Collapse
|