1
|
Dheeraj A, Garcia Marques FJ, Tailor D, Bermudez A, Resendez A, Pandrala M, Grau B, Kumar P, Haley CB, Honkala A, Kujur P, Jeffrey SS, Pitteri S, Malhotra SV. Inhibition of protein translational machinery in triple-negative breast cancer as a promising therapeutic strategy. Cell Rep Med 2024; 5:101552. [PMID: 38729158 PMCID: PMC11148772 DOI: 10.1016/j.xcrm.2024.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.
Collapse
Affiliation(s)
- Arpit Dheeraj
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Dhanir Tailor
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mallesh Pandrala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benedikt Grau
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kumar
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Carrsyn B Haley
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexander Honkala
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Praveen Kujur
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Tanaka Y, Amano T, Nakamura A, Yoshino F, Takebayashi A, Takahashi A, Yamanaka H, Inatomi A, Hanada T, Yoneoka Y, Tsuji S, Murakami T. Rapamycin prevents cyclophosphamide-induced ovarian follicular loss and potentially inhibits tumour proliferation in a breast cancer xenograft mouse model. Hum Reprod 2024:deae085. [PMID: 38734930 DOI: 10.1093/humrep/deae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/26/2024] [Indexed: 05/13/2024] Open
Abstract
STUDY QUESTION To what extent and via what mechanism does the concomitant administration of rapamycin (a follicle activation pathway inhibitor and antitumour agent) and cyclophosphamide (a highly toxic ovarian anticancer agent) prevent cyclophosphamide-induced ovarian reserve loss and inhibit tumour proliferation in a breast cancer xenograft mouse model? SUMMARY ANSWER Daily concomitant administration of rapamycin and a cyclic regimen of cyclophosphamide, which has sufficient antitumour effects as a single agent, suppressed cyclophosphamide-induced primordial follicle loss by inhibiting primordial follicle activation in a breast cancer xenograft mouse model, suggesting the potential of an additive inhibitory effect against tumour proliferation. WHAT IS KNOWN ALREADY Cyclophosphamide stimulates primordial follicles by activating the mammalian target of the rapamycin (mTOR) pathway, resulting in the accumulation of primary follicles, most of which undergo apoptosis. Rapamycin, an mTOR inhibitor, regulates primordial follicle activation and exhibits potential inhibitory effects against breast cancer cell proliferation. STUDY DESIGN, SIZE, DURATION To assess ovarian follicular apoptosis, 3 weeks after administering breast cancer cells, 8-week-old mice were randomized into three treatment groups: control, cyclophosphamide, and cyclophosphamide + rapamycin (Cy + Rap) (n = 5 or 6 mice/group). Mice were treated with rapamycin or vehicle control for 1 week, followed by a single dose of cyclophosphamide or vehicle control. Subsequently, the ovaries were resected 24 h after cyclophosphamide administration (short-term treatment groups). To evaluate follicle abundance and the mTOR pathway in ovaries, as well as the antitumour effects and impact on the mTOR pathway in tumours, 8-week-old xenograft breast cancer transplanted mice were randomized into three treatment groups: vehicle control, Cy, and Cy + Rap (n = 6 or 7 mice/group). Rapamycin (5 mg/kg) or the vehicle was administered daily for 29 days. Cyclophosphamide (120 mg/kg) or the vehicle was administered thrice weekly (long-term treatment groups). The tumour diameter was measured weekly. Seven days after the last cyclophosphamide treatment, the ovaries were harvested, fixed, and sectioned (for follicle counting) or frozen (for further analysis). Similarly, the tumours were resected and fixed or frozen. PARTICIPANTS/MATERIALS, SETTING, METHODS Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was performed to examine ovarian follicular apoptosis in the short-term treatment groups. All subsequent experiments were conducted in the long-term treatment groups. Tumour growth was evaluated using the tumour volume index. The tumour volume index indicates the relative volume, compared to the volume 3 weeks after tumour cell injection (at treatment initiation) set to 100%. Tumour cell proliferation was evaluated by Ki-67 immunostaining. Activation of the mTOR pathway in tumours was assessed using the protein extracts from tumours and analysed by western blotting. Haematoxylin and eosin staining of ovaries was used to perform differential follicle counts for primordial, primary, secondary, antral, and atretic follicles. Activation of the mTOR pathway in ovaries was assessed using protein extracts from whole ovaries and analysed by western blotting. Localization of mTOR pathway activation within ovaries was assessed by performing anti-phospho-S6 kinase (downstream of mTOR pathway) immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE Ovaries of the short-term treatment groups were resected 24 h after cyclophosphamide administration and subjected to TUNEL staining of apoptotic cells. No TUNEL-positive primordial follicles were detected in the control, Cy, and Cy + Rap groups. Conversely, many granulosa cells of growing follicles were TUNEL positive in the Cy group but negative in the control and Cy + Rap groups. All subsequent experimental results were obtained from the long-term treatment groups. The tumour volume index stabilized at a mean of 160-200% in the Cy group and 130% in the Cy + Rap group throughout the treatment period. In contrast, tumours in the vehicle control group grew continuously with a mean tumour volume index of 600%, significantly greater than that of the two treatment groups. Based on the western blot analysis of tumours, the mTOR pathway was activated in the vehicle control group and downregulated in the Cy + Rap group when compared with the control and Cy groups. Ki-67 immunostaining of tumours showed significant inhibition of cell proliferation in the Cy + Rap group when compared with that in the control and Cy groups. The ovarian follicle count revealed that the Cy group had significantly fewer primordial follicles (P < 0.001) than the control group, whereas the Cy + Rap group had significantly higher number of primordial follicles (P < 0.001, 2.5 times) than the Cy group. The ratio of primary to primordial follicles was twice as high in the Cy group than in the control group; however, no significant difference was observed between the control group and the Cy + Rap group. Western blot analysis of ovaries revealed that the mTOR pathway was activated by cyclophosphamide and inhibited by rapamycin. The phospho-S6 kinase (pS6K)-positive primordial follicle rate was 2.7 times higher in the Cy group than in the control group. However, this effect was suppressed to a level similar to the control group in the Cy + Rap group. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The combinatorial treatment of breast cancer tumours with rapamycin and cyclophosphamide elicited inhibitory effects on cell proliferative potential compared to cyclophosphamide monotherapy. However, no statistically significant additive effect was observed on tumour volume. Thus, the beneficial antitumour effect afforded by rapamycin administration on breast cancer could not be definitively proven. Although rapamycin has ovarian-protective effects, it does not fully counteract the ovarian toxicity of cyclophosphamide. Nevertheless, rapamycin is advantageous as an ovarian protective agent as it can be used in combination with other ovarian protective agents, such as hormonal therapy. Hence, in combination with other agents, mTOR inhibitors may be sufficiently ovario-protective against high-dose and cyclic cyclophosphamide regimens. WIDER IMPLICATIONS OF THE FINDINGS Compared with a cyclic cyclophosphamide regimen that replicates human clinical practice under breast cancer-bearing conditions, the combination with rapamycin mitigates the ovarian follicle loss of cyclophosphamide without interfering with the anticipated antitumour effects. Hence, rapamycin may represent a new non-invasive treatment option for cyclophosphamide-induced ovarian dysfunction in breast cancer patients. STUDY FUNDING/COMPETING INTEREST(S) This work was not financially supported. The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akie Takebayashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Yamanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Ayako Inatomi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tetsuro Hanada
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Yoneoka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
3
|
Lewis MT, Caldas C. The Power and Promise of Patient-Derived Xenografts of Human Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041329. [PMID: 38052483 PMCID: PMC10982691 DOI: 10.1101/cshperspect.a041329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In 2016, a group of researchers engaged in the development of patient-derived xenografts (PDXs) of human breast cancer provided a comprehensive review of the state of the field. In that review, they summarized the clinical problem that PDXs might address, the technical approaches to their generation (including a discussion of host animals and transplant conditions tested), and presented transplantation success (take) rates across groups and across transplantation conditions. At the time, there were just over 500 unique PDX models created by these investigators representing all three clinically defined subtypes (ER+, HER2+, and TNBC). Today, many of these PDX resources have at least doubled in size, and several more PDX development groups now exist, such that there may be well upward of 1000 PDX models of human breast cancer in existence worldwide. They also presented a series of open questions for the field. Many of these questions have been addressed. However, several remain open, or only partially addressed. Herein, we revisit these questions, and recount the progress that has been made in a number of areas with respect to generation, characterization, and use of PDXs in translational research, and re-present questions that remain open. These open questions, and others, are now being addressed not only by individual investigators, but also large, well-funded consortia including the PDXNet program of the National Cancer Institute in the United States, and the EuroPDX Consortium, an organization of PDX developers across Europe. Finally, we discuss the new opportunities in PDX-based research.
Collapse
Affiliation(s)
- Michael T Lewis
- Baylor College of Medicine, The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
4
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, Borzacchiello A, Granata V, Sabbatino F, Savarese G, Cascella M, Perri F, Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023; 41:5. [PMID: 38038783 DOI: 10.1007/s12032-023-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Venere Celotto
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Antonio Fabozzi
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL Napoli 3, Pompei, 80045, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, ASL Napoli 3, Via Dell'amicizia 22, Nola, 80035, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale Srl, Via Padre Carmine Fico 24, Casalnuovo Di, 80013, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
6
|
Sun Y, Zheng H, Qian L, Liu Y, Zhu D, Xu Z, Chang W, Xu J, Wang L, Sun B, Gu L, Yuan H, Lou H. Targeting GDP-Dissociation Inhibitor Beta (GDI2) with a Benzo[ a]quinolizidine Library to Induce Paraptosis for Cancer Therapy. JACS AU 2023; 3:2749-2762. [PMID: 37885576 PMCID: PMC10598831 DOI: 10.1021/jacsau.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Inducing paraptosis, a nonapoptotic form of cell death, has great therapeutic potential in cancer therapy, especially for drug-resistant tumors. However, the specific molecular target(s) that trigger paraptosis have not yet been deciphered yet. Herein, by using activity-based protein profiling, we identified the GDP-dissociation inhibitor beta (GDI2) as a manipulable target for inducing paraptosis and uncovered benzo[a]quinolizidine BQZ-485 as a potent inhibitor of GDI2 through the interaction with Tyr245. Comprehensive target validation revealed that BQZ-485 disrupts the intrinsic GDI2-Rab1A interaction, thereby abolishing vesicular transport from the endoplasmic reticulum (ER) to the Golgi apparatus and initiating subsequent paraptosis events including ER dilation and fusion, ER stress, the unfolded protein response, and cytoplasmic vacuolization. Based on the structure of BQZ-485, we created a small benzo[a]quinolizidine library by click chemistry and discovered more potent GDI2 inhibitors using a NanoLuc-based screening platform. Leveraging the engagement of BQZ-485 with GDI2, we developed a selective GDI2 degrader. The optimized inhibitor (+)-37 and degrader 21 described in this study exhibited excellent in vivo antitumor activity in two GDI2-overexpressing pancreatic xenograft models, including an AsPc-1 solid tumor model and a transplanted human PDAC tumor model. Altogether, our findings provide a promising strategy for targeting GDI2 for paraptosis in the treatment of pancreatic cancers, and these lead compounds could be further optimized to be effective chemotherapeutics.
Collapse
Affiliation(s)
- Yong Sun
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Lilin Qian
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Yue Liu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zejun Xu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Wenqiang Chang
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Jianwei Xu
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Lei Wang
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Bin Sun
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| | - Lichuan Gu
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huiqing Yuan
- Key
Laboratory
of Experimental Teratology of the Ministry of Education, Institute
of Medical Sciences, The Second Hospital
of Shandong University, Jinan 250013, China
| | - Hongxiang Lou
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
7
|
Tan X, Li Y, Hou Z, Zhang M, Li L, Wei J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp Cell Res 2023:113647. [PMID: 37225011 DOI: 10.1016/j.yexcr.2023.113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yan Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, 440(#) Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zhihui Hou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Mingwei Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Li Li
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China; Department of Pathology, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Junmin Wei
- Department of Oncology, Cancer Center, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
CDK7/GRP78 signaling axis contributes to tumor growth and metastasis in osteosarcoma. Oncogene 2022; 41:4524-4536. [PMID: 36042349 DOI: 10.1038/s41388-022-02446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
Osteosarcoma derives from primitive bone-forming mesenchymal cells and is the most common primary bone malignancy. Therapeutic targeting of osteosarcoma has been unsuccessful; therefore, identifying novel osteosarcoma pathogenesis could offer new therapeutic options. CDK7 is a subunit within the general transcription factor TFIIH. We aim to explore the new mechanism by which CDK7 regulates osteosarcoma and our studies may provide new theoretical support for the use of CDK7 inhibitors in the treatment of osteosarcoma. Here, we investigate the molecular mechanism underlying the association between CDK7 and GRP78 in osteosarcoma. Specifically, we find that an E3 ubiquitin ligase TRIM21 binds and targets GRP78 for ubiquitination and degradation, whereas CDK7 phosphorylates GRP78 at T69 to inhibit TRIM21 recruitment, leading to GRP78 stabilization. Notably, a CDK7-specific inhibitor, THZ1, blunts osteosarcoma growth and metastasis. Combination treatment with CDK7 and GRP78 inhibitors yield additive effects on osteosarcoma growth and progression inhibition. Thus, simultaneous suppression of CDK7 and GRP78 activity represents a potential new approach for the treatment of osteosarcoma. In conclusion, the discovery of this previously unknown CDK7/GRP78 signaling axis provides the molecular basis and the rationale to target human osteosarcoma.
Collapse
|
9
|
Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem Pharmacol 2022; 204:115209. [PMID: 35973582 DOI: 10.1016/j.bcp.2022.115209] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022]
Abstract
The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.
Collapse
Affiliation(s)
- Aaron T Jacobs
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | | | - Mark M Rose
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | - Linda Connelly
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States.
| |
Collapse
|
10
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Maqbool M, Bekele F, Fekadu G. Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:15-24. [PMID: 35046722 PMCID: PMC8760999 DOI: 10.2147/bctt.s348060] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is associated with an increased risk of early recurrence and distant metastasis, as well as the development of therapeutic resistance and poor prognosis. TNBC is characterized by a wide range of genetic, immunophenotypic, morphological, and clinical features. TNBC is coined to describe cancers that lack estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). As a result, hormonal or trastuzumab-based treatments are ineffective in TNBC patients. TNBCs are biologically aggressive, and despite some evidence that they respond to treatment better than other forms of breast cancer, the prognosis remains poor. This is attributed to a shorter disease-free interval in adjuvant and neoadjuvant settings, as well as a more aggressive metastatic course. TNBC has a lot of clinical ramifications. In terms of new treatment methods, TNBC has lagged behind other types of breast cancer. There are not many options for treating this form of breast cancer because it is progressive. Many effective treatments for most breast cancers block the growth-stimulating effects of ER, PR, and/or HER2, leaving TNBC with few choices. Finding new and effective treatment options for TNBC remains a critical clinical need. To develop more effective drugs, new experimental approaches must be tested in patients with TNBC.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Firomsa Bekele
- Department of Pharmacy, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.,Department of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
12
|
Balkrishna A, Mittal R, Arya V. Unveiling Novel Therapeutic Drug Targets and Prognostic Markers of Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 21:907-918. [PMID: 34503412 DOI: 10.2174/1568009621666210908113010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Triple negative breast cancer represents multiple genomic and transcriptomic heterogeneities. Genetic and epigenetic changes emerging in TNBC help it in acquiring resistance against immunological response. Distant metastasis, lack of clinically targeted therapies and prognostic markers make it the most aggressive form of breast cancer. In this review, we showed that driver alterations in targeted genes AR, ERR, TIL, TAM, miRNA, mTOR and immunosuppressive cytokines are predominantly involved in complicating TNBC by inducing cell proliferation, invasion and metastasis, and by inhibiting apoptosis. The role of node status, cathepsin-D, Ki-67 index, CD3+TIL, BRCA1 promoter methylation value and p53 as an efficient prognostic factor have also been studied to predict the disease free and overall survival rate in TNBC patients. The present review article is an attempt to gain an insight with a new vision on the etiology of TNBC, its treatment strategies and prognostic marker to identify the outcome of standard therapies and to re-design future treatment strategies to provide maximum benefit to patients.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| |
Collapse
|
13
|
Vences-Catalán F, Rajapaksa R, Kuo CC, Miller CL, Lee A, Ramani VC, Jeffrey SS, Levy R, Levy S. Targeting the tetraspanin CD81 reduces cancer invasion and metastasis. Proc Natl Acad Sci U S A 2021; 118:e2018961118. [PMID: 34099563 PMCID: PMC8214710 DOI: 10.1073/pnas.2018961118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanins are an evolutionary conserved family of proteins involved in multiple aspects of cell physiology, including proliferation, migration and invasion, protein trafficking, and signal transduction; yet their detailed mechanism of action is unknown. Tetraspanins have no known natural ligands, but their engagement by antibodies has begun to reveal their role in cell biology. Studies of tetraspanin knockout mice and of germline mutations in humans have highlighted their role under normal and pathological conditions. Previously, we have shown that mice deficient in the tetraspanin CD81 developed fewer breast cancer metastases compared to their wild-type (WT) counterparts. Here, we show that a unique anti-human CD81 antibody (5A6) effectively halts invasion of triple-negative breast cancer (TNBC) cell lines. We demonstrate that 5A6 induces CD81 clustering at the cell membrane and we implicate JAM-A protein in the ability of this antibody to inhibit tumor cell invasion and migration. Furthermore, in a series of in vivo studies we demonstrate that this antibody inhibits metastases in xenograft models, as well as in syngeneic mice bearing a mouse tumor into which we knocked in the human CD81 epitope recognized by the 5A6 antibody.
Collapse
Affiliation(s)
- Felipe Vences-Catalán
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ranjani Rajapaksa
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Chiung-Chi Kuo
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Caitlyn L Miller
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Anderson Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Vishnu C Ramani
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; s
| | - Shoshana Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; s
| |
Collapse
|
14
|
Na D, Moon HG. Patient-Derived Xenograft Models in Breast Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1187:283-301. [PMID: 33983584 DOI: 10.1007/978-981-32-9620-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Patient-derived xenograft (PDX) model can be used as a platform to study the individual patient's sensitivity to targeted agents as well as its ability to guide our understanding in various aspects of tumor biology including the tumor's clonal evolution and interaction with microenvironment. In this chapter, we review the history of PDX models in various tumor types. Additionally, we highlight the key studies that suggested potential value of PDX models in cancer treatment. Specifically, we will briefly introduce several studies on the issue of PDX models for precision medicine. In latter part of this chapter, we focus on the studies that used PDX models to investigate the molecular biology of breast cancer that underlies the process of drug resistance and tumor metastasis. Also, we will address our own experience in developing PDX models using breast cancer tissues from Korean breast cancer patients.
Collapse
Affiliation(s)
- Deukchae Na
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Lv X, Dobrolecki LE, Ding Y, Rosen JM, Lewis MT, Chen X. Orthotopic Transplantation of Breast Tumors as Preclinical Models for Breast Cancer. J Vis Exp 2020. [PMID: 32478757 DOI: 10.3791/61173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Preclinical models that faithfully recapitulate tumor heterogeneity and therapeutic response are critical for translational breast cancer research. Immortalized cell lines are easy to grow and genetically modify to study molecular mechanisms, yet the selective pressure from cell culture often leads to genetic and epigenetic alterations over time. Patient-derived xenograft (PDX) models faithfully recapitulate the heterogeneity and drug response of human breast tumors. PDX models exhibit a relatively short latency after orthotopic transplantation that facilitates the investigation of breast tumor biology and drug response. The transplantable genetically engineered mouse models allow the study of breast tumor immunity. The current protocol describes the method to orthotopically transplant breast tumor fragments into the mammary fat pad followed by drug treatments. These preclinical models provide valuable approaches to investigate breast tumor biology, drug response, biomarker discovery and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine;
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine;
| |
Collapse
|
16
|
Cao L, Niu Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol Med 2020; 17:293-306. [PMID: 32587770 PMCID: PMC7309458 DOI: 10.20892/j.issn.2095-3941.2019.0465] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a complex and malignant breast cancer subtype that lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), thereby making therapeutic targeting difficult. TNBC is generally considered to have high malignancy and poor prognosis. However, patients diagnosed with certain rare histomorphologic subtypes of TNBC have better prognosis than those diagnosed with typical triple negative breast cancer. In addition, with the discovery and development of novel treatment targets such as the androgen receptor (AR), PI3K/AKT/mTOR and AMPK signaling pathways, as well as emerging immunotherapies, the therapeutic options for TNBC are increasing. In this paper, we review the literature on various histological types of TNBC and focus on newly developed therapeutic strategies that target and potentially affect molecular pathways or emerging oncogenes, thus providing a basis for future tailored therapies focused on the mutational aspects of TNBC.
Collapse
Affiliation(s)
- Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yun Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
17
|
Tumor shedding and metastatic progression after tumor excision in patient-derived orthotopic xenograft models of triple-negative breast cancer. Clin Exp Metastasis 2020; 37:413-424. [PMID: 32335861 DOI: 10.1007/s10585-020-10033-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Patient-derived orthotopic xenograft (PDOX) models have been verified as a useful method for studying human cancers in mice. Previous studies on the extent of metastases in these models have been limited by the necessity of welfare euthanasia (primary tumors reaching threshold size), at which point metastases may only be micrometers in diameter, few in number, and solely identified by step-sectioning of formalin-fixed paraffin-embedded tissue. These small micro-metastases are less suitable for many downstream molecular analyses than macro-metastases. Resection of the primary tumor by survival surgery has been proven to allow further time for metastases to grow. Although PDOX models of triple-negative breast cancer (TNBC) shed circulating tumor cells (CTCs) into the bloodstream and metastasize, similar to human TNBC, little data has been collected in these TNBC PDOX models regarding the association between CTC characteristics and distant metastasis following excision of the primary tumor xenograft. This study assembles a timeline of PDOX tumor shedding and metastatic tumor progression before and after tumor excision surgery. We report the ability to use tumorectomies to increase the lifespan of TNBC PDOX models with the potential to obtain larger metastases. CTC clusters and CTCs expressing a mesenchymal marker (vimentin) were associated with metastatic burden in lung and liver. The data collected through these experiments will guide the further use of PDOX models in studying metastatic TNBC.
Collapse
|
18
|
Sprouffske K, Kerr G, Li C, Prahallad A, Rebmann R, Waehle V, Naumann U, Bitter H, Jensen MR, Hofmann F, Brachmann SM, Ferretti S, Kauffmann A. Genetic heterogeneity and clonal evolution during metastasis in breast cancer patient-derived tumor xenograft models. Comput Struct Biotechnol J 2020; 18:323-331. [PMID: 32099592 PMCID: PMC7026725 DOI: 10.1016/j.csbj.2020.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/04/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic heterogeneity within a tumor arises by clonal evolution, and patients with highly heterogeneous tumors are more likely to be resistant to therapy and have reduced survival. Clonal evolution also occurs when a subset of cells leave the primary tumor to form metastases, which leads to reduced genetic heterogeneity at the metastatic site. Although this process has been observed in human cancer, experimental models which recapitulate this process are lacking. Patient-derived tumor xenografts (PDX) have been shown to recapitulate the patient's original tumor's intra-tumor genetic heterogeneity, as well as its genomics and response to treatment, but whether they can be used to model clonal evolution in the metastatic process is currently unknown. Here, we address this question by following genetic changes in two breast cancer PDX models during metastasis. First, we discovered that mouse stroma can be a confounding factor in assessing intra-tumor heterogeneity by whole exome sequencing, thus we developed a new bioinformatic approach to correct for this. Finally, in a spontaneous, but not experimental (tail-vein) metastasis model we observed a loss of heterogeneity in PDX metastases compared to their orthotopic "primary" tumors, confirming that PDX models can faithfully mimic the clonal evolution process undergone in human patients during metastatic spreading.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cheng Li
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anirudh Prahallad
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ramona Rebmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Verena Waehle
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Bitter
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Kauffmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
19
|
Advances in the Characterization of Circulating Tumor Cells in Metastatic Breast Cancer: Single Cell Analyses and Interactions, and Patient-Derived Models for Drug Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:61-80. [PMID: 32304080 DOI: 10.1007/978-3-030-35805-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastasis is the major cause of breast cancer death worldwide. In metastatic breast cancer, circulating tumor cells (CTCs) can be captured from patient blood samples sequentially over time and thereby serve as surrogates to assess the biology of surviving cancer cells that may still persist in solitary or multiple metastatic sites following treatment. CTCs may thus function as potential real-time decision-making guides for selecting appropriate therapies during the course of disease or for the development and testing of new treatments. The heterogeneous nature of CTCs warrants the use of single cell platforms to better inform our understanding of these cancer cells. Current techniques for single cell analyses and techniques for investigating interactions between cancer and immune cells are discussed. In addition, methodologies for growing patient-derived CTCs in vitro or propagating them in vivo to facilitate CTC drug testing are reviewed. We advocate the use of CTCs in appropriate microenvironments to appraise the effectiveness of cancer chemotherapies, immunotherapies, and for the development of new cancer treatments, fundamental to personalizing and improving the clinical management of metastatic breast cancer.
Collapse
|
20
|
Investigating circulating tumor cells and distant metastases in patient-derived orthotopic xenograft models of triple-negative breast cancer. Breast Cancer Res 2019; 21:98. [PMID: 31462307 PMCID: PMC6714238 DOI: 10.1186/s13058-019-1182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) represent a temporal "snapshot" of a patient's cancer and changes that occur during disease evolution. There is an extensive literature studying CTCs in breast cancer patients, and particularly in those with metastatic disease. In parallel, there is an increasing use of patient-derived models in preclinical investigations of human cancers. Yet studies are still limited demonstrating CTC shedding and metastasis formation in patient-derived models of breast cancer. METHODS We used seven patient-derived orthotopic xenograft (PDOX) models generated from triple-negative breast cancer (TNBC) patients to study CTCs and distant metastases. Tumor fragments from PDOX tissue from each of the seven models were implanted into 57 NOD scid gamma (NSG) mice, and tumor growth and volume were monitored. Human CTC capture from mouse blood was first optimized on the marker-agnostic Vortex CTC isolation platform, and whole blood was processed from 37 PDOX tumor-bearing mice. RESULTS Staining and imaging revealed the presence of CTCs in 32/37 (86%). The total number of CTCs varied between different PDOX tumor models and between individual mice bearing the same PDOX tumors. CTCs were heterogeneous and showed cytokeratin (CK) positive, vimentin (VIM) positive, and mixed CK/VIM phenotypes. Metastases were detected in the lung (20/57, 35%), liver (7/57, 12%), and brain (1/57, less than 2%). The seven different PDOX tumor models displayed varying degrees of metastatic potential, including one TNBC PDOX tumor model that failed to generate any detectable metastases (0/8 mice) despite having CTCs present in the blood of 5/5 tested, suggesting that CTCs from this particular PDOX tumor model may typify metastatic inefficiency. CONCLUSION PDOX tumor models that shed CTCs and develop distant metastases represent an important tool for investigating TNBC.
Collapse
|
21
|
Wu Z, Wu J, Zhao Q, Fu S, Jin J. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 2019; 22:631-646. [PMID: 31359335 DOI: 10.1007/s12094-019-02187-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
Altered aerobic glycolysis is a well-recognized characteristic of cancer cell energy metabolism, known as the Warburg effect. Even in the presence of abundant oxygen, a majority of tumor cells produce substantial amounts of energy through a high glycolytic metabolism, and breast cancer (BC) is no exception. Breast cancer continues to be the second leading cause of cancer-associated mortality in women worldwide. However, the precise role of aerobic glycolysis in the development of BC remains elusive. Therefore, the present review attempts to address the implication of key enzymes of the aerobic glycolytic pathway including hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK), glucose transporters (GLUTs), together with related signaling pathways including protein kinase B(PI3K/AKT), mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) and transcription factors (c-myc, p53 and HIF-1) in the research of BC. Thus, the review of aerobic glycolysis in BC may evoke novel ideas for the BC treatment.
Collapse
Affiliation(s)
- Z Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - J Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Q Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, People's Republic of China
| | - S Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - J Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
22
|
Role of docosahexaenoic acid in enhancement of docetaxel action in patient-derived breast cancer xenografts. Breast Cancer Res Treat 2019; 177:357-367. [DOI: 10.1007/s10549-019-05331-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
23
|
Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells 2019; 8:cells8060621. [PMID: 31226846 PMCID: PMC6628218 DOI: 10.3390/cells8060621] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and then maintained by passaging from mouse to mouse. The ability of PDX models to maintain the original features of patient tumors and to reflect drug sensitivity has greatly improved both basic and clinical study outcomes. However, current PDX models cannot completely predict drug efficacy because they do not recapitulate the tumor microenvironment of origin, a failure which puts emphasis on the necessity for the development of the next generation PDX models. In this article, we summarize the advantages and limitations of current PDX models and discuss the future directions of this field.
Collapse
|
24
|
Yuan Y, Wen W, Yost SE, Xing Q, Yan J, Han ES, Mortimer J, Yim JH. Combination therapy with BYL719 and LEE011 is synergistic and causes a greater suppression of p-S6 in triple negative breast cancer. Sci Rep 2019; 9:7509. [PMID: 31101835 PMCID: PMC6525251 DOI: 10.1038/s41598-019-43429-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
A third of patients with triple negative breast cancer (TNBC) have relapsed disease within 2-5 years from initial diagnosis, leaving an unmet need for therapeutic targets. TNBC frequently harbors alterations of the PI3K/AKT/mTOR pathway, but single agent PI3K/AKT/mTOR inhibitors have not shown marked efficacy. In this study, we investigated a strategy to improve efficacy of PI3K-α inhibitor BYL719 (alpelisib) in TNBC. While BYL719 is effective at inhibiting cell proliferation in T47D, a triple positive cell line, it had limited activity in TNBC. This may be partially due to persistent phosphorylation of RB, and incomplete inhibition of p-S6 in TNBC, since the inhibitory effect of BYL719 on p-RB and p-S6 was significantly reduced in TNBC compared to T47D cells. Addition of the CDK4/6 inhibitor LEE011 to BYL719 caused a simultaneous reduction of p-RB and p-S6, and a more complete inhibition of p-S6, leading to decreased expression of the pro-survival protein MCL-1, an induction of apoptosis, and an enhanced reduction of tumor growth in a PDX model of TNBC. These findings suggest that inhibition of p-RB and p-S6 is important for an effective response to the treatment of TNBC, and provides a strong rationale for clinical development of combination therapy with BYL719 and LEE011 for treatment of metastatic TNBC with intact RB.Presentation: This study was presented in part as an abstract at the 2016 San Antonio Breast Cancer Symposium (P3-03-15) and the 2018 Cancer Research and Targeted Therapy in London.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| | - Wei Wen
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Susan E Yost
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Quanhua Xing
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Jin Yan
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Ernest S Han
- Division of Gynecologic Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Molecular Therapeutics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA
| | - John H Yim
- Division of Surgical Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
25
|
Ryu JS, Sim SH, Park IH, Lee EG, Lee ES, Kim YH, Kwon Y, Kong SY, Lee KS. Integrative In Vivo Drug Testing Using Gene Expression Signature and Patient-Derived Xenografts from Treatment-Refractory HER2 Positive and Triple-Negative Subtypes of Breast Cancer. Cancers (Basel) 2019; 11:cancers11040574. [PMID: 31018595 PMCID: PMC6520730 DOI: 10.3390/cancers11040574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
Patient-derived xenografts (PDXs) are powerful tools for translational cancer research. Here, we established PDX models from different molecular subtypes of breast cancer for in vivo drug tests and compared the histopathologic features of PDX model tumors with those of patient tumors. Predictive biomarkers were identified by gene expression analysis of PDX samples using Nanostring nCount cancer panels. Validation of predictive biomarkers for treatment response was conducted in established PDX models by in vivo drug testing. Twenty breast cancer PDX models were generated from different molecular subtypes (overall success rate, 17.5%; 3.6% for HR+/HER2-, 21.4% for HR+/HER2+, 21.9% for HR-/HER2+ and 22.5% for triple-negative breast cancer (TNBC)). The histopathologic features of original tumors were retained in the PDX models. We detected upregulated HIF1A, RAF1, AKT2 and VEGFA in TNBC cases and demonstrated the efficacy of combined treatment with sorafenib and everolimus or docetaxel and bevacizumab in each TNBC model. Additionally, we identified upregulated HIF1A in two cases of trastuzumab-exposed HR-/HER2+ PDX models and validated the efficacy of the HIF1A inhibitor, PX-478, alone or in combination with neratinib. Our results demonstrate that PDX models can be used as effective tools for predicting therapeutic markers and evaluating personalized treatment strategies in breast cancer patients with resistance to standard chemotherapy regimens.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Sung Hoon Sim
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
| | - In Hae Park
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
| | - Eun Gyeong Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Eun Sook Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Yun-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
- Division of Convergence Technology, National Cancer Center, Goyang 10408, Korea.
| | - Youngmee Kwon
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| | - Sun-Young Kong
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
- Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Goyang 10408, Korea.
| | - Keun Seok Lee
- Center for Breast cancer, National Cancer Center, Goyang 10408, Korea.
| |
Collapse
|
26
|
Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019; 8:cells8040333. [PMID: 30970654 PMCID: PMC6523933 DOI: 10.3390/cells8040333] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.
Collapse
Affiliation(s)
- Fiona H Tan
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Yuchen Bai
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France.
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France.
| | - Charbel Darido
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
27
|
Coussy F, de Koning L, Lavigne M, Bernard V, Ouine B, Boulai A, El Botty R, Dahmani A, Montaudon E, Assayag F, Morisset L, Huguet L, Sourd L, Painsec P, Callens C, Chateau-Joubert S, Servely JL, Larcher T, Reyes C, Girard E, Pierron G, Laurent C, Vacher S, Baulande S, Melaabi S, Vincent-Salomon A, Gentien D, Dieras V, Bieche I, Marangoni E. A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer. Int J Cancer 2019; 145:1902-1912. [PMID: 30859564 DOI: 10.1002/ijc.32266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/26/2018] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) represents 10% of all breast cancers and is a very heterogeneous disease. Globally, women with TNBC have a poor prognosis, and the development of effective targeted therapies remains a real challenge. Patient-derived xenografts (PDX) are clinically relevant models that have emerged as important tools for the analysis of drug activity and predictive biomarker discovery. The purpose of this work was to analyze the molecular heterogeneity of a large panel of TNBC PDX (n = 61) in order to test targeted therapies and identify biomarkers of response. At the gene expression level, TNBC PDX represent all of the various TNBC subtypes identified by the Lehmann classification except for immunomodulatory subtype, which is underrepresented in PDX. NGS and copy number data showed a similar diversity of significantly mutated gene and somatic copy number alteration in PDX and the Cancer Genome Atlas TNBC patients. The genes most commonly altered were TP53 and oncogenes and tumor suppressors of the PI3K/AKT/mTOR and MAPK pathways. PDX showed similar morphology and immunohistochemistry markers to those of the original tumors. Efficacy experiments with PI3K and MAPK inhibitor monotherapy or combination therapy showed an antitumor activity in PDX carrying genomic mutations of PIK3CA and NRAS genes. TNBC PDX reproduce the molecular heterogeneity of TNBC patients. This large collection of PDX is a clinically relevant platform for drug testing, biomarker discovery and translational research.
Collapse
Affiliation(s)
- Florence Coussy
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France
| | - Leanne de Koning
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - Marion Lavigne
- Department of Biopathology, Institut Curie, Paris, France
| | - Virginie Bernard
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Berengere Ouine
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - Anais Boulai
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Franck Assayag
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Ludivine Morisset
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Lea Huguet
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - Celine Callens
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - Jean-Luc Servely
- BioPôle Alfort, National Veterinary School of Alfort, Maison Alfort, France
| | | | - Cecile Reyes
- Translational Research Department, Genomics Platform, Institut Curie Research Center, Paris, France
| | | | - Gaelle Pierron
- Unit of Somatic Genomics, Department of Genetics, Institut Curie, Paris, France
| | | | - Sophie Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, Paris, France
| | - Samia Melaabi
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - David Gentien
- Translational Research Department, Genomics Platform, Institut Curie Research Center, Paris, France
| | | | - Ivan Bieche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Inserm U1016, Paris Descartes University, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| |
Collapse
|
28
|
Lemaire CA, Liu SZ, Wilkerson CL, Ramani VC, Barzanian NA, Huang KW, Che J, Chiu MW, Vuppalapaty M, Dimmick AM, Carlo DD, Kochersperger ML, Crouse SC, Jeffrey SS, Englert RF, Hengstler S, Renier C, Sollier-Christen E. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System. SLAS Technol 2018; 23:16-29. [PMID: 29355087 DOI: 10.1177/2472630317738698] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumor tissue biopsies are invasive, costly, and collect a limited cell population not completely reflective of patient cancer cell diversity. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and may be representative of the diverse biology from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis. We present here the transition from a cutting-edge microfluidic innovation in the lab to a commercial, automated system for isolating CTCs directly from whole blood. As the technology evolved into a commercial system, flexible polydimethylsiloxane microfluidic chips were replaced by rigid poly(methyl methacrylate) chips for a 2.2-fold increase in cell recovery. Automating the fluidic processing with the VTX-1 further improved cancer cell recovery by nearly 1.4-fold, with a 2.8-fold decrease in contaminating white blood cells and overall improved reproducibility. Two isolation protocols were optimized that favor either the cancer cell recovery (up to 71.6% recovery) or sample purity (≤100 white blood cells/mL). The VTX-1's performance was further tested with three different spiked breast or lung cancer cell lines, with 69.0% to 79.5% cell recovery. Finally, several cancer research applications are presented using the commercial VTX-1 system.
Collapse
Affiliation(s)
| | - Sean Z Liu
- 1 Vortex Biosciences Inc., Menlo Park, CA, USA
| | | | - Vishnu C Ramani
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - James Che
- 1 Vortex Biosciences Inc., Menlo Park, CA, USA
| | | | | | | | - Dino Di Carlo
- 3 Department of Bioengineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | | | | | - Stefanie S Jeffrey
- 2 Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget 2018; 7:48206-48219. [PMID: 27374081 PMCID: PMC5217012 DOI: 10.18632/oncotarget.10195] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers. Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response. In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT.
Collapse
|
30
|
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat 2018; 169:397-406. [DOI: 10.1007/s10549-018-4697-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
|
31
|
Renier C, Do J, Reyna-Neyra A, Foster D, De A, Vogel H, Jeffrey SS, Tse V, Carrasco N, Wapnir I. Regression of experimental NIS-expressing breast cancer brain metastases in response to radioiodide/gemcitabine dual therapy. Oncotarget 2018; 7:54811-54824. [PMID: 27363025 PMCID: PMC5342383 DOI: 10.18632/oncotarget.10238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
Treating breast cancer brain metastases (BCBMs) is challenging. Na+/I− symporter (NIS) expression in BCBMs would permit their selective targeting with radioiodide (131I−). We show impressive enhancement of tumor response by combining131I− with gemcitabine (GEM), a cytotoxic radiosensitizer. Nude mice mammary fat-pad (MFP) tumors and BCBMs were generated with braintropic MDA-MB-231Br cells transduced with bicistronically-linked NIS and firefly luciferase cDNAs. Response was monitored in vivo via bioluminescent imaging and NIS tumor expression.131I−/GEM therapy inhibited MFP tumor growth more effectively than either agent alone. BCBMs were treated with: high or low-dose GEM (58 or 14.5 mg/Kg×4); 131I− (1mCi or 2×0.5 mCi 7 days apart); and 131I−/GEM therapy. By post-injection day (PID) 25, 82-86% of controls and 78-83% of 131I−-treated BCBM grew, whereas 17% low-dose and 36% high-dose GEM regressed. The latter tumors were smaller than the controls with comparable NIS expression (~20% of cells). High and low-dose 131I−/GEM combinations caused 89% and 57% tumor regression, respectively. High-dose GEM/131I− delayed tumor growth: tumors increased 5-fold in size by PID45 (controls by PID18). Although fewer than 25% of cells expressed NIS, GEM/131I− caused dramatic tumor regression in NIS-transduced BCBMs. This effect was synergistic, and supports the hypothesis that GEM radiosensitizes cells to 131I−.
Collapse
Affiliation(s)
- Corinne Renier
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John Do
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Reyna-Neyra
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Deshka Foster
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Abhijit De
- Department of Radiology and Molecular Imaging Program at Stanford, Stanford, CA, USA.,Molecular Functional Imaging Laboratory, ACTREC Tata Memorial Centre, Navi Mumbai, India
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor Tse
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Irene Wapnir
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Julovi SM, Martin JL, Baxter RC. Nuclear Insulin-Like Growth Factor Binding Protein-3 As a Biomarker in Triple-Negative Breast Cancer Xenograft Tumors: Effect of Targeted Therapy and Comparison With Chemotherapy. Front Endocrinol (Lausanne) 2018; 9:120. [PMID: 29623068 PMCID: PMC5874320 DOI: 10.3389/fendo.2018.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) typically has a worse outcome than other breast cancer subtypes, in part owing to a lack of approved therapeutic targets or prognostic markers. We have previously described an oncogenic pathway in basal-like TNBC cells, initiated by insulin-like growth factor binding protein-3 (IGFBP-3), in which the epidermal growth factor receptor (EGFR) is transactivated by sphingosine-1-phosphate (S1P) resulting from sphingosine kinase (SphK)-1 activation. Oncogenic IGFBP-3 signaling can be targeted by combination treatment with the S1P receptor modulator and SphK inhibitor, fingolimod, and the EGFR kinase inhibitor, gefitinib (F + G). However, the interaction of this treatment with chemotherapy has not been documented. Since we observed nuclear localization of IGFBP-3 in some TNBC tumors, this study aimed to evaluate the prognostic significance of nuclear IGFBP-3 in pre-clinical models of basal-like TNBC treated with F + G and doxorubicin. Orthotopic xenograft tumors were grown in nude mice from the human basal-like TNBC cell lines MDA-MB-468 and HCC1806, and were treated with gefitinib, 25 mg/Kg, plus fingolimod, 5 mg/Kg, 3-times weekly. In some studies, doxorubicin was also administered once weekly for 6 weeks. Tumor tissue proteins were quantitated by immunohistochemistry (IHC). Interaction between doxorubicin and F + G was also studied in proliferation assays in vitro. In both tumor models, tissue staining for IGFBP-3 was predominantly nuclear. Combination of F + G significantly enhanced mouse survival, decreased nuclear IGFBP-3 and Ki67 staining, and increased apoptosis (cleaved caspase-3) staining. Kaplan-Meier survival analysis showed that a high tumor IGFBP-3 IHC score (>median), like a high Ki67 score, was significantly associated with shorter survival time, whereas a high apoptosis score was associated with prolonged survival. Studied in vitro in both cell lines, low-dose doxorubicin that had little effect alone, strongly enhanced the cytostatic effect of low-dose F + G combination. However, in both in vivo models, doxorubicin at maximum-tolerated dose neither inhibited tumor growth when administered alone, nor enhanced the significant inhibitory effect of F + G. We conclude that doxorubicin may not add benefit to the inhibitory effect of F + G unless its dose-limiting toxicity can be overcome. Nuclear IGFBP-3 appears to have potential as a prognostic marker in TNBC and could be evaluated for clinical utility.
Collapse
|
33
|
Yu J, Qin B, Moyer AM, Sinnwell JP, Thompson KJ, Copland JA, Marlow LA, Miller JL, Yin P, Gao B, Minter-Dykhouse K, Tang X, McLaughlin SA, Moreno-Aspitia A, Schweitzer A, Lu Y, Hubbard J, Northfelt DW, Gray RJ, Hunt K, Conners AL, Suman VJ, Kalari KR, Ingle JN, Lou Z, Visscher DW, Weinshilboum R, Boughey JC, Goetz MP, Wang L. Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study. Breast Cancer Res 2017; 19:130. [PMID: 29212525 PMCID: PMC5719923 DOI: 10.1186/s13058-017-0920-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
Background Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting. Methods The Breast Cancer Genome Guided Therapy Study (BEAUTY) is a prospective neoadjuvant chemotherapy (NAC) trial of stage I-III breast cancer patients treated with neoadjuvant weekly taxane+/-trastuzumab followed by anthracycline-based chemotherapy. Using percutaneous tumor biopsies (PTB), we established and characterized PDXs from both primary (untreated) and residual (treated) tumors. Tumor take rate was defined as percent of patients with the development of at least one stably transplantable (passed at least for four generations) xenograft that was pathologically confirmed as breast cancer. Results Baseline PTB samples from 113 women were implanted with an overall take rate of 27.4% (31/113). By clinical subtype, the take rate was 51.3% (20/39) in triple negative (TN) breast cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. The take rate for those with pCR did not differ from those with residual disease in TN (p = 0.999) and HER2+ (p = 0.2401) tumors. The xenografts from 28 of these 31 patients were such that at least one of the xenografts generated had the same molecular subtype as the patient. Among the 35 patients with residual tumor after NAC adequate for implantation, the take rate was 17.1%. PDX response to paclitaxel mirrored the patients’ clinical response in all eight PDX tested. Conclusions The generation of PDX models both sensitive and resistant to standard NAC is feasible and these models exhibit similar biological and drug response characteristics as the patients’ primary tumors. Taken together, these models may be useful for biomarker discovery and future drug development. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0920-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James L Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bowen Gao
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Anthony Schweitzer
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Yan Lu
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Jason Hubbard
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Donald W Northfelt
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Richard J Gray
- Department of Surgery, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Katie Hunt
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amy L Conners
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Contreras-Zárate MJ, Ormond DR, Gillen AE, Hanna C, Day NL, Serkova NJ, Jacobsen BM, Edgerton SM, Thor AD, Borges VF, Lillehei KO, Graner MW, Kabos P, Cittelly DM. Development of Novel Patient-Derived Xenografts from Breast Cancer Brain Metastases. Front Oncol 2017; 7:252. [PMID: 29164052 PMCID: PMC5673842 DOI: 10.3389/fonc.2017.00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by reimplantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor, epidermal growth factor receptor, HER2, and the basal cell marker cytokeratin 5. Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in magnetic resonance imaging-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8-12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels, and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.
Collapse
Affiliation(s)
| | - D. Ryan Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Colton Hanna
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nicole L. Day
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Britta M. Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Susan M. Edgerton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ann D. Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin O. Lillehei
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael W. Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diana M. Cittelly
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
35
|
Dhandhukia JP, Shi P, Peddi S, Li Z, Aluri S, Ju Y, Brill D, Wang W, Janib SM, Lin YA, Liu S, Cui H, MacKay JA. Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjug Chem 2017; 28:2715-2728. [PMID: 28937754 DOI: 10.1021/acs.bioconjchem.7b00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.
Collapse
Affiliation(s)
- Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Suhaas Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Dab Brill
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Siti M Janib
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering , Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 2017; 36:6627-6639. [PMID: 28783167 PMCID: PMC5702716 DOI: 10.1038/onc.2017.270] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription 3(STAT3) is an emerging target for cancer therapy. In this study, we identify Toosendanin (TSN) is an effective inhibitor of STAT3, leading to the impediment of various oncogenic processes in osteosarcoma. TSN selectively inactivates phospho-STAT3 (Tyr-705); subsequent molecular docking and in vitro SPR analysis uncover TSN directly binds to the SH2 domain of STAT3. Consequently, TSN blocks STAT3 dimerization and impairs the complex formation of STAT3 and epidermal growth factor receptor (EGFR). In an animal tumor model study, TSN is well tolerated, inhibits osteosarcoma growth and metastasis. In another osteosarcoma patient-derived xenografts (PDX) model, we find TSN triggers strong inhibitory effects on patient-derived tumors. Further studies show that TSN also displays activity against other solid tumors. Our preclinical work therefore supports that TSN acts as a novel inhibitor of STAT3 that blocks tumorigenesis in ostoesarcoma.
Collapse
|
37
|
Wang J, Zhu X, Xu X, Guo L, Shen G, Liu X, Chang C, Wang B, Yang H, Wang M. PIK3CA mutations and downstream effector p-mTOR expression: implication for prognostic factors and therapeutic targets in triple negative breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7682-7691. [PMID: 31966614 PMCID: PMC6965305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/13/2017] [Indexed: 06/10/2023]
Abstract
Although PIK3CA mutations and phosphorylated mTOR (p-mTOR) expression are two main events on PI3K/Akt/mTOR pathway, limited data has reported their roles in triple negative breast cancer (TNBC). Thus, we evaluated the associations of these two biomarkers and clinicopathological characteristics and prognosis in large Chinese TNBC patients. Immunohistochemistry (IHC) analysis was used to assess p-mTOR expression level in 218 TNBC patients. Direct sequencing was applied to detect the most important hotspot regions in exons 9 and 20 of PIK3CA gene. In the TNBC cohort, mutations were identified in 11.5% cases which were associated with basal-like subtype. The somatic point mutations were independently associated with worse overall survival (HR=0.400, 95% CI: 0.193-0.830, P=0.014). As for p-mTOR expression, 47.7% of the tumors were positive and the staining was shown in cytoplasm, nuclear and perinuclear areas. There were significant differences observed in tumor size, lymph node status, and clinical stage between p-mTOR positive and p-mTOR negative cases. Notably, we found a significant association between p-mTOR expression and PIK3CA mutations. Patients with p-mTOR staining also demonstrated shorter overall survival (HR=0.710, 95% CI: 0.514-0.980, P=0.037). Therefore, PIK3CA mutations and its downstream effector p-mTOR expression were two important regulators for activating the PI3K/Akt/mTOR pathway. Both of them could be served as adverse prognostic biomarkers and may contribute to the targeted therapy for TNBC patients with poor outcome.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Guihua Shen
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiuyun Liu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Chen Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Hongying Yang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
38
|
Kawaguchi T, Foster BA, Young J, Takabe K. Current Update of Patient-Derived Xenograft Model for Translational Breast Cancer Research. J Mammary Gland Biol Neoplasia 2017; 22:131-139. [PMID: 28451789 PMCID: PMC5511343 DOI: 10.1007/s10911-017-9378-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 01/16/2023] Open
Abstract
Despite recent advances in the treatment of patients with breast cancer (BrCa), BrCa remains the third leading cause of cancer death for women in the US due to intrinsic or acquired resistance to therapy. Continued understanding of gene expression profiling and genomic sequencing has clarified underlying intratumoral molecular heterogeneity. Recently, the patient-derived xenograft (PDX) models have emerged as a novel tool to address the issues of BrCa genomics and tumor heterogeneity, and to critically transform translational BrCa research in the preclinical setting. PDX models are generated by xenografting cancer tissue fragments obtained from patients to immune deficient mice, and can be passaged into next generations of mice. Generally, in contrast to conventional xenograft using cancer cell lines, PDXs are biologically more stable and recapitulate the individual tumor morphology, gene expression, and drug susceptibility of each patient. PDX may better model the original patient's tumor by retaining tumor heterogeneity, gene expression, and similar response to treatment. PDX models are thus thought to be more translationally relevant, especially as a drug development tool, because PDXs can capture the genetic character and heterogeneity that exists within a single patient's tumor and across a population of patients' tumors. PDX models also hold enormous potential for identifying predictive markers for therapeutic response. It has been repeatedly shown that PDX models demonstrate similar levels of activity as compared to the clinical response to therapeutic interventions. Therefore, this enables identification of therapeutic interventions that can most likely benefit a patient. This allows us to address the issues of BrCa genomics and tumor heterogeneity using PDXs in "pre-clinical" trials. Herein, we reviewed recent scientific development and future perspectives using PDX models in BrCa.
Collapse
Affiliation(s)
- Tsutomu Kawaguchi
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jessica Young
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
39
|
Huang KL, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV, Mani DR, Clauser KR, Tanioka M, Usary J, Kavuri SM, Xie L, Yoon C, Qiao JW, Wrobel J, Wyczalkowski MA, Erdmann-Gilmore P, Snider JE, Hoog J, Singh P, Niu B, Guo Z, Sun SQ, Sanati S, Kawaler E, Wang X, Scott A, Ye K, McLellan MD, Wendl MC, Malovannaya A, Held JM, Gillette MA, Fenyö D, Kinsinger CR, Mesri M, Rodriguez H, Davies SR, Perou CM, Ma C, Reid Townsend R, Chen X, Carr SA, Ellis MJ, Ding L. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 2017; 8:14864. [PMID: 28348404 PMCID: PMC5379071 DOI: 10.1038/ncomms14864] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry (MS) have enabled extensive analysis of cancer proteomes. Here, we employed quantitative proteomics to profile protein expression across 24 breast cancer patient-derived xenograft (PDX) models. Integrated proteogenomic analysis shows positive correlation between expression measurements from transcriptomic and proteomic analyses; further, gene expression-based intrinsic subtypes are largely re-capitulated using non-stromal protein markers. Proteogenomic analysis also validates a number of predicted genomic targets in multiple receptor tyrosine kinases. However, several protein/phosphoprotein events such as overexpression of AKT proteins and ARAF, BRAF, HSP90AB1 phosphosites are not readily explainable by genomic analysis, suggesting that druggable translational and/or post-translational regulatory events may be uniquely diagnosed by MS. Drug treatment experiments targeting HER2 and components of the PI3K pathway supported proteogenomic response predictions in seven xenograft models. Our study demonstrates that MS-based proteomics can identify therapeutic targets and highlights the potential of PDX drug response evaluation to annotate MS-based pathway activities. Patient-derived xenografts recapitulate major genomic signatures and transcriptome profiles of their original tumours. Here, the authors, performing proteomic and phosphoproteomic analyses of 24 breast cancer PDX models, demonstrate that druggable candidates can be identified based on a comprehensive proteogenomic profiling.
Collapse
Affiliation(s)
- Kuan-Lin Huang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Philipp Mertins
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Song Cao
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Harsha P Gunawardena
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kelly V Ruggles
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Karl R Clauser
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Maki Tanioka
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Shyam M Kavuri
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Xie
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Christopher Yoon
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jana W Qiao
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - John Wrobel
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Matthew A Wyczalkowski
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jacqueline E Snider
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Purba Singh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Beifung Niu
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Zhanfang Guo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Sam Qiancheng Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Souzan Sanati
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Emily Kawaler
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - Xuya Wang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | - Adam Scott
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Kai Ye
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael D McLellan
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Anna Malovannaya
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jason M Held
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Michael A Gillette
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016, USA
| | | | - Mehdi Mesri
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Henry Rodriguez
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Cynthia Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - R Reid Townsend
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| | - Xian Chen
- Department of Biochemistry &Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri 63108, USA.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63108, USA
| |
Collapse
|
40
|
Johanning GL, Malouf GG, Zheng X, Esteva FJ, Weinstein JN, Wang-Johanning F, Su X. Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci Rep 2017; 7:41960. [PMID: 28165048 PMCID: PMC5292751 DOI: 10.1038/srep41960] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs), which make up approximately 8% of the human genome, are overexpressed in some breast cancer cells and tissues but without regard to cancer subtype. We, therefore, analyzed TCGA RNA-Seq data to evaluate differences in expression of the HERV-K family in breast cancers of the various subtypes. Four HERV-K loci on different chromosomes were analyzed in basal, Her2E, LumA, and LumB breast cancer subtypes of 512 breast cancer patients with invasive ductal carcinoma (IDC). The results for all four loci showed higher HERV-K expression in the basal subtype, suggesting similar mechanisms of regulation regardless of locus. Expression of the HERV-K envelope gene (env) was highly significantly increased in basal tumors in comparison with the also-upregulated expression of other HERV-K genes. Analysis of reverse-phase protein array data indicated that increased expression of HERV-K is associated with decreased mutation of H-Ras (wild-type). Our results show elevation of HERV-K expression exclusively in the basal subtype of IDC breast cancer (as opposed to the other subtypes) and suggest HERV-K as a possible target for cancer vaccines or immunotherapy against this highly aggressive form of breast cancer.
Collapse
Affiliation(s)
- Gary L Johanning
- SRI International, Biosciences Division, 333 Ravenswood Ave, Menlo Park, CA, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre and Marie Curie (Paris VI), GRC5, ONCOTYPE-Uro, Institut Universitaire de Cancérologie, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco J Esteva
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Feng Wang-Johanning
- SRI International, Biosciences Division, 333 Ravenswood Ave, Menlo Park, CA, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, Busson M, Jarlier M, Radosevic-Robin N, Theillet C, Chalbos D, Pasquet JM, Pèlegrin A, Larbouret C, Robert B. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis. Clin Cancer Res 2016; 23:2806-2816. [DOI: 10.1158/1078-0432.ccr-16-1316] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/11/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
|
42
|
Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, Brisken C, Bult CJ, Cai S, Clarke RB, Dowst H, Ellis MJ, Gonzalez-Suarez E, Iggo RD, Kabos P, Li S, Lindeman GJ, Marangoni E, McCoy A, Meric-Bernstam F, Piwnica-Worms H, Poupon MF, Reis-Filho J, Sartorius CA, Scabia V, Sflomos G, Tu Y, Vaillant F, Visvader JE, Welm A, Wicha MS, Lewis MT. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 2016; 35:547-573. [PMID: 28025748 PMCID: PMC5396460 DOI: 10.1007/s10555-016-9653-x] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Collapse
Affiliation(s)
- Lacey E. Dobrolecki
- The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston TX 77030,
| | | | - Denis G. Alferez
- Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Studies, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M21 4QL, UK,
| | - Samuel Aparicio
- Dept. Path & Lab Medicine, BC Cancer Agency, 675 W10th Avenue, Vancouver V6R 3A6, Canada,
| | - Fariba Behbod
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, WHE 1005B, Kansas City, KS 66160,
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Lab 306, Hebelstrasse 20, CH-4031 Basel, Switzerland,
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV2.832 Station 19, CH-1015 Lausanne, Switzerland. Phone +41 (0)21 693 07 81, Sec: +41 (0)21 693 07 62, Fax +41 (0)21 693 07 40,
| | | | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
| | - Robert B. Clarke
- Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Studies, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M21 4QL, UK,
| | - Heidi Dowst
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston TX 77030,
| | - Matthew J. Ellis
- The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston TX 77030,
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program, PEBC, Bellvitge Institute for Biomedical Research, IDIBELL, Av.Gran Via de L'Hospitalet, 199 – 203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain, , Phone: +34 932607347, Fax: +34 932607139
| | - Richard D. Iggo
- INSERM U1218, Bergonié Cancer Institute, 229 cours de l'Argonne, 33076 Bordeaux, France,
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,
| | - Shunqiang Li
- Department of Internal Medicine, Washington University, St. Louis, MO 63130, Tel. 314-747-9311,
| | - Geoffrey J. Lindeman
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia
- Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre. Grattan St, Parkville, VIC 3050, Australia,
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, 26, rue d’Ulm, 75005 Paris - FRANCE,
| | - Aaron McCoy
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
| | - Funda Meric-Bernstam
- Departments of Investigational Cancer Therapeutics and Breast Surgical Oncology, UT M. D. Anderson Cancer Center, Houston TX 77030,
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
| | - Marie-France Poupon
- Founder and Scientific Advisor, Xentech SA, Genepole, 4 rue Pierre Fontaine, 91000 Evry, France,
| | - Jorge Reis-Filho
- Director of Experimental Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
- Affiliate Member, Human Oncology and Pathogenesis Program, and Center for Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY,
| | - Carol A. Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,
| | - Valentina Scabia
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV2.832 Station 19, CH-1015 Lausanne, Switzerland,
| | - George Sflomos
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), SV2.832 Station 19, CH-1015 Lausanne, Switzerland.
| | - Yizheng Tu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030,
| | - François Vaillant
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia,
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia,
| | - Alana Welm
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112,
| | - Max S. Wicha
- Madeline and Sidney Forbes Professor of Oncology, Director, Forbes Institute for Cancer Discovery, NCRC 26-335S, SPC 2800, 2800 Plymouth Rd., Ann Arbor, MI 48109-2800, Phone: (734)763-1744, Fax: (734)764-1228, http://www.med.umich.edu/wicha-lab/index.html,
| | - Michael T. Lewis
- The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston TX 77030, , TEL: 713-798-3296, FAX: 713-798-1659
| |
Collapse
|
43
|
Hanna C, Kwok L, Finlay-Schultz J, Sartorius CA, Cittelly DM. Labeling of Breast Cancer Patient-derived Xenografts with Traceable Reporters for Tumor Growth and Metastasis Studies. J Vis Exp 2016. [PMID: 27929464 DOI: 10.3791/54944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The use of preclinical models to study tumor biology and response to treatment is central to cancer research. Long-established human cell lines, and many transgenic mouse models, often fail to recapitulate the key aspects of human malignancies. Thus, alternative models that better represent the heterogeneity of patients' tumors and their metastases are being developed. Patient-derived xenograft (PDX) models in which surgically resected tumor samples are engrafted into immunocompromised mice have become an attractive alternative as they can be transplanted through multiple generations,and more efficiently reflect tumor heterogeneity than xenografts derived from human cancer cell lines. A limitation to the use of PDXs is that they are difficult to transfect or transduce to introduce traceable reporters or to manipulate gene expression. The current protocol describes methods to transduce dissociated tumor cells from PDXs with high transduction efficiency, and the use of labeled PDXs for experimental models of breast cancer metastases. The protocol also demonstrates the use of labeled PDXs in experimental metastasis models to study the organ-colonization process of the metastatic cascade. Metastases to different organs can be easily visualized and quantified using bioluminescent imaging in live animals, or GFP expression during dissection and in excised organs. These methods provide a powerful tool to extend the use of multiple types of PDXs to metastasis research.
Collapse
Affiliation(s)
- Colton Hanna
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus
| | - Letty Kwok
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus
| | - Jessica Finlay-Schultz
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus
| | - Carol A Sartorius
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus
| | - Diana M Cittelly
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus;
| |
Collapse
|
44
|
Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 2016; 18:e18. [DOI: 10.1017/erm.2016.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours characterised by lack of expression of oestrogen-, progesterone- and human epidermal growth factor receptors. TNBC, which represents approximately 15% of all mammary tumours, has a poor prognosis because of an aggressive behaviour and the lack of specific treatment. Accordingly, TNBC has become a major focus of research into breast cancer and is now classified into several molecular subtypes, each with a different prognosis. Pathological angiogenesis occurs at a late stage in the proliferation of TNBC and is associated with invasion and metastasis; there is an association with metabolic syndrome. Semaphorins are a versatile family of proteins with multiple roles in angiogenesis, tumour growth and metastasis and may represent a clinically useful focus for therapeutic targeting in this type of breast cancer. Another important field of investigation into the control of pathological angiogenesis is related to the expression of noncoding RNA (ncRNA) – these molecules can be considered as a therapeutic target or as a biomarker. Several molecular agents for intervening in the activity of different signalling pathways are being explored in TNBC, but none has so far proved effective in clinical trials and the disease continues to pose a defining challenge for clinical management as well as innovative cancer research.
Collapse
|
45
|
Massihnia D, Galvano A, Fanale D, Perez A, Castiglia M, Incorvaia L, Listì A, Rizzo S, Cicero G, Bazan V, Castorina S, Russo A. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget 2016; 7:60712-60722. [PMID: 27474173 PMCID: PMC5312414 DOI: 10.18632/oncotarget.10858] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is one of the most widespread carcinoma and one of the main causes of cancer-related death worldwide, especially in women aged between 35 and 75 years. Among the different subtypes, triple negative breast cancer (TNBC) is characterized by the total absence of the estrogen-receptor (ER) and progesteron-receptor (PR) expression as well as the lack of human epidermal growth factor receptor 2 (HER2) overexpression or gene amplification. These biological characteristics confer to TNBC a higher aggressiveness and relapse risk along with poorer prognosis compared to other subtypes. Indeed, 5-years survival rate is still low and almost all patients die, despite any adjuvant treatment which at moment represents the heading pharmacological approach. To date, several clinical trials have been designed to investigate the potential role of some molecular markers, such as VEGF, EGFR, Src and mTOR, for targeted treatments in TNBC. In fact, many inhibitors of the PI3K/AKT/mTOR pathway, frequently de-regulated in TNBC, are acquiring a growing interest and several inhibitors are in preclinical development or already in early phase clinical trials. In this Review, we investigated the role of the PI3K/AKT/mTOR pathway in TNBC patients, by summarizing the molecular features that led to the distinction of different histotypes of TNBC. Furthermore, we provided an overview of the inhibition mechanisms of the mTOR and PI3K/AKT signaling pathways, highlighting the importance of integrating biological and clinical data for the development of mTOR inhibitors in order to implement targeted therapies for TNBC patients.
Collapse
Affiliation(s)
- Daniela Massihnia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Sergio Castorina
- Fondazione Mediterranea “G.B. Morgagni”, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
46
|
Ocampo-Vega R, Sanchez-Ante G, de Luna MA, Vega R, Falcón-Morales LE, Sossa H. Improving pattern classification of DNA microarray data by using PCA and logistic regression. INTELL DATA ANAL 2016. [DOI: 10.3233/ida-160845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ricardo Ocampo-Vega
- Data Visualization and Pattern Recognition Lab, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, México
| | - Gildardo Sanchez-Ante
- Data Visualization and Pattern Recognition Lab, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, México
| | - Marco A. de Luna
- Data Visualization and Pattern Recognition Lab, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, México
| | - Roberto Vega
- Data Visualization and Pattern Recognition Lab, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, México
| | - Luis E. Falcón-Morales
- Data Visualization and Pattern Recognition Lab, Tecnológico de Monterrey, Campus Guadalajara, Zapopan, México
| | - Humberto Sossa
- Instituto Politécnico Nacional-CIC, México, Distrito Federal, México
| |
Collapse
|
47
|
Pistelli M, Ballatore Z, Santinelli A, Biscotti T, Piva F, Occhipinti G, Della Mora A, Pagliacci A, Battelli N, Bastianelli L, De Lisa M, Bracci R, Maccaroni E, Berardi R, Cascinu S. Phosphorylated mTOR is associated to androgen receptor expression in early triple-negative breast cancer. Oncol Rep 2016; 36:755-62. [PMID: 27350136 DOI: 10.3892/or.2016.4903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
The significance of phosphorylated mTOR (p-mTOR) expression is unknown in triple-negative breast carcinoma (TNBC). The aims of the present study were to assess the expression of p-mTOR in early TNBC and to evaluate possible correlations between androgen receptor (AR) expression, clinicopathological parameters and disease outcome. Between January 2009 and December 2013, all consecutive patients who were diagnosed and completed the treatment of invasive TNBC at our institution were eligible for this analysis. Patients with stage IV disease were excluded. The evaluation of p-mTOR immunohistochemical staining was semi-quantitatively considering both the percentage of positive tumor cells (range, 0-100%) and staining intensity (range, 0-3+). Ninety-eight TNBC patients were included. Approximately 33% of cases were p-mTOR positive and there was no association between positive immunostaining for p-mTOR and DFS (p=0.74) and OS (p=0.81). p-mTOR positivity was associated with small tumor size (p=0.03) and AR expression (p=0.04). High expression of p-mTOR may drive tumor proliferation in almost one third of TNBC. The biological association between mTOR activation and AR pathway suggests that there may exist a subgroup of TNBC in which the combination of both AR antagonism and mTOR inhibition should have a synergistic effect on cell growth and tumor progression.
Collapse
Affiliation(s)
- M Pistelli
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Z Ballatore
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - A Santinelli
- Department of Pathology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - T Biscotti
- Department of Pathology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - F Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - G Occhipinti
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - A Della Mora
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - A Pagliacci
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - N Battelli
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - L Bastianelli
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - M De Lisa
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - R Bracci
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - E Maccaroni
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - R Berardi
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - S Cascinu
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
48
|
Activation of endogenous human stem cell-associated retroviruses (SCARs) and therapy-resistant phenotypes of malignant tumors. Cancer Lett 2016; 376:347-59. [PMID: 27084523 DOI: 10.1016/j.canlet.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 02/04/2023]
Abstract
Recent reports revealed consistent activation of specific endogenous retroviral elements in human preimplantation embryos and embryonic stem cells. Activity of stem cell associated retroviruses (SCARs) has been implicated in seeding thousands of human-specific regulatory sequences in the hESC genome. Activation of specific SCARs has been demonstrated in patients diagnosed with multiple types of cancer, autoimmune diseases, and neurodegenerative disorders, and appears associated with clinically lethal therapy resistant death-from-cancer phenotypes in a sub-set of cancer patients diagnosed with different types of malignant tumors. A hallmark feature of human-specific SCAR integration sites is deletions of ancestral DNA. Analysis of human-specific genetic loci of SCARs' stemness networks in tumor samples of TCGA cohorts representing 29 cancer types suggests that this approach may facilitate identification of pan-cancer genomic signatures of clinically-lethal disease defined by the presence of somatic non-silent mutations, gene-level copy number changes, and transcripts and proteins' expression of SCAR-regulated host genes. Present analyses indicate that multiple lines of strong circumstantial evidence support the hypothesis that activation of SCARs' networks may play an important role in cancer progression and metastasis, perhaps contributing to the emergence of clinically-lethal therapy-resistant death-from-cancer phenotypes.
Collapse
|
49
|
Zhou Y, Zhao RH, Tseng KF, Li KP, Lu ZG, Liu Y, Han K, Gan ZH, Lin SC, Hu HY, Min DL. Sirolimus induces apoptosis and reverses multidrug resistance in human osteosarcoma cells in vitro via increasing microRNA-34b expression. Acta Pharmacol Sin 2016; 37:519-29. [PMID: 26924291 DOI: 10.1038/aps.2015.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
AIM Multi-drug resistance poses a critical bottleneck in chemotherapy. Given the up-regulation of mTOR pathway in many chemoresistant cancers, we examined whether sirolimus (rapamycin), a first generation mTOR inhibitor, might induce human osteosarcoma (OS) cell apoptosis and increase the sensitivity of OS cells to anticancer drugs in vitro. METHODS Human OS cell line MG63/ADM was treated with sirolimus alone or in combination with doxorubicin (ADM), gemcitabine (GEM) or methotrexate (MTX). Cell proliferation and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. MiRNAs in the cells were analyzed with miRNA microarray. The targets of miR-34b were determined based on TargetScan analysis and luciferase reporter assays. The expression of relevant mRNA and proteins was measured using qRT-PCR and Western blotting. MiR-34, PAK1 and ABCB1 levels in 40 tissue samples of OS patients were analyzed using qRT-PCR and in situ hybridization assays. RESULTS Sirolimus (1-100 nmol/L) dose-dependently suppressed the cell proliferation (IC50=23.97 nmol/L) and induced apoptosis. Sirolimus (10 nmol/L) significantly sensitized the cells to anticancer drugs, leading to decreased IC50 values of ADM, GEM and MTX (from 25.48, 621.41 and 21.72 μmol/L to 4.93, 73.92 and 6.77 μmol/L, respectively). Treatment of with sirolimus increased miR-34b levels by a factor of 7.5 in the cells. Upregulation of miR-34b also induced apoptosis and increased the sensitivity of the cells to the anticancer drugs, whereas transfection with miR-34b-AMO, an inhibitor of miR-34b, reversed the anti-proliferation effect of sirolimus. Two key regulators of cell cycle, apoptosis and multiple drug resistance, PAK1 and ABCB1, were demonstrated to be the direct targets of miR-34b. In 40 tissue samples of OS patients, significantly higher miR-34 ISH score and lower PAK5 and ABCB1 scores were detected in the chemo-sensitive group. CONCLUSION Sirolimus increases the sensitivity of human OS cells to anticancer drugs in vitro by up-regulating miR-34b interacting with PAK1 and ABCB1. A low miR-34 level is an indicator of poor prognosis in OS patients.
Collapse
|
50
|
Cavalloni G, Peraldo-Neia C, Sassi F, Chiorino G, Sarotto I, Aglietta M, Leone F. Establishment of a patient-derived intrahepatic cholangiocarcinoma xenograft model with KRAS mutation. BMC Cancer 2016; 16:90. [PMID: 26868125 PMCID: PMC4750214 DOI: 10.1186/s12885-016-2136-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/07/2016] [Indexed: 12/30/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is an aggressive, highly lethal tumors and lacks of effective chemo and targeted therapies. Cell lines and animal models, even partially reflecting tumor characteristics, have limits to study ICC biology and drug response. In this work, we created and characterized a novel ICC patient-derived xenograft (PDX) model of Italian origin. Methods Seventeen primary ICC tumors derived from Italian patients were implanted into NOD (Non-Obese Diabetic)/Shi-SCID (severe combined immunodeficient) mice. To verify if the original tumor characteristics were maintained in PDX, immunohistochemical (cytokeratin 7, 17, 19, and epithelial membrane antigen) molecular (gene and microRNA expression profiling) and genetic analyses (comparative genomic hybridization array, and mutational analysis of the kinase domain of EGFR coding sequence, from exons 18 to 21, exons 2 to 4 of K-RAS, exons 2 to 4 of N-RAS, exons 9 and 20 of PI3KCA, and exon 15 of B-RAF) were performed after tumor stabilization. Results One out of 17 (5.8 %) tumors successfully engrafted in mice. A high molecular and genetic concordance between primary tumor (PR) and PDX was confirmed by the evaluation of biliary epithelial markers, tissue architecture, genetic aberrations (including K-RAS G12D mutation), and transcriptomic and microRNA profiles. Conclusions For the first time, we established a new ICC PDX model which reflects the histology and genetic characteristics of the primary tumor; this model could represent a valuable tool to understand the tumor biology and the progression of ICC as well as to develop novel therapies for ICC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2136-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Caterina Peraldo-Neia
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Francesco Sassi
- Unit of Molecular Pharmacology, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy.
| | - Ivana Sarotto
- Fondazione del Piemonte per l'Oncologia (FPO), Unit of Pathology, Candiolo Cancer Institute-IRCCS, Candiolo, Italy.
| | - Massimo Aglietta
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy. .,Oncology Department, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| | - Francesco Leone
- Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute-IRCCS, Candiolo, Italy. .,Oncology Department, Candiolo Cancer Institute-IRCCS, University of Turin Medical School, Candiolo, Italy.
| |
Collapse
|