1
|
Shahid S, Amir MB, Ding TB, Liu TX, Smagghe G, Shi Y. RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, Acyrthosiphon pisum. INSECTS 2024; 15:939. [PMID: 39769541 PMCID: PMC11678771 DOI: 10.3390/insects15120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of CCHa1/CCHa1R signaling in the pea aphid, Acyrthosiphon pisum, which is a notorious pest in agriculture. The docking analysis revealed that the CCHa1 peptide binds to its receptor CCHa1R through specific amino acid residues, which are critical for maintaining the structural and functional integrity of the peptide-receptor complex. Quantitative real-time reverse transcription-PCR (qRT-PCR) revealed the expression levels of CCHa1/CCHa1R transcripts in different development stages and different tissues, indicating that the CCHa1 expression was high in the first nymphal instar compared to the upcoming nymphal instars and adults, and was predominantly high in the brain. The CCHa1/CCHa1R transcript levels were significantly upregulated in starved aphids compared to fed aphids. Moreover, RNAi knockdown by the injection of dsRNA-CCHa1 and dsRNA-CCHa1R significantly reduced the corresponding expression of the target gene and reduced their food intake in adult aphids, as revealed by the electrical penetration graph results. CCHa1/CCHa1R-silencing also reduced the reproduction, but not the survival, in A. pisum. Our data demonstrated that CCHa1/CCHa1R play a role in the regulation of feeding in A. pisum, suggesting a role of the CCHa1 signaling pathway in the aphids relating to their nutritional status.
Collapse
Affiliation(s)
- Sohaib Shahid
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Bilal Amir
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| | - Tian-Bo Ding
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| | - Tong-Xian Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
- Institute of Entomology, Guizhou University, Guiyang 550025, China;
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China;
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| |
Collapse
|
2
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Zhou L, Wang E, Yang Y, Yang P, Xu L, Ming J. Antioxidant Enzyme, Transcriptomic, and Metabolomic Changes in Lily ( Lilium spp.) Leaves Induced by Aphis gossypii Glover. Genes (Basel) 2024; 15:1124. [PMID: 39336715 PMCID: PMC11431739 DOI: 10.3390/genes15091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cotton aphids (Aphis gossypii Glover) cause harm by feeding on phloem sap and spreading plant viruses to lily. Understanding the mechanisms by which aphids infest lily plants is crucial for effective aphid management and control. In this study, we investigated the activity of antioxidants, integrated nontargeted metabolomes and transcriptomes of lilies infested by cotton aphids to explore the changes in lily leaves. Overall, the results indicated that the catalase (CAT) activity in the leaves of the lily plants was greater than that in the leaves of the control plants. A comprehensive identification of 604 substances was conducted in the leaves. Furthermore, the differentially abundant metabolite analysis revealed the enrichment of phenylalanine metabolism and α-linolenic acid metabolism. Moreover, 3574 differentially expressed genes (DEGs), whose expression tended to increase, were linked to glutathione metabolism and phenylpropanoid biosynthesis. In addition, the integrated analysis revealed that the defensive response of lily leaves to aphids is manifested through antioxidant reactions, phenylpropane and flavonoid biosynthesis, and α-linolenic acid metabolism. Finally, the key metabolites were CAT, glutathione, coumaric acid, and jasmonic acid, along with the key genes chalcone synthase (CHS), phenylalanine ammonia-lyase (PAL), and 12-oxo-phytodienoic acid reductase (OPR). Accordingly, the findings of this research elucidate the molecular and metabolic reactions of A. gossypii in lily plants, offering valuable insights for developing aphid resistance strategies in lily farming.
Collapse
Affiliation(s)
- Lihong Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
- Flower Institution, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;
| | - Erli Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yingdong Yang
- Flower Institution, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China;
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (P.Y.); (L.X.)
| |
Collapse
|
4
|
Bruna T, Lomsadze A, Borodovsky M. A new gene finding tool GeneMark-ETP significantly improves the accuracy of automatic annotation of large eukaryotic genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.13.524024. [PMID: 36711453 PMCID: PMC9882169 DOI: 10.1101/2023.01.13.524024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Large-scale genomic initiatives, such as the Earth BioGenome Project, require efficient methods for eukaryotic genome annotation. Here we present an automatic gene finder, GeneMark-ETP, integrating genomic-, transcriptomic- and protein-derived evidence that has been developed with a focus on large plant and animal genomes. GeneMark-ETP first identifies genomic loci where extrinsic data is sufficient for making gene predictions with 'high confidence'. The genes situated in the genomic space between the high confidence genes are predicted in the next stage. The set of high confidence genes serves as an initial training set for the statistical model. Further on, the model parameters are iteratively updated in the rounds of gene prediction and parameter re-estimation. Upon reaching convergence, GeneMark-ETP makes the final predictions and delivers the whole complement of predicted genes. GeneMark-ETP outperformed gene finders using a single type of extrinsic evidence. Comparisons with gene finders utilizing both transcript- and protein-derived extrinsic evidence, MAKER2, and TSEBRA, demonstrated that GeneMark-ETP delivered state-of-the-art gene prediction accuracy with the margin of outperforming existing approaches increasing in its applications to larger and more complex eukaryotic genomes.
Collapse
Affiliation(s)
- Tomas Bruna
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark Borodovsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Pardo-Palacios FJ, Wang D, Reese F, Diekhans M, Carbonell-Sala S, Williams B, Loveland JE, De María M, Adams MS, Balderrama-Gutierrez G, Behera AK, Gonzalez JM, Hunt T, Lagarde J, Liang CE, Li H, Jerryd Meade M, Moraga Amador DA, Prjibelski AD, Birol I, Bostan H, Brooks AM, Hasan Çelik M, Chen Y, Du MR, Felton C, Göke J, Hafezqorani S, Herwig R, Kawaji H, Lee J, Liang Li J, Lienhard M, Mikheenko A, Mulligan D, Ming Nip K, Pertea M, Ritchie ME, Sim AD, Tang AD, Kei Wan Y, Wang C, Wong BY, Yang C, Barnes I, Berry A, Capella S, Dhillon N, Fernandez-Gonzalez JM, Ferrández-Peral L, Garcia-Reyero N, Goetz S, Hernández-Ferrer C, Kondratova L, Liu T, Martinez-Martin A, Menor C, Mestre-Tomás J, Mudge JM, Panayotova NG, Paniagua A, Repchevsky D, Rouchka E, Saint-John B, Sapena E, Sheynkman L, Laird Smith M, Suner MM, Takahashi H, Youngworth IA, Carninci P, Denslow ND, Guigó R, Hunter ME, Tilgner HU, Wold BJ, Vollmers C, Frankish A, Fai Au K, Sheynkman GM, Mortazavi A, Conesa A, Brooks AN. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550582. [PMID: 37546854 PMCID: PMC10402094 DOI: 10.1101/2023.07.25.550582] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.
Collapse
Affiliation(s)
- Francisco J. Pardo-Palacios
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
- These authors contributed equally to this work
| | - Dingjie Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
- These authors contributed equally to this work
| | - Fairlie Reese
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
- These authors contributed equally to this work
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, USA
- These authors contributed equally to this work
| | - Sílvia Carbonell-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- These authors contributed equally to this work
| | - Brian Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- These authors contributed equally to this work
| | - Jane E. Loveland
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- These authors contributed equally to this work
| | - Maite De María
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, USA
- These authors contributed equally to this work
| | - Matthew S. Adams
- Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
- These authors contributed equally to this work
| | - Gabriela Balderrama-Gutierrez
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
- These authors contributed equally to this work
| | - Amit K. Behera
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
- These authors contributed equally to this work
| | - Jose M. Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- These authors contributed equally to this work
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- These authors contributed equally to this work
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Flomics Biotech, Dr Aiguader 88, Barcelona 08003, Spain
- These authors contributed equally to this work
| | - Cindy E. Liang
- Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, USA
- These authors contributed equally to this work
| | - Haoran Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
- These authors contributed equally to this work
| | - Marcus Jerryd Meade
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
- These authors contributed equally to this work
| | - David A. Moraga Amador
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, USA
- These authors contributed equally to this work
| | - Andrey D. Prjibelski
- Department of Computer Science, University of Helsinki, Helsinki, Finland
- Center for Bioinformatics and Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- These authors contributed equally to this work
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Hamed Bostan
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, USA
| | - Ashley M. Brooks
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, USA
| | - Muhammed Hasan Çelik
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Ying Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei R,M. Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Colette Felton
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | - Jonathan Göke
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
| | - Saber Hafezqorani
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Ralf Herwig
- Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Joseph Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jian Liang Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, USA
| | - Matthias Lienhard
- Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Alla Mikheenko
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Dennis Mulligan
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Mihaela Pertea
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, USA
| | - Matthew E. Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Andre D. Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alison D. Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | - Yuk Kei Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Changqing Wang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Brandon Y. Wong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, USA
| | - Chen Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - If Barnes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andrew Berry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Namrita Dhillon
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | | | - Luis Ferrández-Peral
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, USA
| | | | | | | | | | | | | | - Jorge Mestre-Tomás
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
| | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nedka G. Panayotova
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, USA
| | - Alejandro Paniagua
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
| | | | - Eric Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, USA
| | - Brandon Saint-John
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | - Enrique Sapena
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK, UK
| | - Leon Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
| | - Melissa Laird Smith
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, USA
| | - Marie-Marthe Suner
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Hazuki Takahashi
- Center for Integrative Medical Sciences, Laboratory for Transcriptome Technology, RIKEN, Yokohama, Japan
| | | | - Piero Carninci
- Center for Integrative Medical Sciences, Laboratory for Transcriptome Technology, RIKEN, Yokohama, Japan
- Human Technopole, Milano, Italy
| | - Nancy D. Denslow
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, USA
- Center for Environmental and Human Toxicology, Department of Physiological Sciences,, University of Florida, Gainesville, USA
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Margaret E. Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, USA
| | - Hagen U. Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York City, USA
| | - Barbara J. Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Gloria M. Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA
- Center for Public Health Genomics
- UVA Cancer Center, University of Virginia, Charlottesville, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Spain
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Angela N. Brooks
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, USA
| |
Collapse
|
6
|
Aggarwal J, Kaur R, Mittal A, Atri C, Gupta M, Sharma A. Biochemical probing of phloem sap defensive traits in Brassica juncea- B. fruticulosa introgression lines following Lipaphis erysimi infestation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1019-1047. [PMID: 37649878 PMCID: PMC10462579 DOI: 10.1007/s12298-023-01341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The lack of resistance to Lipaphis erysimi in cultivated Brassicas makes caused this pest highly devastating resulting in significant loss of rapeseed-mustard productivity in India. B. fruticulosa, a wild crucifer is known as an excellent source of resistance to L. erysimi. Therefore, we planned to assess defense associated biochemical alterations and molecular components of B. juncea-B. fruticulosa ILs to mustard aphid. Phenotypic assessment of ILs on the basis of aphid population per plant (APP) categorized genotypes into resistant (7.15-18.50 APP), moderately susceptible (42.29-53.33 APP) and susceptible (70.00-77.07 APP) genotypes. Mustard aphid infested minimally B. fruticulosa (0.80 APP) among tested genotypes. The maximum increase in catalase (CAT) activity was determined in B. fruticulosa and resistant ILs after 48 h (2.03 and 1.76-fold, respectively) and one week (2.98 and 1.79-fold, respectively) of mustard aphid infestation. The strong induction of CAT2 transcripts (19.25-fold) and CAT activity (5.88-fold) along with low aphid count in resistant IL, Ad4-64 (13.85 APP) suggested the pivotal role of CAT in resistance to mustard aphid. Guaiacol peroxidase (GPX) was significantly decreased following pest infestation at both infestation stages. The ascorbate content was highest in resistant IL, ADV-6RD (2.14-fold) after one week of aphid infestation. H2O2 content rapidly increased in B. juncea-B. fruticulosa derived lines after 48 h of aphid infestation. The negative and significant association between APP and CAT (- 0.56** and - 0.48*, respectively), glutathione (- 0.43* and - 0.40*, respectively), H2O2 (- 0.57** and - 0.43*, respectively) at both 48 h and one week infestation stages signified their role in deterring mustard aphid infestation. The positive and significant association between total sugars (0.33* at 7 DPI), reducing sugars (0.33* at 7 DPI), sucrose (0.36** at 48 h) and APP indicated that higher the sugars content, higher will be mustard aphid infestation in B. juncea derived ILs. The information being generated and key candidates (CAT2, ascorbate and H2O2) being identified may help in effective deployment of B. fruticulosa resistance in mustard breeding.
Collapse
Affiliation(s)
- Jatin Aggarwal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Rimaljeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anju Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
7
|
Qiao JW, Fan YL, Bai TT, Wu BJ, Pei XJ, Wang D, Liu TX. Lipophorin receptor regulates the cuticular hydrocarbon accumulation and adult fecundity of the pea aphid Acyrthosiphon pisum. INSECT SCIENCE 2021; 28:1018-1032. [PMID: 32558147 DOI: 10.1111/1744-7917.12828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Cuticular hydrocarbons form a barrier that protects terrestrial insects from water loss via the epicuticle. Lipophorin loads and transports lipids, including hydrocarbons, from one tissue to another. In some insects, the lipophorin receptor (LpR), which binds to lipophorin and accepts its lipid cargo, is essential for female fecundity because it mediates the incorporation of lipophorin by developing oocytes. However, it is unclear whether LpR is involved in the accumulation of cuticular hydrocarbons and its precise role in aphid reproduction remains unknown. We herein present the results of our molecular characterization, phylogenetic analysis, and functional annotation of the pea aphid (Acyrthosiphon pisum) LpR gene (ApLpR). This gene was transcribed throughout the A. pisum life cycle, but especially during the embryonic stage and in the abdominal cuticle. Furthermore, we optimized the RHA interference (RNAi) parameters by determining the ideal dose and duration for gene silencing in the pea aphid. We observed that the RNAi-based ApLpR suppression significantly decreased the internal and cuticular hydrocarbon contents as well as adult fecundity. Additionally, a deficiency in cuticular hydrocarbons increased the susceptibility of aphids to desiccation stress, with decreased survival rates under simulated drought conditions. Moreover, ApLpR expression levels significantly increased in response to the desiccation treatment. These results confirm that ApLpR is involved in transporting hydrocarbons and protecting aphids from desiccation stress. Furthermore, this gene is vital for aphid reproduction. Therefore, the ApLpR gene of A. pisum may be a novel RNAi target relevant for insect pest management.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
9
|
Gazengel K, Lebreton L, Lapalu N, Amselem J, Guillerm-Erckelboudt AY, Tagu D, Daval S. pH effect on strain-specific transcriptomes of the take-all fungus. PLoS One 2020; 15:e0236429. [PMID: 32730288 PMCID: PMC7392285 DOI: 10.1371/journal.pone.0236429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
The soilborne fungus Gaeumannomyces tritici (G. tritici) causes the take-all disease on wheat roots. Ambient pH has been shown to be critical in different steps of G. tritici life cycle such as survival in bulk soil, saprophytic growth, and pathogenicity on plants. There are however intra-specific variations and we previously found two types of G. tritici strains that grow preferentially either at acidic pH or at neutral/alkaline pH; gene expression involved in pH-signal transduction pathway and pathogenesis was differentially regulated in two strains representative of these types. To go deeper in the description of the genetic pathways and the understanding of this adaptative mechanism, transcriptome sequencing was achieved on two strains (PG6 and PG38) which displayed opposite growth profiles in two pH conditions (acidic and neutral). PG6, growing better at acidic pH, overexpressed in this condition genes related to cell proliferation. In contrast, PG38, which grew better at neutral pH, overexpressed in this condition genes involved in fatty acids and amino acid metabolisms, and genes potentially related to pathogenesis. This strain also expressed stress resistance mechanisms at both pH, to assert a convenient growth under various ambient pH conditions. These differences in metabolic pathway expression between strains at different pH might buffer the effect of field or soil variation in wheat fields, and explain the success of the pathogen.
Collapse
Affiliation(s)
- Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
- * E-mail:
| | | | - Nicolas Lapalu
- AgroParisTech, INRAE, Université Paris-Saclay, BIOGER, Thiverval-Grignon, France
| | - Joëlle Amselem
- INRAE, Université Paris-Saclay, URGI, Versailles, France
| | | | - Denis Tagu
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | |
Collapse
|
10
|
Li X, Du L, Jiang XJ, Ju Q, Qu CJ, Qu MJ, Liu TX. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid Aphis craccivora. Front Endocrinol (Lausanne) 2020; 11:640. [PMID: 33042012 PMCID: PMC7527416 DOI: 10.3389/fendo.2020.00640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides are the most abundant and diverse signal molecules in insects. They act as neurohormones and neuromodulators to regulate the physiology and behavior of insects. The majority of neuropeptides initiate downstream signaling pathways through binding to G protein-coupled receptors (GPCRs) on the cell surface. In this study, RNA-seq technology and bioinformatics were used to search for genes encoding neuropeptides and their GPCRs in the cowpea aphid Aphis craccivora. And the expression of these genes at different developmental stages of A. craccivora was analyzed by quantitative real-time PCR (qRT-PCR). A total of 40 candidate genes encoding neuropeptide precursors were identified from the transcriptome data, which is roughly equivalent to the number of neuropeptide genes that have been reported in other insects. On this basis, software analysis combined with homologous prediction estimated that there could be more than 60 mature neuropeptides with biological activity. In addition, 46 neuropeptide GPCRs were obtained, of which 40 belong to rhodopsin-like receptors (A-family GPCRs), including 21 families of neuropeptide receptors and 7 orphan receptors, and 6 belong to secretin-like receptors (B-family GPCRs), including receptors for diuretic hormone 31, diuretic hormone 44 and pigment-dispersing factor (PDF). Compared with holometabolous insects such as Drosophila melanogaster, the coding genes for sulfakinin, corazonin, arginine vasopressin-like peptide (AVLP), and trissin and the corresponding receptors were not found in A. craccivora. It is speculated that A. craccivora likely lacks the above neuropeptide signaling pathways, which is consistent with Acyrthosiphon pisum and that the loss of these pathways may be a common feature of aphids. In addition, expression profiling revealed neuropeptide genes and their GPCR genes that are differentially expressed at different developmental stages and in different wing morphs. This study will help to deepen our understanding of the neuropeptide signaling systems in aphids, thus laying the foundation for the development of new methods for aphid control targeting these signaling systems.
Collapse
Affiliation(s)
- Xiao Li
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Long Du
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Xiao-Jing Jiang
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Qian Ju
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Chun-Juan Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
| | - Ming-Jing Qu
- Department of Plant Protection, Shandong Peanut Research Institute, Qingdao, China
- *Correspondence: Ming-Jing Qu
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Tong-Xian Liu
| |
Collapse
|
11
|
Wang X, Gao Y, Chen Z, Li J, Huang J, Cao J, Cui M, Ban L. (E)-β-farnesene synthase gene affects aphid behavior in transgenic Medicago sativa. PEST MANAGEMENT SCIENCE 2019; 75:622-631. [PMID: 30051587 DOI: 10.1002/ps.5153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pea aphid (Acyrthosiphon pisum Harris) is one of the major pests in alfalfa crops, causing significant yield losses. (E)-β-farnesene (EβF), an alarm pheromone released by pea aphid, is generic to many species of aphids, and is used to minimize potential danger from predators and parasitoids by avoiding the source of the pheromone. RESULTS In this study, EβF synthase gene was constructed into a plant expression vector, and overexpressed in alfalfa (Medicago sativa L.), with expression among transgenic lines confirmed by qRT-PCR. Subcellular localization analysis showed that EβF synthase gene was expressed in the plasma membrane and nucleus of the leaf. GC/MS of extraction from transgenic alfalfa indicated emission of EβF ranging from 5.92 to 13.09 ng day-1 g-1 fresh tissue. Behavior assays in Y-olfactometers demonstrated that transgenic alfalfa expressing AaEβF gene could repel pea aphids, with aphids taking a significantly longer time to select a transgenic line compared with the control line (P < 0.01). CONCLUSION We have demonstrated a potentially valuable strategy of using EβF synthase genes for aphid control in alfalfa. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhao Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- The Affiliated High School of Peking University, Beijing, China
| | - Zhihong Chen
- National Animal Husbandry Service, Ministry of Agriculture, Beijing, China
| | - Jindong Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianping Huang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangbo Cao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Miaomiao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liping Ban
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Chen N, Bai Y, Fan YL, Liu TX. Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One 2017; 12:e0184243. [PMID: 28859151 PMCID: PMC5578635 DOI: 10.1371/journal.pone.0184243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
Insect cuticular hydrocarbons (CHCs) play critical roles in reducing water loss and chemical communication. Species-specific CHC profiles have been used increasingly as an excellent character for species classification. However, considerably less is known about their potential for population delimitation within species. The aims of this study were to develop a solid-phase microextraction (SPME)-based CHC collection method and to investigate whether CHC profiles could serve as potential chemotaxonomic tools for intraspecific delimitation in Acyrthosiphon pisum. Optimization of fibers for SPME sampling revealed that 7 μm polydimethylsiloxane (PDMS) demonstrated the most efficient adsorption of CHCs among five different tested fibers. SPME sampling showed good reproducibility with repeated collections of CHCs from a single aphid. Validation of SPME was performed by comparing CHC profiles with those from conventional hexane extractions. The two methods showed no qualitative differences in CHCs, although SPME appeared to extract relatively fewer short-chained CHCs. While CHC profiles of a given population differed among developmental stages, wing dimorphism types, and host plants, wingless adult aphids showed very low variance in relative proportions of individual CHC components. Reproducibility of CHC profiles was explored further to classify wingless adult morphs of A. pisum from five different geographic regions that showed no variation in mitochondrial COI gene sequences. Our results demonstrate that CHC profiles are useful in intraspecific delimitation in the field of insect chemotaxonomy.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| |
Collapse
|
13
|
Chen N, Fan YL, Bai Y, Li XD, Zhang ZF, Liu TX. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:84-94. [PMID: 27425674 DOI: 10.1016/j.ibmb.2016.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Terrestrial insects deposit a layer of hydrocarbons (HCs) as waterproofing agents on their epicuticle. The insect-specific CYP4G genes, subfamily members of P450, have been found in all insects with sequenced genomes to date. They are critical for HC biosynthesis in Drosophila; however, their functional roles in other insects including the piercing-sucking hemipterous aphids remain unknown. In this study, we presented the molecular characterization and a functional study of the CYP4G51 gene in the pea aphid, Acyrthosiphon pisum (Harris). CYP4G51 transcript was detectable across the whole life cycle of A. pisum, and was prominently expressed in the aphid head and abdominal cuticle. Up-regulation of CYP4G51 under desiccation stress was more significant in the third instar nymphs compared with the adults. Also, up-regulation of CYP4G51 was observed when the aphids fed on an artificial diet compared with those fed on the broad bean plant, and was positively correlated with a high level of cuticular HCs (CHCs). RNAi knockdown of CYP4G51 significantly reduced its expression and caused reductions in both internal and external HCs. A deficiency in CHCs resulted in aphids being more susceptible to desiccation, with increased mortality under desiccation stress. The current results confirm that CYP4G51 modulates HC biosynthesis to protect aphids from desiccation. Moreover, our data also indicate that saturated and straight-chain HCs play a major role in cuticular waterproofing in the pea aphid. A. pisum CYP4G51 could be considered as a novel RNAi target in the field of insect pest management.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiang-Dong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Zhang Y, Li ZX, Yu XD, Fan J, Pickett JA, Jones HD, Zhou JJ, Birkett MA, Caulfield J, Napier JA, Zhao GY, Cheng XG, Shi Y, Bruce TJA, Xia LQ. Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. THE NEW PHYTOLOGIST 2015; 206:1101-1115. [PMID: 25644034 DOI: 10.1111/nph.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/16/2014] [Indexed: 05/09/2023]
Abstract
Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation.
Collapse
Affiliation(s)
- Yan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Zhi-Xia Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiu-Dao Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jia Fan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Huw D Jones
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | | | - John Caulfield
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | | | - Guang-Yao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xian-Guo Cheng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, 11 Keyuanjing 4 Road, Laoshan District, Qingdao, 266101, China
| | - Toby J A Bruce
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Lan-Qin Xia
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
15
|
Srinivasan DG, Abdelhady A, Stern DL. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis. PLoS One 2014; 9:e115099. [PMID: 25501006 PMCID: PMC4264872 DOI: 10.1371/journal.pone.0115099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.
Collapse
Affiliation(s)
- Dayalan G. Srinivasan
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, NJ, 08544, United States of America
- Department of Biological Science, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, United States of America
| | - Ahmed Abdelhady
- Department of Biological Science, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, United States of America
| | - David L. Stern
- Howard Hughes Medical Institute and Department of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, NJ, 08544, United States of America
| |
Collapse
|
16
|
Yu X, Wang G, Huang S, Ma Y, Xia L. Engineering plants for aphid resistance: current status and future perspectives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2065-83. [PMID: 25151153 DOI: 10.1007/s00122-014-2371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/25/2014] [Indexed: 05/19/2023]
Abstract
The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed. Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.
Collapse
Affiliation(s)
- Xiudao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | | | | | | | | |
Collapse
|
17
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
18
|
Khenoussi W, Vanhoutrève R, Poch O, Thompson JD. SIBIS: a Bayesian model for inconsistent protein sequence estimation. Bioinformatics 2014; 30:2432-9. [PMID: 24825613 DOI: 10.1093/bioinformatics/btu329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The prediction of protein coding genes is a major challenge that depends on the quality of genome sequencing, the accuracy of the model used to elucidate the exonic structure of the genes and the complexity of the gene splicing process leading to different protein variants. As a consequence, today's protein databases contain a huge amount of inconsistency, due to both natural variants and sequence prediction errors. RESULTS We have developed a new method, called SIBIS, to detect such inconsistencies based on the evolutionary information in multiple sequence alignments. A Bayesian framework, combined with Dirichlet mixture models, is used to estimate the probability of observing specific amino acids and to detect inconsistent or erroneous sequence segments. We evaluated the performance of SIBIS on a reference set of protein sequences with experimentally validated errors and showed that the sensitivity is significantly higher than previous methods, with only a small loss of specificity. We also assessed a large set of human sequences from the UniProt database and found evidence of inconsistency in 48% of the previously uncharacterized sequences. We conclude that the integration of quality control methods like SIBIS in automatic analysis pipelines will be critical for the robust inference of structural, functional and phylogenetic information from these sequences. AVAILABILITY AND IMPLEMENTATION Source code, implemented in C on a linux system, and the datasets of protein sequences are freely available for download at http://www.lbgi.fr/∼julie/SIBIS.
Collapse
Affiliation(s)
- Walyd Khenoussi
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle, Strasbourg, F-67085, France
| | - Renaud Vanhoutrève
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle, Strasbourg, F-67085, France
| | - Olivier Poch
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle, Strasbourg, F-67085, France
| | - Julie D Thompson
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de médecine translationnelle, Strasbourg, F-67085, France
| |
Collapse
|
19
|
Guo H, Song X, Wang G, Yang K, Wang Y, Niu L, Chen X, Fang R. Plant-generated artificial small RNAs mediated aphid resistance. PLoS One 2014; 9:e97410. [PMID: 24819752 PMCID: PMC4018293 DOI: 10.1371/journal.pone.0097410] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects. METHODOLOGY/PRINCIPAL FINDINGS In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA. CONCLUSIONS/SIGNIFICANCE Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.
Collapse
Affiliation(s)
- Hongyan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guiling Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Libo Niu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| |
Collapse
|
20
|
Daval S, Lebreton L, Gracianne C, Guillerm-Erckelboudt AY, Boutin M, Marchi M, Gazengel K, Sarniguet A. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes. Fungal Genet Biol 2013; 61:80-9. [DOI: 10.1016/j.fgb.2013.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
|
21
|
Expression of an (E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.cj.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Shigenobu S, Stern DL. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc Biol Sci 2013; 280:20121952. [PMID: 23173201 PMCID: PMC3574423 DOI: 10.1098/rspb.2012.1952] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts.
Collapse
Affiliation(s)
- Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
23
|
Glastad KM, Hunt BG, Goodisman MAD. Evidence of a conserved functional role for DNA methylation in termites. INSECT MOLECULAR BIOLOGY 2013; 22:143-154. [PMID: 23278917 DOI: 10.1111/imb.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many organisms are capable of developing distinct phenotypes from the same genotype. This developmental plasticity is particularly prevalent in insects, which can produce alternate adaptive forms in response to distinct environmental cues. The ability to develop divergent phenotypes from the same genotype often relies on epigenetic information, which affects gene function and is transmitted through cell divisions. One of the most important epigenetic marks, DNA methylation, has been lost in several insect lineages, yet its taxonomic distribution and functional conservation remain uninvestigated in many taxa. In the present study, we demonstrate that the signature of high levels of DNA methylation exists in the expressed genes of two termites, Reticulitermes flavipes and Coptotermes formosanus. Further, we show that DNA methylation is preferentially targeted to genes with ubiquitous expression among morphs. Functional associations of DNA methylation are also similar to those observed in other invertebrate taxa with functional DNA methylation systems. Finally, we demonstrate an association between DNA methylation and the long-term evolutionary conservation of genes. Overall, our findings strongly suggest DNA methylation is present at particularly high levels in termites and may play similar roles to those found in other insects.
Collapse
Affiliation(s)
- K M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
24
|
Transcriptome of Dickeya dadantii infecting Acyrthosiphon pisum reveals a strong defense against antimicrobial peptides. PLoS One 2013; 8:e54118. [PMID: 23342088 PMCID: PMC3544676 DOI: 10.1371/journal.pone.0054118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/05/2012] [Indexed: 01/01/2023] Open
Abstract
The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP.
Collapse
|
25
|
Abstract
Lamins are the major components of the nuclear lamina, a filamentous layer found at the interphase between chromatin and the inner nuclear membrane. The lamina supports the nuclear envelope and provides anchorage sites for chromatin. Lamins and their associated proteins are required for most nuclear activities, mitosis, and for linking the nucleoskeleton to the network of cytoskeletal filaments. Mutations in lamins and their associated proteins give rise to a wide range of diseases, collectively called laminopathies. This review focuses on the evolution of the lamin protein family. Evolution from basal metazoans to man will be described on the basis of protein sequence comparisons and analyses of their gene structure. Lamins are the founding members of the family of intermediate filament proteins. How genes encoding cytoplasmic IF proteins could have arisen from the archetypal lamin gene progenitor, can be inferred from a comparison of the respective gene structures. The lamin/IF protein family seems to be restricted to the metazoans. In general, invertebrate genomes harbor only a single lamin gene encoding a B-type lamin. The archetypal lamin gene structure found in basal metazoans is conserved up to the vertebrate lineage. The completely different structure of lamin genes in Caenorhabditis and Drosophila are exceptions rather than the rule within their systematic groups. However, variation in the length of the coiled-coil forming central domain might be more common than previously anticipated. The increase in the number of lamin genes in vertebrates can be explained by two rounds of genome duplication. The origin of lamin A by exon shuffling might explain the processing of prelamin A to the mature non-isoprenylated form of lamin A. By alternative splicing the number of vertebrate lamin proteins has increased even further. Lamin C, an alternative splice form of the LMNA gene, is restricted to mammals. Amphibians and mammals express germline-specific lamins that differ in their protein structure from that of somatic lamins. Evidence is provided that there exist lamin-like proteins outside the metazoan lineage.
Collapse
Affiliation(s)
- Annette Peter
- Department for Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
26
|
Le Trionnaire G, Jaubert-Possamai S, Bonhomme J, Gauthier JP, Guernec G, Le Cam A, Legeai F, Monfort J, Tagu D. Transcriptomic profiling of the reproductive mode switch in the pea aphid in response to natural autumnal photoperiod. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1517-1524. [PMID: 22967755 DOI: 10.1016/j.jinsphys.2012.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Aphids are among the rare organisms that can change their reproductive mode across their life cycle. During spring and summer they reproduce clonally and efficiently by parthenogenesis. At the end of summer aphids perceive the shortening of day length which triggers the production of sexual individuals - males and oviparous females - that will mate and lay overwintering cold-resistant eggs. Recent large scale transcriptomic studies allowed the discovery of transcripts and functions such as nervous and hormonal signaling involved in the early steps of detection and transduction of the photoperiodic signal. Nevertheless these experiments were performed under controlled conditions when the photoperiod was the only varying parameter. To characterize the response of aphids under natural conditions, aphids were reared outdoor both in summer and autumn and material was collected to compare their transcriptomic profile using a cDNA microarray containing around 7000 transcripts. Statistical analyses revealed that close to 5% of these transcripts (367) were differentially expressed at two developmental stages of the process in response to the autumnal environmental conditions. Functional classification of regulated transcripts confirmed the putative contribution of the neuro-endocrine system in the process. Furthermore, these experiments revealed the regulation of transcripts involved in juvenile hormone synthesis and signaling pathway, confirming the key role played by these molecules in the reproductive mode switch. Aphids placed under outdoor conditions were confronted to a range of abiotic factors such as temperature fluctuations which was confirmed by the differential expression of an important proportion of heat shock protein transcripts between the two seasons. Finally, this original approach completed the understanding of genetic programs involved in aphid phenotypic plasticity.
Collapse
|
27
|
Jaquiéry J, Stoeckel S, Nouhaud P, Mieuzet L, Mahéo F, Legeai F, Bernard N, Bonvoisin A, Vitalis R, Simon JC. Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex. Mol Ecol 2012; 21:5251-64. [PMID: 23017212 DOI: 10.1111/mec.12048] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/06/2012] [Indexed: 11/26/2022]
Abstract
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome-wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host-adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies.
Collapse
Affiliation(s)
- J Jaquiéry
- INRA, UMR 1349, Institute of Genetics, Environment and Plant Protection, Domaine de la Motte, BP 35327, 35653, Le Rheu Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Via S, Conte G, Mason-Foley C, Mills K. Localizing F(ST) outliers on a QTL map reveals evidence for large genomic regions of reduced gene exchange during speciation-with-gene-flow. Mol Ecol 2012; 21:5546-60. [PMID: 23057835 DOI: 10.1111/mec.12021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 06/24/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022]
Abstract
Populations that maintain phenotypic divergence in sympatry typically show a mosaic pattern of genomic divergence, requiring a corresponding mosaic of genomic isolation (reduced gene flow). However, mechanisms that could produce the genomic isolation required for divergence-with-gene-flow have barely been explored, apart from the traditional localized effects of selection and reduced recombination near centromeres or inversions. By localizing F(ST) outliers from a genome scan of wild pea aphid host races on a Quantitative Trait Locus (QTL) map of key traits, we test the hypothesis that between-population recombination and gene exchange are reduced over large 'divergence hitchhiking' (DH) regions. As expected under divergence hitchhiking, our map confirms that QTL and divergent markers cluster together in multiple large genomic regions. Under divergence hitchhiking, the nonoutlier markers within these regions should show signs of reduced gene exchange relative to nonoutlier markers in genomic regions where ongoing gene flow is expected. We use this predicted difference among nonoutliers to perform a critical test of divergence hitchhiking. Results show that nonoutlier markers within clusters of F(ST) outliers and QTL resolve the genetic population structure of the two host races nearly as well as the outliers themselves, while nonoutliers outside DH regions reveal no population structure, as expected if they experience more gene flow. These results provide clear evidence for divergence hitchhiking, a mechanism that may dramatically facilitate the process of speciation-with-gene-flow. They also show the power of integrating genome scans with genetic analyses of the phenotypic traits involved in local adaptation and population divergence.
Collapse
Affiliation(s)
- Sara Via
- Department of Biology, University of Maryland, College Park, MD 21042, USA.
| | | | | | | |
Collapse
|
29
|
Bhatia V, Bhattacharya R, Uniyal PL, Singh R, Niranjan RS. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae. PLoS One 2012; 7:e46343. [PMID: 23071558 PMCID: PMC3468595 DOI: 10.1371/journal.pone.0046343] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.
Collapse
Affiliation(s)
- Varnika Bhatia
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| | - Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
- * E-mail:
| | | | - Rajendra Singh
- Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India
| | - Rampal S. Niranjan
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| |
Collapse
|
30
|
WANG YY, CHEN M, LI B. Dosage compensation mechanism of X chromosome. YI CHUAN = HEREDITAS 2012; 34:977-84. [DOI: 10.3724/sp.j.1005.2012.00977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yu XD, Pickett J, Ma YZ, Bruce T, Napier J, Jones HD, Xia LQ. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:282-99. [PMID: 22348813 DOI: 10.1111/j.1744-7909.2012.01107.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. (E)-β-Farnesene (EβF) synthases catalyze the formation of EβF, which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species. EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds. Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue, thus minimizing aphid infestation. In this review, the effects of aphids on host plants, plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced. Furthermore, the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.
Collapse
Affiliation(s)
- Xiu-Dao Yu
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sabater-Muñoz B, Pascual-Ruiz S, Gómez-Martínez MA, Jacas JA, Hurtado MA. Isolation and characterization of polymorphic microsatellite markers in Tetranychus urticae and cross amplification in other Tetranychidae and Phytoseiidae species of economic importance. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 57:37-51. [PMID: 22349944 DOI: 10.1007/s10493-012-9529-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Tetranychus urticae Koch is a cosmopolitan phytophagous mite considered as the most polyphagous species among spider mites. Population genetic studies using molecular markers such as microsatellites have proven to be extremely informative to address questions about population structure, phylogeography and host preferences. The aim of this study was to increase the available molecular tools to gain insight into the genetic structure of T. urticae populations of citrus orchards, which might help in their management. Five microsatellite DNA libraries were developed using probes with the motifs CT, CTT, GT and CAC following the FIASCO protocol. Positive clones, those that included the insert with the microsatellite, were detected using the PIMA-PCR technique. Combinations of primers were designed on 22 out of 32 new microsatellites loci and their polymorphism was tested in four populations sampled along the eastern coast of Spain. Eleven successful amplifications were obtained. Cross amplification was tested in the tetranychids Aphlonobia histricina, Eutetranychus banksi, E. orientalis, Oligonychus perseae, Panonychus citri, Tetranychus evansi, T. okinawanus and T. turkestani, and the phytoseiids Amblyseius swirskii, A. cucumeris, A. andersoni, Euseius stipulatus, Neoseiulus barkeri, N. californicus, Phytoseiulus persimilis and Typhlodromus phialatus. Eight successful cross amplifications were obtained.
Collapse
Affiliation(s)
- B Sabater-Muñoz
- Unidad Asociada Entomología UJI-IVIA, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, 46113 Moncada, Valencia, Spain.
| | | | | | | | | |
Collapse
|
33
|
Ezkurdia I, del Pozo A, Frankish A, Rodriguez JM, Harrow J, Ashman K, Valencia A, Tress ML. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 2012; 29:2265-83. [PMID: 22446687 PMCID: PMC3424414 DOI: 10.1093/molbev/mss100] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and strongly suggests that the translation of alternative transcripts may be subject to selective constraints.
Collapse
Affiliation(s)
- Iakes Ezkurdia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Srinivasan DG, Brisson JA. Aphids: a model for polyphenism and epigenetics. GENETICS RESEARCH INTERNATIONAL 2012; 2012:431531. [PMID: 22567389 PMCID: PMC3335499 DOI: 10.1155/2012/431531] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/01/2011] [Indexed: 01/21/2023]
Abstract
Environmental conditions can alter the form, function, and behavior of organisms over short and long timescales, and even over generations. Aphid females respond to specific environmental cues by transmitting signals that have the effect of altering the development of their offspring. These epigenetic phenomena have positioned aphids as a model for the study of phenotypic plasticity. The molecular basis for this epigenetic inheritance in aphids and how this type of inheritance system could have evolved are still unanswered questions. With the availability of the pea aphid genome sequence, new genomics technologies, and ongoing genomics projects in aphids, these questions can now be addressed. Here, we review epigenetic phenomena in aphids and recent progress toward elucidating the molecular basis of epigenetics in aphids. The discovery of a functional DNA methylation system, functional small RNA system, and expanded set of chromatin modifying genes provides a platform for analyzing these pathways in the context of aphid plasticity. With these tools and further research, aphids are an emerging model system for studying the molecular epigenetics of polyphenisms.
Collapse
Affiliation(s)
| | - Jennifer A. Brisson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
35
|
Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biol Cell 2012; 100:441-51. [DOI: 10.1042/bc20070135] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Ollivier M, Gabaldón T, Poulain J, Gavory F, Leterme N, Gauthier JP, Legeai F, Tagu D, Simon JC, Rispe C. Comparison of gene repertoires and patterns of evolutionary rates in eight aphid species that differ by reproductive mode. Genome Biol Evol 2012; 4:155-67. [PMID: 22215803 PMCID: PMC3319000 DOI: 10.1093/gbe/evr140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In theory, the loss of sexual reproduction is expected to result in the accumulation of
deleterious mutations. In aphids, two main types of life cycle, cyclic and obligate
parthenogenesis, represent respectively “sexual” and “asexual”
reproductive modes. We used the complete pea aphid genome and previously published
expressed sequence tags (ESTs) from two other aphid species. In addition, we obtained
100,000 new ESTs from five more species. The final set comprised four sexual and four
asexual aphid species and served to test the influence of the reproductive mode on the
evolutionary rates of genes. We reconstructed coding sequences from ESTs and annotated
these genes, discovering a novel peptide gene family that appears to be among the most
highly expressed transcripts from several aphid species. From 203 genes found to be 1:1
orthologs among the eight species considered, we established a species tree that partly
conflicted with taxonomy (for Myzus ascalonicus). We then used this
topology to evaluate the dynamics of evolutionary rates and mutation accumulation in the
four sexual and four asexual taxa. No significant increase of the nonsynonymous to
synonymous ratio or of nonsynonymous mutation numbers was found in any of the four
branches for asexual taxa. We however found a significant increase of the synonymous rate
in the branch leading to the asexual species Rhopalosiphum maidis, which
could be due to a change in the mutation rate or to an increased number of generations
implied by its change of life cycle.
Collapse
Affiliation(s)
- M Ollivier
- INRA Rennes UMR BIO3P, Domaine de la Motte, Le Rheu, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wallace IS, Shakesby AJ, Hwang JH, Choi WG, Martínková N, Douglas AE, Roberts DM. Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:627-35. [PMID: 22166843 DOI: 10.1016/j.bbamem.2011.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/19/2011] [Accepted: 11/28/2011] [Indexed: 12/21/2022]
Abstract
Annotation of the recently sequenced genome of the pea aphid (Acyrthosiphon pisum) identified a gene ApAQP2 (ACYPI009194, Gene ID: 100168499) with homology to the Major Intrinsic Protein/aquaporin superfamily of membrane channel proteins. Phylogenetic analysis suggests that ApAQP2 is a member of an insect-specific clade of this superfamily. Homology model structures of ApAQP2 showed a novel array of amino acids comprising the substrate selectivity-determining "aromatic/arginine" region of the putative transport pore. Subsequent characterization of the transport properties of ApAQP2 upon expression in Xenopus oocytes supports an unusual substrate selectivity profile. Water permeability analyses show that the ApAQP2 protein exhibits a robust mercury-insensitive aquaporin activity. However unlike the water-specific ApAQP1 protein, ApAQP2 forms a multifunctional transport channel that shows a wide permeability profile to a range of linear polyols, including the potentially biologically relevant substrates glycerol, mannitol and sorbitol. Gene expression analysis indicates that ApAQP2 is highly expressed in the insect bacteriocytes (cells bearing the symbiotic bacteria Buchnera) and the fat body. Overall the results demonstrate that ApAQP2 is a novel insect aquaglyceroporin which may be involved in water and polyol transport in support of the Buchnera symbiosis and aphid osmoregulation.
Collapse
Affiliation(s)
- Ian S Wallace
- Department of Biochemistry & Cellular, The University of Tennessee, Knoxville, TN 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt AY, Sarniguet A. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. MOLECULAR PLANT PATHOLOGY 2011; 12:839-54. [PMID: 21726382 PMCID: PMC3258481 DOI: 10.1111/j.1364-3703.2011.00715.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a β-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences.
Collapse
Affiliation(s)
- Stéphanie Daval
- INRA, Agrocampus Ouest, Université Rennes 1, UMR1099 BiO3P (Biology of Organisms and Populations Applied to Plant Protection), BP 35327, Le Rheu, France.
| | | | | | | | | | | |
Collapse
|
39
|
Mudge JM, Frankish A, Fernandez-Banet J, Alioto T, Derrien T, Howald C, Reymond A, Guigó R, Hubbard T, Harrow J. The origins, evolution, and functional potential of alternative splicing in vertebrates. Mol Biol Evol 2011; 28:2949-59. [PMID: 21551269 PMCID: PMC3176834 DOI: 10.1093/molbev/msr127] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) has the potential to greatly expand the functional repertoire of mammalian transcriptomes. However, few variant transcripts have been characterized functionally, making it difficult to assess the contribution of AS to the generation of phenotypic complexity and to study the evolution of splicing patterns. We have compared the AS of 309 protein-coding genes in the human ENCODE pilot regions against their mouse orthologs in unprecedented detail, utilizing traditional transcriptomic and RNAseq data. The conservation status of every transcript has been investigated, and each functionally categorized as coding (separated into coding sequence [CDS] or nonsense-mediated decay [NMD] linked) or noncoding. In total, 36.7% of human and 19.3% of mouse coding transcripts are species specific, and we observe a 3.6 times excess of human NMD transcripts compared with mouse; in contrast to previous studies, the majority of species-specific AS is unlinked to transposable elements. We observe one conserved CDS variant and one conserved NMD variant per 2.3 and 11.4 genes, respectively. Subsequently, we identify and characterize equivalent AS patterns for 22.9% of these CDS or NMD-linked events in nonmammalian vertebrate genomes, and our data indicate that functional NMD-linked AS is more widespread and ancient than previously thought. Furthermore, although we observe an association between conserved AS and elevated sequence conservation, as previously reported, we emphasize that 30% of conserved AS exons display sequence conservation below the average score for constitutive exons. In conclusion, we demonstrate the value of detailed comparative annotation in generating a comprehensive set of AS transcripts, increasing our understanding of AS evolution in vertebrates. Our data supports a model whereby the acquisition of functional AS has occurred throughout vertebrate evolution and is considered alongside amino acid change as a key mechanism in gene evolution.
Collapse
Affiliation(s)
- Jonathan M Mudge
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Simon JC, Pfrender ME, Tollrian R, Tagu D, Colbourne JK. Genomics of environmentally induced phenotypes in 2 extremely plastic arthropods. J Hered 2011; 102:512-25. [PMID: 21525179 PMCID: PMC3156564 DOI: 10.1093/jhered/esr020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/14/2022] Open
Abstract
Understanding how genes and the environment interact to shape phenotypes is of fundamental importance for resolving important issues in adaptive evolution. Yet, for most model species with mature genetics and accessible genomic resources, we know little about the natural environmental factors that shape their evolution. By contrast, animal species with deeply understood ecologies and well characterized responses to environmental cues are rarely subjects of genomic investigations. Here, we preview advances in genomics in aphids and waterfleas that may help transform research on the regulatory mechanisms of phenotypic plasticity. This insect and crustacean duo has the capacity to produce extremely divergent phenotypes in response to environmental stimuli. Sexual fate and reproductive mode are condition-dependent in both groups, which are also capable of altering morphology, physiology and behavior in response to biotic and abiotic cues. Recently, the genome sequences for the pea aphid Acyrthosiphon pisum and the waterflea Daphnia pulex were described by their respective research communities. We propose that an integrative study of genome biology focused on the condition-dependent transcriptional basis of their shared plastic traits and specialized mode of reproduction will provide broad insight into adaptive plasticity and genome by environment interactions. We highlight recent advances in understanding the genome regulation of alternative phenotypes and environmental cue processing, and we propose future research avenues to discover gene networks and epigenetic mechanisms underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- INRA, UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, Le Rheu cedex, France.
| | | | | | | | | |
Collapse
|
42
|
Leonardo FC, da Cunha AF, da Silva MJ, Carazzolle MF, Costa-Leonardo AM, Costa FF, Pereira GA. Analysis of the workers head transcriptome of the Asian subterranean termite, Coptotermes gestroi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:383-91. [PMID: 21205397 DOI: 10.1017/s0007485310000556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The lower termite, Coptotermes gestroi (Isoptera: Rhinotermitidae), is originally from Southeast Asia and has become a pest in Brazil. The main goal of this study was to survey C. gestroi transcriptome composition. To accomplish this, we sequenced and analyzed 3003 expressed sequence tags (ESTs) isolated from libraries of worker heads. After assembly, 695 uniESTs were obtained from which 349 have similarity with known sequences. Comparison with insect genomes demonstrated similarity, primarily with genes from Apis mellifera (28%), Tribolium castaneum (28%) and Aedes aegypti (10%). Notably, we identified two endogenous cellulases in the sequences, which may be of interest for biotechnological applications. The results presented in this work represent the first genomic study of the Asian subterranean termite, Coptotermes gestroi.
Collapse
Affiliation(s)
- F C Leonardo
- Laboratório de Genômica e Expressão, Departamento de Genética Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Alvarenga EM, Mondin M, Martins JA, Rodrigues VL, Vidal BC, Rincones J, Carazzolle MF, Andrade LM, Mello MLS. Spatial distribution of AT- and GC-rich DNA within interphase cell nuclei of Triatoma infestans Klug. Micron 2011; 42:568-78. [DOI: 10.1016/j.micron.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 12/26/2022]
|
44
|
Burke GR, Moran NA. Responses of the pea aphid transcriptome to infection by facultative symbionts. INSECT MOLECULAR BIOLOGY 2011; 20:357-365. [PMID: 21382108 DOI: 10.1111/j.1365-2583.2011.01070.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Serratia symbiotica is a facultative symbiont of pea aphids (Acyrthosiphon pisum) that provides tolerance to heat stress. Although the phenotypic effects of facultative symbionts upon hosts have been studied in some detail, little is known about the molecular and genomic basis of these interactions. Previous studies show a large impact of S. symbiotica upon the aphid metabolome. Whole-genome transcriptional profiling and next-generation sequencing demonstrated expression of 94% of RefSeq genes from the pea aphid genome, providing the largest dataset to date on aphid gene expression. However, only 28 genes showed changes in expression with S. symbiotica infection, and these changes were of small magnitude. No expression differences in genes involved in innate immunity in other insects were observed. Therefore, the large metabolic impact of S. symbiotica is most likely a result of metabolism of the symbiont itself, or of post-transcriptional modification of host gene expression. Although S. symbiotica has a major influence on its host's metabolome and resistance to heat, it induces little change in gene expression in its host.
Collapse
Affiliation(s)
- G R Burke
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA.
| | | |
Collapse
|
45
|
Brosch M, Saunders GI, Frankish A, Collins MO, Yu L, Wright J, Verstraten R, Adams DJ, Harrow J, Choudhary JS, Hubbard T. Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected" pseudogenes in the mouse genome. Genome Res 2011; 21:756-67. [PMID: 21460061 PMCID: PMC3083093 DOI: 10.1101/gr.114272.110] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/15/2011] [Indexed: 12/16/2022]
Abstract
Recent advances in proteomic mass spectrometry (MS) offer the chance to marry high-throughput peptide sequencing to transcript models, allowing the validation, refinement, and identification of new protein-coding loci. We present a novel pipeline that integrates highly sensitive and statistically robust peptide spectrum matching with genome-wide protein-coding predictions to perform large-scale gene validation and discovery in the mouse genome for the first time. In searching an excess of 10 million spectra, we have been able to validate 32%, 17%, and 7% of all protein-coding genes, exons, and splice boundaries, respectively. Moreover, we present strong evidence for the identification of multiple alternatively spliced translations from 53 genes and have uncovered 10 entirely novel protein-coding genes, which are not covered in any mouse annotation data sources. One such novel protein-coding gene is a fusion protein that spans the Ins2 and Igf2 loci to produce a transcript encoding the insulin II and the insulin-like growth factor 2-derived peptides. We also report nine processed pseudogenes that have unique peptide hits, demonstrating, for the first time, that they are not just transcribed but are translated and are therefore resurrected into new coding loci. This work not only highlights an important utility for MS data in genome annotation but also provides unique insights into the gene structure and propagation in the mouse genome. All these data have been subsequently used to improve the publicly available mouse annotation available in both the Vega and Ensembl genome browsers (http://vega.sanger.ac.uk).
Collapse
Affiliation(s)
- Markus Brosch
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Gary I. Saunders
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Adam Frankish
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Mark O. Collins
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Lu Yu
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - James Wright
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Ruth Verstraten
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David J. Adams
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jyoti S. Choudhary
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Tim Hubbard
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
46
|
Washietl S, Findeiss S, Müller SA, Kalkhof S, von Bergen M, Hofacker IL, Stadler PF, Goldman N. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA (NEW YORK, N.Y.) 2011; 17:578-94. [PMID: 21357752 PMCID: PMC3062170 DOI: 10.1261/rna.2536111] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors. It uses an explicit statistical model with no machine learning component and can therefore be applied "out of the box," without any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding potential of RNAs previously annotated as "noncoding." RNAcode is open source software and available for all major platforms at http://wash.github.com/rnacode.
Collapse
Affiliation(s)
- Stefan Washietl
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB101SD, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell Mol Life Sci 2011; 68:1297-309. [PMID: 21390549 PMCID: PMC3064905 DOI: 10.1007/s00018-011-0645-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
Abstract
The symbiosis of the pea aphid Acyrthosphion pisum with the bacterium Buchnera aphidicola APS represents the best-studied insect obligate symbiosis. Here we present a refined picture of this symbiosis by linking pre-genomic observations to new genomic data that includes the complete genomes of the eukaryotic and prokaryotic symbiotic partners. In doing so, we address four issues central to understanding the patterns and processes operating at the A. pisum/Buchnera APS interface. These four issues include: (1) lateral gene transfer, (2) host immunity, (3) symbiotic metabolism, and (4) regulation.
Collapse
|
48
|
Willis JD, Oppert B, Oppert C, Klingeman WE, Jurat-Fuentes JL. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae). JOURNAL OF INSECT PHYSIOLOGY 2011; 57:300-306. [PMID: 21126522 DOI: 10.1016/j.jinsphys.2010.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 05/28/2023]
Abstract
The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-β-1,4-glucanase we named TcEG1 (T. castaneum endoglucanase 1). Sequence analysis of a full-length TcEG1 cDNA clone (1356bp) revealed sequence homology to enzymes in glycosyl hydrolase family 9 (GHF9), and verified presence of a change (Gly for Ser) in the conserved catalytic domain for GHF9 cellulases. This TcEG1 cDNA clone was predicted to encode a 49.5kDa protein with a calculated pI of 5.39. Heterologous expression of TcEG1 in Drosophila S2 cell cultures resulted in secretion of a 51-kDa protein, as determined by Western blotting. The expressed protein was used to characterize TcEG1 enzymatic activity against two cellulose substrates to determine its specificity and stability. Our data support that TcEG1 as a novel endo-β-1,4-glucanase, the first functional characterization of a cellulase enzyme derived from an insect genome with potential applications in the biofuel industry due to its high relative activity at alkaline pH.
Collapse
Affiliation(s)
- Jonathan D Willis
- Department of Entomology and Plant Pathology, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4560, USA
| | | | | | | | | |
Collapse
|
49
|
Jia Q, Lin K, Liang J, Yu L, Li F. Discovering conserved insect microRNAs from expressed sequence tags. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1763-1769. [PMID: 20655920 DOI: 10.1016/j.jinsphys.2010.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
MicroRNAs (miRNA) participate in regulating diverse biological pathways by translational repression in animals. They have attracted increasing attention recently. However, little work has been done on the miRNA genes in agriculturally important pests. Because the transcripts of most miRNA genes are the products of type-II RNA polymerase, pri-miRNA has a poly(A) tail and appears in expressed sequence tags (EST). We developed a computational pipeline to identify miRNA genes from insect ESTs. First, 980,697 ESTs from 63 insects were collected and used to search the nr database. The ESTs which did not share significant similarities with any known protein-coding genes were treated as non-coding ESTs. Next, known mature miRNAs were used to align with non-coding ESTs. The ESTs which contain the sequence of mature miRNA were treated as candidate ESTs. Finally, putative precursors were extracted flanking the mature miRNA region in candidate ESTs and evaluated by the Triplet-SVM algorithm. As a result, 86 miRNAs from 30 insect species were found based on a strict criterion while 330 miRNAs from 51 species were found based on a loose criterion. Evolution analysis indicated that mir-467, mir-297 and mir-466 were the highest conserved miRNA families in insects. To confirm the reliability of putative insect miRNAs, the expression profile of nine predicted miRNAs in Locusta migratoria was investigated. Eight miRNAs were successfully detected by RT-PCR. Most miRNAs were expressed ubiquitously at all examined tissues and developmental stages whereas Lmi-mir-509 was specifically expressed in the thorax of the 2nd, 4th and 5th instars and adult locust. In all, our work reported an efficient computational strategy for predicting miRNA genes from insect ESTs and presented tens of miRNAs in diverse insect species which are expected to participate in many important physiological processes.
Collapse
Affiliation(s)
- Qidong Jia
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
50
|
Mitrofanov SI, Panchin AY, Spirin SA, Alexeevski AV, Panchin YV. Exclusive sequences of different genomes. J Bioinform Comput Biol 2010; 8:519-34. [PMID: 20556860 DOI: 10.1142/s0219720010004719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/31/2009] [Accepted: 01/16/2010] [Indexed: 11/18/2022]
Abstract
We studied the distribution of 1-7 bp words in a dataset that includes 139 complete eukaryotic genomes, 33 masked eukaryotic genomes and coding regions from 35 genomes. We tested different statistical models to determine over- and under-represented words. The method described by Karlin et al. has the strongest predictive power compared to other methods. Using this method we identified over- and under-represented words consistent within a large array of taxonomic groups. Some of those words have not yet been described as exclusive. For example, CGCG is over-represented in CG-deficient organisms. We also describe exceptions for widely known exclusive words, such as CG and TA.
Collapse
Affiliation(s)
- Sergey I Mitrofanov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia.
| | | | | | | | | |
Collapse
|