1
|
Yang M, Bai M, Zhuang Y, Lu S, Ge Q, Li H, Deng Y, Wu H, Xu X, Niu F, Dong X, Zhang B, Liu B. High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury. Neural Regen Res 2025; 20:2611-2623. [PMID: 39314167 DOI: 10.4103/nrr.nrr-d-23-01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00023/figure1/v/2024-11-05T132919Z/r/image-tiff Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury, the fundamental regulatory and functional mechanisms remain insufficiently understood. As potent anti-inflammatory agents, the use of glucocorticoids in traumatic brain injury is still controversial, and their regulatory effects on microglial polarization are not yet known. In the present study, we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action. In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization. Lipopolysaccharide, dexamethasone, RU486 (a glucocorticoid receptor antagonist), and ruxolitinib (a Janus kinase 1 antagonist) were administered. RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone. The Morris water maze, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence and confocal microscopy analysis, and TUNEL, Nissl, and Golgi staining were performed to investigate our hypothesis. High-throughput sequencing results showed that arginase 1, a marker of M2 microglia, was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at 3 days post-traumatic brain injury. Thus dexamethasone inhibited M1 and M2 microglia, with a more pronounced inhibitory effect on M2 microglia in vitro and in vivo . Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury. Additionally, glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death, and also decreased the density of dendritic spines. A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway. Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia, which plays an anti-inflammatory role. In contrast, inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury. Dexamethasone may exert its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Mengshi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Bai
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Yuan Zhuang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghua Lu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Ge
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Deng
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongbin Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xinlong Dong
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurotrauma and Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Gurses ME, Ulgen M, Gökalp E, Gecici NN, Gungor A, Türe H, Türe U. Medical management of chronic subdural hematoma with low-dose hydrocortisone: a case series. Neurosurg Rev 2024; 47:509. [PMID: 39212781 DOI: 10.1007/s10143-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Chronic subdural hematomas (cSDH) are often managed with a burr-hole craniostomy and drainage, but surgery is associated with elevated mortality, morbidity, and recurrence. Despite reports of steroid use for such patients, its efficacy and feasibility are still debated. We present our patient series treated with low-dose hydrocortisone. We retrospectively reviewed data from patients treated with hydrocortisone between 2017 and 2023. Demographics, clinical and radiological data were collected. Of 27 patients identified, nine required a burr-hole craniotomy for an average volume of 120.23 cm3, average midline shift of 9 mm, and neurological deficits. Eighteen met the criteria for inclusion. The mean age was 78.5 years; 13 were male. None had severe symptoms requiring urgent intervention. Except for one with a Karnofsky Performance Scale score of 70, all could maintain normal activity before treatment. The mean baseline volume was 52.6 cm3. Midline shift, present in six, averaged 6.8 mm. Patients underwent treatment for an average of 5.15 months. Nine had complete resolution within 3 months, while nine required longer treatment, including one who needed 9 months for a re-bleed after a fall. Paired t-tests indicated significant reductions in hematoma volumes at the second week (p = 0.01), first month (p < 0.0001), and third month (p < 0.0001) of treatment. No complications occurred and the post-treatment Karnofsky scores ranged from 90 to 100. Treatment for cSDH should be tailored to the patient. Low-dose hydrocortisone is safe and effective in asymptomatic patients, those with mild to moderate symptoms, and those who are either unsuitable for or decline surgical intervention.
Collapse
Affiliation(s)
- Muhammet Enes Gurses
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Türkiye
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA
| | - Meric Ulgen
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Türkiye
| | - Elif Gökalp
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, USA
- Department of Neurosurgery, Ankara University, Ankara, Türkiye
| | - Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Abuzer Gungor
- Department of Neurosurgery, Istinye University, Istanbul, Türkiye
| | - Hatice Türe
- Department of Anesthesiology and Reanimation, Yeditepe University School of Medicine, Istanbul, Türkiye
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
3
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
4
|
Hsieh KL, Sun TB, Huang KH, Lin CH, Tang LY, Liu CL, Chao CM, Chang CP. Hyperbaric oxygen preconditioning normalizes scrotal temperature, sperm quality, testicular structure, and erectile function in adult male rats subjected to exertional heat injury. Mol Cell Endocrinol 2024; 584:112175. [PMID: 38341020 DOI: 10.1016/j.mce.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Testicular hyperthermia has been noted in men who work in high ambient temperatures. Scrotal temperatures above the normal range caused germ cell loss in the testes and resulted in male subfertility. In adult male rats, exercising at a higher environmental temperature (36 °C with relative humidity of 50%, 52 min) caused exertional heat stroke (EHS) characterized by scrotal hyperthermia, impaired sperm quality, dysmorphology in testes, prostates and bladders, and erectile dysfunction. Here, we aim to ascertain whether hyperbaric oxygen preconditioning (HBOP: 100% O2 at 2.0 atm absolute [ATA] for 2 h daily for 14 days consequently before the onset of EHS) is able to prevent the problem of EHS-induced sterility, testes, prostates, and bladders dysmorphology and erectile dysfunction. At the end of exertional heat stress compared to normobaric air (NBA or non-HBOP) rats, the HBOP rats exhibited lower body core temperature (40 °C vs. 43 °C), lower scrotal temperature (34 °C vs. 36 °C), lower neurological severity scores (2.8 vs. 5.8), higher erectile ability, (5984 mmHg-sec vs. 3788 mmHg-sec), higher plasma testosterone (6.8 ng/mL vs. 3.5 ng/mL), lower plasma follicle stimulating hormone (196.3 mIU/mL vs. 513.8 mIU/mL), lower plasma luteinizing hormone (131 IU/L vs. 189 IU/L), lower plasma adrenocorticotropic hormone (5136 pg/mL vs. 6129 pg/mL), lower plasma corticosterone (0.56 ng/mL vs. 1.18 ng/mL), lower sperm loss and lower values of histopathological scores for epididymis, testis, seminal vesicle, prostate, and bladder. Our data suggest that HBOP reduces body core and scrotal hyperthermia and improves sperm loss, testis/prostate/bladder dysmorphology, and erectile dysfunction after EHS in rats.
Collapse
Affiliation(s)
- Kun-Lin Hsieh
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tzong-Bor Sun
- Department of Hyperbaric Oxygen Medicine, Chi-Mei Medical Center, Tainan, Taiwan; Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Kuan-Hua Huang
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ling-Yu Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Chien-Liang Liu
- Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
5
|
Long Y, Zhao Z, Xie W, Shi J, Yang F, Zhu D, Jiang P, Tang Q, Ti Z, Jiang B, Yang X, Gao G, Qi W. Kallistatin leads to cognition impairment via downregulating glutamine synthetase. Pharmacol Res 2024; 202:107145. [PMID: 38492829 DOI: 10.1016/j.phrs.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.
Collapse
Affiliation(s)
- Yanlan Long
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanting Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Zhu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First People Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qilong Tang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhou Ti
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
6
|
Mi L, Min X, Shi M, Liu L, Zhang Y, Zhu Y, Li P, Chai Y, Chen F, Deng Q, Zhang S, Zhang J, Chen X. Neutrophil extracellular traps aggravate neuronal endoplasmic reticulum stress and apoptosis via TLR9 after traumatic brain injury. Cell Death Dis 2023; 14:374. [PMID: 37365190 DOI: 10.1038/s41419-023-05898-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis play an important role during secondary brain damage after traumatic brain injury (TBI). Increased neutrophil extracellular traps (NETs) formation has been demonstrated to be associated with neurological damage after TBI. However, the correlation between ER stress and NETs remains unclear, and the specific function of NETs in neurons has not been defined. In this study, we found that the levels of NETs circulating biomarkers were remarkably elevated in the plasma of TBI patients. We then inhibited NETs formation by peptidylarginine deiminase 4 (PAD4, a critical enzyme for NETs formation) deficiency and discovered that ER stress activation and ER stress-mediated neuronal apoptosis were reduced. The degradation of NETs via DNase I showed similar outcomes. Furthermore, overexpression of PAD4 aggravated neuronal ER stress and ER stress-associated apoptosis, while TLR9 antagonist administration abrogated the damage caused by NETs. In addition to in vivo experiments, in vitro experiments revealed that treatment with a TLR9 antagonist alleviated NETs-induced ER stress and apoptosis in HT22 cells. Collectively, our results indicated that ER stress as well as the accompanying neuronal apoptosis can be ameliorated by disruption of NETs and that suppression of the TLR9-ER stress signaling pathway may contribute to positive outcomes after TBI.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xiaobin Min
- Department of Neurosurgery, Baodi Clinical College, Tianjin Medical University, Baodi, Tianjin, P.R. China
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yanfeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Peng Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Fanglian Chen
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
7
|
Ruan F, Chen J, Yang J, Wang G. MILD TRAUMATIC BRAIN INJURY ATTENUATES PNEUMONIA-INDUCED LUNG INJURY BY MODULATIONS OF ALVEOLAR MACROPHAGE BACTERICIDAL ACTIVITY AND M1 POLARIZATION. Shock 2022; 58:400-407. [PMID: 36166827 PMCID: PMC9712263 DOI: 10.1097/shk.0000000000001989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT Traumatic brain injury is one of the main causes of death and disability worldwide, and results in multisystem complications. However, the mechanism of mild traumatic brain injury (MTBI) on lung injury remains unclear. In this study, we used a murine model of MTBI and pneumonia ( Pseudomonas aeruginosa ;) to explore the relationship between these conditions and the underlying mechanism. Methods: Mice (n = 104) were divided into control, MTBI, pneumonia, and MTBI + pneumonia groups. MTBI was induced by the weight-drop method. Pneumonia was induced by intratracheal injection with P. aeruginosa Xen5 strain. Animals were killed 24 h after bacterial challenging. Histological, cellular, and molecular indices of brain and lung injury were assessed using various methods. Results: Mice in both the MTBI and pneumonia groups had more Fluoro-Jade C-positive neurons than did the controls ( P < 0.01), but mice in the MTBI + pneumonia group had fewer Fluoro-Jade C-positive cells than did the pneumonia group ( P < 0.01). The MTBI + pneumonia mice showed decreased bacterial load ( P < 0.05), reduced lung injury score and pulmonary permeability ( P < 0.01), less inflammatory cells, and lower levels of proinflammatory cytokines (TNF-α and IL-1β; P < 0.01) when compared with the pneumonia group. Molecular analysis indicated lower levels of phosphorylated nuclear factor-κB in the lung of MTBI + pneumonia mice compared with the pneumonia group ( P < 0.01). Furthermore, alveolar macrophages from MTBI mice exhibited enhanced bactericidal capacity compared with those from controls ( P < 0.01). Moreover, MTBI + pneumonia mice exhibited less CD86-positive M1 macrophages compared with the pneumonia group ( P < 0.01). Conclusions: MTBI attenuates pneumonia-induced acute lung injury through the modulation of alveolar macrophage bactericidal capacity and M1 polarization in bacterial pneumonia model.
Collapse
Affiliation(s)
- Feng Ruan
- Department of Emergency Medicine, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| | - Jing Chen
- Department of Ophthalmology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Jianxin Yang
- Department of Emergency Medicine, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, 13210, USA
| |
Collapse
|
8
|
Shi M, Liu L, Min X, Mi L, Chai Y, Chen F, Wang J, Yue S, Zhang J, Deng Q, Chen X. Activation of Sigma-1 Receptor Alleviates ER-Associated Cell Death and Microglia Activation in Traumatically Injured Mice. J Clin Med 2022; 11:2348. [PMID: 35566476 PMCID: PMC9102000 DOI: 10.3390/jcm11092348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is associated with neuroinflammation and subsequent cell death following traumatic brain injury (TBI). The sigma-1 receptor (Sig-1R) acts as a dynamic pluripotent modulator of fundamental cellular processes at the mitochondria-associated membranes (MAMs). The activation of Sig-1R is neuroprotective in a variety of central nervous system diseases, but its impact on ER stress induced by traumatic brain injury is not known. This study investigated the role of Sig-1R in regulating the ER stress-mediated microglial activation and programmed cell death (apoptosis and pyroptosis) induced by TBI. METHODS Ten human brain tissues were obtained from The Tianjin Medical University General Hospital. Four normal brain tissues were obtained from patients who underwent surgery for cerebral vascular malformation, through which peripheral brain tissues were isolated. Six severe TBI tissues were from patients with brain injury caused by accidents. None of the patients had any other known neurological disorders. Mice with Sig-1R deletion using CRISPR technology were subjected to controlled cortical impact-induced injury. In parallel, wild type C57BL/6J mice were analyzed for outcomes after they were exposed to TBI and received the Sig-1R agonist PRE-084 (10 mg/kg daily for three days) either alone or in combination with the Sig-1R antagonist BD-1047 (10 mg/kg). RESULTS The expression of Sig-1R and the 78 kDa glucose-regulated protein, a known UPR marker, were significantly elevated in the injured cerebral tissues from TBI patients and mice subjected to TBI. PRE-084 improved neurological function, restored the cerebral cortical perfusion, and ameliorated and brain edema in C57BL/6J mice subjected to TBI by reducing endoplasmic reticulum stress-mediated apoptosis, pyroptosis, and microglia activation. The effect of PRE-084 was abolished in mice receiving Sig-1R antagonist BD-1047. CONCLUSIONS ER stress and UPR were upregulated in TBI patients and mice subjected to TBI. Sig-1R activation by the exogenous activator PRE-084 attenuated microglial cells activation, reduced ER stress-associated programmed cell death, and restored cerebrovascular and neurological function in TBI mice.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xiaobin Min
- Baodi Clinical College, Tianjin Medical University, Tianjin 300052, China;
| | - Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yan Chai
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianhao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| |
Collapse
|
9
|
Chen X, Mi L, Gu G, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang JN. Dysfunctional ER-mitochondrion coupling is associated with ER stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma 2022; 39:560-576. [PMID: 35018820 DOI: 10.1089/neu.2021.0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes (MAMs) and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damages of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact (CCI) device. We analyzed the physical ER-mitochondrion contacts in the perilesional cortex using transmission electron microscopy, western blot, and immunofluorescence. We specifically measured changes in the production of reactive oxygen species (ROS) in mitochondria, the unfolded protein response (UPR), the neuroinflammatory response, and ER stress-mediated apoptosis in the traumatic injured cerebral tissue. A modified neurological severity score (mNSS) was used to evaluate neurological function in the sTBI mice. We found that sTBI induced significant reorganizations of MEMs in the cerebral cortex within the first 24 hr post-injury. This ER-mitochondrion coupling was enhanced, reaching its peak level at 6 hrs post-sTBI. This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (IP3R1, VDAC1, GRP75, Sigma-1R), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Furthermore, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
Collapse
Affiliation(s)
- Xin Chen
- Tianjin Medical University General Hospital, 117865, Neurosurgery, 154 Anshan Road, Heping District, Tianjin, Tianjin, China, 300052.,Tianjin Neurological Institute, 230967, 154 Anshan Road, Heping District, Tianjin, China, 300052;
| | - Liang Mi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Gang Gu
- Tianjin Medical University General Hospital, 117865, Tianjin, Tianjin, China;
| | - Xiangliang Gao
- Tianjin Medical University General Hospital, 117865, Department of Neurosurgery, Tianjin, Tianjin, China;
| | - Mingming Shi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Yan Chai
- Tianjin Neurological Institute, 230967, Tianjin, China;
| | - Fanglian Chen
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Weidong Yang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Jian-Ning Zhang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| |
Collapse
|
10
|
Niu F, Zhang B, Feng J, Mao X, Xu XJ, Dong JQ, Liu BY. Protein profiling identified mitochondrial dysfunction and synaptic abnormalities after dexamethasone intervention in rats with traumatic brain injury. Neural Regen Res 2021; 16:2438-2445. [PMID: 33907032 PMCID: PMC8374556 DOI: 10.4103/1673-5374.313047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dexamethasone has been widely used after various neurosurgical procedures due to its anti-inflammatory property and the abilities to restore vascular permeability, inhibit free radicals, and reduce cerebrospinal fluid production. According to the latest guidelines for the treatment of traumatic brain injury in the United States, high-dose glucocorticoids cause neurological damage. To investigate the reason why high-dose glucocorticoids after traumatic brain injury exhibit harmful effect, rat controlled cortical impact models of traumatic brain injury were established. At 1 hour and 2 days after surgery, rat models were intraperitoneally administered dexamethasone 10 mg/kg. The results revealed that 31 proteins were significantly upregulated and 12 proteins were significantly downregulated in rat models of traumatic brain injury after dexamethasone treatment. The Ingenuity Pathway Analysis results showed that differentially expressed proteins were enriched in the mitochondrial dysfunction pathway and synaptogenesis signaling pathway. Western blot analysis and immunohistochemistry results showed that Ndufv2, Maob and Gria3 expression and positive cell count in the dexamethasone-treated group were significantly greater than those in the model group. These findings suggest that dexamethasone may promote a compensatory increase in complex I subunits (Ndufs2 and Ndufv2), increase the expression of mitochondrial enzyme Maob, and upregulate synaptic-transmission-related protein Gria3. These changes may be caused by nerve injury after traumatic brain injury treatment by dexamethasone. The study was approved by Institutional Ethics Committee of Beijing Neurosurgical Institute (approval No. 201802001) on June 6, 2018.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Feng
- Key Laboratory of Central Nervous System Injury Research, Center for Brain Tumor, Beijing Institute of Brain Disorders, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiao-Jian Xu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jin-Qian Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bai-Yun Liu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; Center for Nerve Injury and Repair, Beijing Institute of Brain Disorders; China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
11
|
Zhang B, Bai M, Xu X, Yang M, Niu F, Gao F, Liu B. Corticosteroid receptor rebalancing alleviates critical illness-related corticosteroid insufficiency after traumatic brain injury by promoting paraventricular nuclear cell survival via Akt/CREB/BDNF signaling. J Neuroinflammation 2020; 17:318. [PMID: 33100225 PMCID: PMC7586672 DOI: 10.1186/s12974-020-02000-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously found that high-dose methylprednisolone increased the incidence of critical illness-related corticosteroid insufficiency (CIRCI) and mortality in rats with traumatic brain injury (TBI), whereas low-dose hydrocortisone but not methylprednisolone exerted protective effects. However, the receptor-mediated mechanism remains unclear. This study investigated the receptor-mediated mechanism of the opposite effects of different glucocorticoids on the survival of paraventricular nucleus (PVN) cells and the incidence of CIRCI after TBI. METHODS Based on controlled cortical impact (CCI) and treatments, male SD rats (n = 300) were randomly divided into the sham, CCI, CCI + GCs (methylprednisolone 1 or 30 mg/kg/day; corticosterone 1 mg/kg/day), CCI + methylprednisolone+RU486 (RU486 50 mg/kg/day), and CCI + corticosterone+spironolactone (spironolactone 50 mg/kg/day) groups. Blood samples were collected 7 days before and after CCI. Brain tissues were collected on postinjury day 7 and processed for histology and western blot analysis. RESULTS We examined the incidence of CIRCI, mortality, apoptosis in the PVN, the receptor-mediated mechanism, and downstream signaling pathways on postinjury day 7. We found that methylprednisolone and corticosterone exerted opposite effects on the survival of PVN cells and the incidence of CIRCI by activating different receptors. High-dose methylprednisolone increased the nuclear glucocorticoid receptor (GR) level and subsequently increased cell loss in the PVN and the incidence of CIRCI. In contrast, low-dose corticosterone but not methylprednisolone played a protective role by upregulating mineralocorticoid receptor (MR) activation. The possible downstream receptor signaling mechanism involved the differential effects of GR and MR on the activity of the Akt/CREB/BDNF pathway. CONCLUSION The excessive activation of GR by high-dose methylprednisolone exacerbated apoptosis in the PVN and increased CIRCI. In contrast, refilling of MR by corticosterone protects PVN neurons and reduces the incidence of CIRCI by promoting GR/MR rebalancing after TBI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Bai
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaojian Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Beijing Key Laboratory of Central Nervous System Injury and Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
12
|
Chen X, Chai Y, Wang SB, Wang JC, Yue SY, Jiang RC, Zhang JN. Risk factors for corticosteroid insufficiency during the sub-acute phase of acute traumatic brain injury. Neural Regen Res 2020; 15:1259-1265. [PMID: 31960811 PMCID: PMC7047797 DOI: 10.4103/1673-5374.272611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypothalamic-pituitary-adrenal axis dysfunction may lead to the occurrence of critical illness-related corticosteroid insufficiency. Critical illness-related corticosteroid insufficiency can easily occur after traumatic brain injury, but few studies have examined this occurrence. A multicenter, prospective, cohort study was performed to evaluate the function of the hypothalamic-pituitary-adrenal axis and the incidence of critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury. One hundred and forty patients with acute traumatic brain injury were enrolled from the neurosurgical departments of three tertiary-level hospitals in China, and the critical illness-related corticosteroid insufficiency incidence, critical-illness-related corticosteroid insufficiency-related risk factors, complications, and 28-day mortality among these patients was recorded. Critical illness-related corticosteroid insufficiency was diagnosed in patients with plasma total cortisol levels less than 10 μg/dL (275.9 nM) on post-injury day 4 or when serum cortisol was insufficiently suppressed (less than 50%) during a dexamethasone suppression test on post-injury day 5. The results demonstrated that critical illness-related corticosteroid insufficiency occurred during the sub-acute phase of traumatic brain injury in 5.6% of patients with mild injury, 22.5% of patients with moderate injury, and 52.2% of patients with severe injury. Traumatic brain injury-induced critical illness-related corticosteroid insufficiency was strongly correlated to injury severity during the sub-acute stage of traumatic brain injury. Traumatic brain injury patients with critical illness-related corticosteroid insufficiency frequently presented with hemorrhagic cerebral contusions, diffuse axonal injury, brain herniation, and hypotension. Differences in the incidence of hospital-acquired pneumonia, gastrointestinal bleeding, and 28-day mortality were observed between patients with and without critical illness-related corticosteroid insufficiency during the sub-acute phase of traumatic brain injury. Hypotension, brain-injury severity, and the types of traumatic brain injury were independent risk factors for traumatic brain injury-induced critical illness-related corticosteroid insufficiency. These findings indicate that critical illness-related corticosteroid insufficiency is common during the sub-acute phase of traumatic brain injury and is strongly associated with poor prognosis. The dexamethasone suppression test is a practical assay for the evaluation of hypothalamic-pituitary-adrenal axis function and for the diagnosis of critical illness-related corticosteroid insufficiency in patients with traumatic brain injury, especially those with hypotension, hemorrhagic cerebral contusions, diffuse axonal injury, and brain herniation. Sub-acute infection of acute traumatic brain injury may be an important factor associated with the occurrence and development of critical illness-related corticosteroid insufficiency. This study protocol was approved by the Ethics Committee of General Hospital of Tianjin Medical University, China in December 2011 (approval No. 201189).
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shao-Bo Wang
- Department of Neurosurgery, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Jia-Chong Wang
- Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Changsha, Hunan Province, China
| | - Shu-Yuan Yue
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jian-Ning Zhang
- Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
13
|
Zhang B, Zhu X, Wang L, Hou Z, Hao S, Yang M, Gao F, Liu B. Inadequate Expression and Activation of Mineralocorticoid Receptor Aggravates Spatial Memory Impairment after Traumatic Brain Injury. Neuroscience 2019; 424:1-11. [PMID: 31734415 DOI: 10.1016/j.neuroscience.2019.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022]
Abstract
The administration of glucocorticoids (GCs) for the treatment of traumatic brain injury (TBI) is controversial. Both protective and deleterious effects of GCs on the brain have been reported in previous studies, while the mechanisms are unclear. Most experimental studies have reported glucocorticoid receptor (GR)-mediated deleterious effects after TBI. Sufficient mineralocorticoid receptor (MR) activation was reported to be indispensable for normal function and survival of hippocampal neurons, but changes in MR expression and activation and the roles of MRs in the survival of neurons after TBI remain unclear. We hypothesized that inadequate MR expression and activation caused by TBI aggravates posttraumatic hippocampal apoptosis but that restoration by restoring MRs promotes the survival of neurons. Using a rat controlled cortical impact model, we examined plasma corticosterone, MR expression and activation, neuronal apoptosis in the hippocampus, and spatial memory on day 3 after injury with and without fludrocortisone (1 mg/kg) treatment. Plasma corticosterone levels were significantly reduced after TBI. In addition, both MR expression and activation were inhibited. Fludrocortisone treatment significantly increased both the expression and activation of MRs, reduced the number of apoptotic neurons and cell loss in the ipsilateral hippocampus, and subsequently improved spatial memory. Its protective effects were counteracted by the MR antagonist spironolactone. The results suggest that adequate expression and activation of MRs is crucial for the survival of neurons after TBI and that fludrocortisone protects hippocampal neurons via promoting MR expression and activation.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueli Zhu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
14
|
Zhang B, Xu X, Niu F, Mao X, Dong J, Yang M, Gao F, Liu B. Corticosterone Replacement Alleviates Hippocampal Neuronal Apoptosis and Spatial Memory Impairment Induced by Dexamethasone via Promoting Brain Corticosteroid Receptor Rebalance after Traumatic Brain Injury. J Neurotrauma 2019; 37:262-272. [PMID: 31436134 DOI: 10.1089/neu.2019.6556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The balance of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) is indispensable for maintaining the normal function and structure of the hippocampus. However, changes in GR/MR and their effect on the survival of hippocampal neurons after traumatic brain injury (TBI) are still unclear. Previous studies have indicated that high-dose glucocorticoids (GC) aggravate hippocampal neuronal damage after TBI. We hypothesize that the imbalance of GR/MR expression and activation caused by injury and irrational use of dexamethasone (DEX) aggravates post-traumatic hippocampal apoptosis and spatial memory dysfunction, but that restoration by refilling MR and inhibiting GR promotes the survival of neurons. Using rat controlled cortical impact model, we examined the plasma corticosterone (CORT), corticosteroid receptor expression, apoptosis, and cell loss in the hippocampus, and, accordingly, the spatial memory after TBI and GC treatment within 7 days. Plasma CORT, MR, and GR expression level were significantly reduced at 2 days after TBI. Accordingly, the number of apoptotic cells also peaked at 2 days. Compared with the TBI control group, DEX treatment (5 mg/kg) significantly reduced plasma CORT, upregulated GR expression, and increased the number of apoptotic cells and cell loss, whereas CORT replacement (0.3 mg/kg) upregulated MR expression, inhibited apoptosis, and improved spatial memory. The deleterious and protective effects of DEX and CORT were counteracted by spironolactone and mifepristone respectively. The results suggest that inhibition of GR by RU486 or the refilling of MR by CORT protects hippocampal neurons and alleviates spatial memory impairment via promoting GR/MR rebalancing after TBI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiang Mao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinqian Dong
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Fei Gao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Nerve Injury and Repair Center of Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
15
|
Ge X, Li W, Huang S, Yin Z, Yang M, Han Z, Han Z, Chen F, Wang H, Lei P, Zhang J. Increased miR-21-3p in Injured Brain Microvascular Endothelial Cells after Traumatic Brain Injury Aggravates Blood–Brain Barrier Damage by Promoting Cellular Apoptosis and Inflammation through Targeting MAT2B. J Neurotrauma 2019; 36:1291-1305. [PMID: 29695199 DOI: 10.1089/neu.2018.5728] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhu Li
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shan Huang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengchen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhenying Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhaoli Han
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Haichen Wang
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Ping Lei
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
16
|
Hayashi Y, Sasagawa Y, Oishi M, Misaki K, Kozaka K, Tachibana O, Nakada M. Radiological and endocrinological evaluations with grading of hypothalamic perifocal edema caused by craniopharyngiomas. Pituitary 2019; 22:146-155. [PMID: 30847775 DOI: 10.1007/s11102-019-00945-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Hypophysial and hypothalamic dysfunction caused by craniopharyngioma is a serious problem despite the progress of surgical approaches and techniques. Perifocal edema induced by craniopharyngioma could be speculated as a potential factor resulting in pre- and post-operative hypophysial and hypothalamic dysfunction, as well as, their anatomical involvement. METHODS Medical records of 54 patients with craniopharyngioma were retrospectively reviewed. The edema was characterized by a hyperintense area in magnetic resonance imaging, being classified into no edema (group A), only adjacent to the tumor (group B), and extending to the internal capsule or the optic tract (group C). Age, sex, tumor diameter, presence of cyst, hydrocephalus, intracranial pressure (ICP) elevation, visual function impairment, hypopituitarism, diabetes insipidus, memory disturbance, and obesity were investigated. RESULTS The occurrence rate of edema was found more frequently in adults (73.7%) than in children (25.0%). The peritumoral edema grading system had an excellent correlation with the degree of hypothalamic involvement graded by the Puget's system. Pre-operative ICP elevation was significantly detected in group C when compared with the other groups. In adults patients, group C was significantly associated with the occurrence of hydrocephalus both in pre- and post-operatively. Pre- and post-operative hypothalamic dysfunction, including diabetes insipidus, memory disturbance, and obesity, were highest in group C. CONCLUSION Hypothalamic dysfunctions greatly influence the quality of daily living following craniopharyngioma surgery. The grading of perifocal edema's extension could be a new index suggesting pre- and post-operative hypothalamic dysfunction caused by craniopharyngioma in addition to their anatomical involvement.
Collapse
Affiliation(s)
- Yasuhiko Hayashi
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Yasuo Sasagawa
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masahiro Oishi
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kouichi Misaki
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuto Kozaka
- Department of Radiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Osamu Tachibana
- Department of Neurosurgery, Kanazawa Medical University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
17
|
The pathological role of NLRs and AIM2 inflammasome-mediated pyroptosis in damaged blood-brain barrier after traumatic brain injury. Brain Res 2018; 1697:10-20. [DOI: 10.1016/j.brainres.2018.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
|
18
|
Zuckerman A, Ram O, Ifergane G, Matar MA, Kaplan Z, Hoffman JR, Sadot O, Cohen H. Role of Endogenous and Exogenous Corticosterone on Behavioral and Cognitive Responses to Low-Pressure Blast Wave Exposure. J Neurotrauma 2018; 36:380-394. [PMID: 29947272 DOI: 10.1089/neu.2018.5672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The complex interactions and overlapping symptoms of comorbid post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) induced by an explosive blast wave have become a focus of attention in recent years, making clinical distinction and effective intervention difficult. Because dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is thought to underlie trauma-related (psycho)pathology, we evaluated both the endogenous corticosterone response and the efficacy of exogenous hydrocortisone treatment provided shortly after blast exposure. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast wave produced by exploding a thin copper wire. Endogenous corticosterone concentrations were evaluated at different time points (before, and 3 h, 5 h and 17 days) after blast exposure. Subsequently, the efficacy of exogenous hydrocortisone (25 mg/kg-1 or 125 mg/kg-1) injected intraperitoneally 1 h after exposure was compared with that of a similarly timed saline injection. Validated cognitive and behavioral tests were used to assess both PTSD and mTBI phenotypes on days 7-14 following the blast. Retrospective analysis revealed that animals demonstrating the PTSD phenotype exhibited a significantly blunted endogenous corticosterone response to the blast compared with all other groups. Moreover, a single 125 mg/kg-1 dose of hydrocortisone administered 1 h after exposure significantly reduced the occurrence of the PTSD phenotype. Hydrocortisone treatment did not have a similar effect on the mTBI phenotype. Results of this study indicate that an inadequate corticosteroid response following blast exposure increases risk for PTSD phenotype, and corticosteroid treatment is a potential clinical intervention for attenuating PTSD. The differences in patterns of physiological and therapeutic response between PTSD and mTBI phenotypes lend credence to the retrospective behavioral and cognitive classification criteria we designed, and is in keeping with the assumption that mTBI and PTSD phenotypes may reflect distinct underlying biological and clinical profiles.
Collapse
Affiliation(s)
- Amitai Zuckerman
- 1 Faculty of Health Sciences, Ministry of Health, Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omri Ram
- 2 Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Ifergane
- 3 Headache Clinic, Department of Neurology, Soroka Medical Centre, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael A Matar
- 1 Faculty of Health Sciences, Ministry of Health, Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- 1 Faculty of Health Sciences, Ministry of Health, Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jay R Hoffman
- 4 Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, Florida
| | - Oren Sadot
- 2 Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hagit Cohen
- 1 Faculty of Health Sciences, Ministry of Health, Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
19
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
20
|
Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, Ju BG. Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab 2017; 37:3695-3708. [PMID: 28338398 PMCID: PMC5718327 DOI: 10.1177/0271678x17701156] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) exhibits a highly selective permeability to support the homeostasis of the central nervous system (CNS). The tight junctions in the BBB microvascular endothelial cells seal the paracellular space to prevent diffusion. Thus, disruption of tight junctions results in harmful effects in CNS diseases and injuries. It has recently been demonstrated that glucocorticoids have beneficial effects on maintaining tight junctions in both in vitro cell and in vivo animal models. In the present study, we found that dexamethasone suppresses the expression of JMJD3, a histone H3K27 demethylase, via the recruitment of glucocorticoid receptor α (GRα) and nuclear receptor co-repressor (N-CoR) to the negative glucocorticoid response element (nGRE) in the upstream region of JMJD3 gene in brain microvascular endothelial cells subjected to TNFα treatment. The decreased JMJD3 gene expression resulted in the suppression of MMP-2, MMP-3, and MMP-9 gene activation. Dexamethasone also activated the expression of the claudin 5 and occludin genes. Collectively, dexamethasone attenuated the disruption of the tight junctions in the brain microvascular endothelial cells subjected to TNFα treatment. Therefore, glucocorticoids may help to preserve the integrity of the tight junctions in the BBB via transcriptional and post-translational regulation following CNS diseases and injuries.
Collapse
Affiliation(s)
- Wonho Na
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Shin
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Jee Y Lee
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Sangyun Jeong
- 3 Department of Molecular Biology, Chonbuk National University, Jeonju, Korea
| | - Won-Sun Kim
- 1 Department of Life Science, Sogang University, Seoul, Korea
| | - Tae Y Yune
- 2 Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea.,4 Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong-Gun Ju
- 1 Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
21
|
Locker AR, Michalovicz LT, Kelly KA, Miller JV, Miller DB, O'Callaghan JP. Corticosterone primes the neuroinflammatory response to Gulf War Illness-relevant organophosphates independently of acetylcholinesterase inhibition. J Neurochem 2017; 142:444-455. [PMID: 28500787 PMCID: PMC5575502 DOI: 10.1111/jnc.14071] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/29/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder affecting veterans of the 1991 Gulf War. Among the symptoms of GWI are those associated with sickness behavior, observations suggestive of underlying neuroinflammation. We have shown that exposure of mice to the stress hormone, corticosterone (CORT), and to diisopropyl fluorophosphate (DFP), as a nerve agent mimic, results in marked neuroinflammation, findings consistent with a stress/neuroimmune basis of GWI. Here, we examined the contribution of irreversible and reversible acetylcholinesterase (AChE) inhibitors to neuroinflammation in our mouse model of GWI. Male C57BL/6J mice received 4 days of CORT (400 mg/L) in the drinking water followed by a single dose of chlorpyrifos oxon (CPO; 8 mg/kg, i.p.), DFP (4 mg/kg, i.p.), pyridostigmine bromide (PB; 3 mg/kg, i.p.), or physostigmine (PHY; 0.5 mg/kg, i.p.). CPO and DFP alone caused cortical and hippocampal neuroinflammation assessed by qPCR of tumor necrosis factor-alpha, IL-6, C-C chemokine ligand 2, IL-1β, leukemia inhibitory factor and oncostatin M; CORT pretreatment markedly augmented these effects. Additionally, CORT exposure prior to DFP or CPO enhanced activation of the neuroinflammation signal transducer, signal transducer and activator of transcription 3 (STAT3). In contrast, PHY or PB alone or with CORT pretreatment did not produce neuroinflammation or STAT3 activation. While all of the CNS-acting AChE inhibitors (DFP, CPO, and PHY) decreased brain AChE activity, CORT pretreatment abrogated these effects for the irreversible inhibitors. Taken together, these findings suggest that irreversible AChE inhibitor-induced neuroinflammation and particularly its exacerbation by CORT, result from non-cholinergic effects of these compounds, pointing potentially to organophosphorylation of other neuroimmune targets.
Collapse
Affiliation(s)
- Alicia R. Locker
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Lindsay T. Michalovicz
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Kimberly A. Kelly
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Julie V. Miller
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Diane B. Miller
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - James P. O'Callaghan
- Health Effects Laboratory DivisionCenters for Disease Control and PreventionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| |
Collapse
|
22
|
Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, Wang Z, Kang C, Jiang R, Yue S, Lei P, Zhang J. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res 2016; 1650:31-40. [DOI: 10.1016/j.brainres.2016.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
|
23
|
Dong T, Zhi L, Bhayana B, Wu MX. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J Neuroinflammation 2016; 13:197. [PMID: 27561600 PMCID: PMC5000452 DOI: 10.1186/s12974-016-0663-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Background Acute traumatic brain injury (TBI) represents one of major causes of mortality and disability in the USA. Neuroinflammation has been regarded both beneficial and detrimental, probably in a time-dependent fashion. Methods To address a role for neuroinflammation in brain injury, C57BL/6 mice were subjected to a closed head mild TBI (mTBI) by a standard controlled cortical impact, along with or without treatment of sphingosine 1-phosphate (S1P) or rolipram, after which the brain tissue of the impact site was evaluated for cell morphology via histology, inflammation by qRT-PCR and T cell staining, and cell death with Caspase-3 and TUNEL staining. Circulating lymphocytes were quantified by flow cytometry, and plasma hydrocortisone was analyzed by LC-MS/MS. To investigate the mechanism whereby cortisol lowered the number of peripheral T cells, T cell egress was tracked in lymph nodes by intravital confocal microscopy after hydrocortisone administration. Results We detected a decreased number of circulating lymphocytes, in particular, T cells soon after mTBI, which was inversely correlated with a transient and robust increase of plasma cortisol. The transient lymphocytopenia might be caused by cortisol in part via a blockade of lymphocyte egress as demonstrated by the ability of cortisol to inhibit T cell egress from the secondary lymphoid tissues. Moreover, exogenous hydrocortisone severely suppressed periphery lymphocytes in uninjured mice, whereas administering an egress-promoting agent S1P normalized circulating T cells in mTBI mice and increased T cells in the injured brain. Likewise, rolipram, a cAMP phosphodiesterase inhibitor, was also able to elevate cAMP levels in T cells in the presence of hydrocortisone in vitro and abrogate the action of cortisol in mTBI mice. The investigation demonstrated that the number of circulating T cells in the early phase of TBI was positively correlated with T cell infiltration and inflammatory responses as well as cell death at the cerebral cortex and hippocampus beneath the impact site. Conclusions Decreases in intracellular cAMP might be part of the mechanism behind cortisol-mediated blockade of T cell egress. The study argues strongly for a protective role of cortisol-induced immune suppression in the early stage of TBI.
Collapse
Affiliation(s)
- Tingting Dong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Liang Zhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Hu N, Wang C, Zheng Y, Ao J, Zhang C, Xie K, Li Y, Wang H, Yu Y, Wang G. The role of the Wnt/β-catenin-Annexin A1 pathway in the process of sevoflurane-induced cognitive dysfunction. J Neurochem 2016; 137:240-52. [PMID: 26851642 DOI: 10.1111/jnc.13569] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Nan Hu
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Chao Wang
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Yuxin Zheng
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Jiying Ao
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Chao Zhang
- Department of orthopedics; Tianjin Medical University General Hospital; Tianjin China
| | - Keliang Xie
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Yize Li
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Haiyun Wang
- Department of Anesthesiology; Tianjin the Third Central Hospital; Tianjin China
| | - Yonghao Yu
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
| | - Guolin Wang
- Department of Anesthesiology; Tianjin Medical University General Hospital; Tianjin China
- Tianjin Research Institute of Anesthesiology; Tianjin China
- Department of Critical Care Medicine of Tianjin Medical University General Hospital; Tianjin China
| |
Collapse
|
25
|
Klein RC, Acheson SK, Qadri LH, Dawson AA, Rodriguiz RM, Wetsel WC, Moore SD, Laskowitz DT, Dawson HN. Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress. J Neurosci Res 2015; 94:579-89. [DOI: 10.1002/jnr.23702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Rebecca C. Klein
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
- VISN 6 MIRECC, Durham Veterans Affairs Medical Center; Durham North Carolina
| | - Shawn K. Acheson
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
- Neurobiology Research Laboratory, Durham Veterans Affairs Medical Center; Durham North Carolina
| | - Laura H. Qadri
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
| | - Alina A. Dawson
- Department of Neurology; Duke University Medical Center; Durham North Carolina
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
- Mouse Behavioral and Neuroendocrine Analysis Core Facility; Duke University Medical Center; Durham North Carolina
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
- Mouse Behavioral and Neuroendocrine Analysis Core Facility; Duke University Medical Center; Durham North Carolina
- Departments of Neurobiology and Cell Biology; Duke University Medical Center; Durham North Carolina
| | - Scott D. Moore
- Department of Psychiatry and Behavioral Sciences; Duke University Medical Center; Durham North Carolina
- VISN 6 MIRECC, Durham Veterans Affairs Medical Center; Durham North Carolina
| | - Daniel T. Laskowitz
- Department of Neurology; Duke University Medical Center; Durham North Carolina
| | - Hana N. Dawson
- Department of Neurology; Duke University Medical Center; Durham North Carolina
| |
Collapse
|
26
|
Ge X, Han Z, Chen F, Wang H, Zhang B, Jiang R, Lei P, Zhang J. miR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats. Brain Res 2015; 1603:150-7. [DOI: 10.1016/j.brainres.2015.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/23/2022]
|
27
|
The incidence of critical-illness-related-corticosteroid-insufficiency is associated with severity of traumatic brain injury in adult rats. J Neurol Sci 2014; 342:93-100. [PMID: 24819916 DOI: 10.1016/j.jns.2014.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) causes deleterious critical-illness-related-corticosteroid-insufficiency (CIRCI), leading to high mortality and morbidity. However, the incidence of CIRCI following different TBI severities is not fully defined. This study was designed to investigate mechanistically the effects of injury severity on corticosteroid response and the development of CIRCI in a rat model of experimentally controlled TBI. Adult male Wistar rats were randomly assigned to sham, mild injury, moderate injury or severe injury groups. TBI was induced using a fluid percussion device at magnitudes of 1.2-1.4 atm (mild injury), 2.0-2.2 atm (moderate injury), and 3.2-3.5 atm (severe injury). We first assessed the effects of injury severity on the mortality and CIRCI occurrence using electrical stimulation test to assess corticosteroid response. We also investigated a series of pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), among different injury group including: apoptosis detected by a TUNEL assay, blood-brain-barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and Claudin-5 expression and transmission electron microscopy. We made the following observations. First, 6.7% of mild-injured, 13.3% of moderate-injured, and 68.8% of severe-injured rats developed CIRCI, with a peak incidence on post-injury day 7. Second, TBI-induced CIRCI is closely correlated with injury severity. As the injury severity rises both the incidence of CIRCI and mortality surge; Third, increased level of injury severity reduces the expression of endothelial tight junction protein, aggravate BBB permeability and exacerbate the ensuing neural apoptosis in the PVN of hypothalamus. These findings indicate that increased severity of TBI aggravate the incidence of CIRCI by causing damage to tight junctions of vascular endothelial cells and increasing neuronal apoptosis in the PVN of hypothalamus.
Collapse
|
28
|
Roquilly A, Vourc'h M, Cinotti R, Asehnoune K. A new way of thinking: hydrocortisone in traumatic brain-injured patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:1016. [PMID: 24313953 PMCID: PMC4059383 DOI: 10.1186/cc13138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data suggest that treatment of critical illness-related corticosteroid insufficiency after traumatic brain injury (TBI) with a stress dose of hydrocortisone may improve the neurological outcome and the mortality rate. The mineralocorticoid properties of hydrocortisone may reduce the rate of hyponatremia and of brain swelling. The exaggerated inflammatory response may cause critical illness-related corticosteroid insufficiency by altering the function of the hypothalamic–pituitary–adrenal axis, and hydrocortisone is able to restore a balanced inflammatory response rather than inducing immunosuppression. Hydrocortisone could also prevent neuronal apoptosis. Considering side effects, corticosteroids are not equal; when a high dose of synthetic corticosteroids seems detrimental, a strategy using a stress dose of hydrocortisone seems attractive. Finally, results from a large multicenter study are needed to close the debate regarding the use of hydrocortisone in TBI patients.
Collapse
|