1
|
Muthahari YA, Magnus L, Laurino P. From duplication to fusion: Expanding Dayhoff's model of protein evolution. Protein Sci 2025; 34:e70054. [PMID: 39969106 PMCID: PMC11837038 DOI: 10.1002/pro.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Dayhoff's hypothesis suggests that complex proteins emerged from simpler peptides or domains, which duplicated and fused to create more complex proteins and novel functions. These processes expanded and diversified the protein repertoire within organisms. Extensive studies and reviews over the past two decades have highlighted the impact of gene duplication on protein evolution. However, the role of fusion in this evolutionary narrative remains less understood. This perspective seeks to address this gap by emphasizing the role of fusion in evolution. Fusion is critical in determining the evolutionary fate of duplicated protomers, either preserving their ancestral function or evolving entirely new functions. It complements mutations, insertions, and deletions as evolutionary steps to enhance protein evolvability by expanding the capacity of the protein to explore new structural and functional space.
Collapse
Affiliation(s)
| | - Lilian Magnus
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Institute for Protein ResearchOsaka UniversitySuitaJapan
| |
Collapse
|
2
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. Proc Natl Acad Sci U S A 2025; 122:e2414756122. [PMID: 39847336 PMCID: PMC11789046 DOI: 10.1073/pnas.2414756122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an α2β2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous, binding via the same surface patch on interacting subunits, but rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric and homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Arvind S. Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
- Institute of Protein Design, University of Washington, Seattle, WA98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX77843
| | - Joseph W. Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
- Department of Human Genetics, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Cortez-Romero CR, Lyu J, Pillai AS, Laganowsky A, Thornton JW. Symmetry facilitated the evolution of heterospecificity and high-order stoichiometry in vertebrate hemoglobin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604985. [PMID: 39091803 PMCID: PMC11291130 DOI: 10.1101/2024.07.24.604985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Many proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), aα 2 β 2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition were simple. One hydrophobic substitution in subunit β after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous - involving the same surface patch on interacting subunits, rotated 180° relative to each other. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric vs homomeric interactions. Our findings suggest that elaborate and specific symmetrical molecular complexes may often evolve via simple genetic and physical mechanisms.
Collapse
Affiliation(s)
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Arvind S Pillai
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Institute of Protein Design, University of Washington, Seattle, WA, 98195
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
4
|
Yeh CW, Hsu KL, Lin ST, Huang WC, Yeh KH, Liu CFJ, Wang LC, Li TT, Chen SC, Yu CH, Leu JY, Yeang CH, Yen HCS. Altered assembly paths mitigate interference among paralogous complexes. Nat Commun 2024; 15:7169. [PMID: 39169013 PMCID: PMC11339298 DOI: 10.1038/s41467-024-51286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Protein complexes are fundamental to all cellular processes, so understanding their evolutionary history and assembly processes is important. Gene duplication followed by divergence is considered a primary mechanism for diversifying protein complexes. Nonetheless, to what extent assembly of present-day paralogous complexes has been constrained by their long evolutionary pathways and how cross-complex interference is avoided remain unanswered questions. Subunits of protein complexes are often stabilized upon complex formation, whereas unincorporated subunits are degraded. How such cooperative stability influences protein complex assembly also remains unclear. Here, we demonstrate that subcomplexes determined by cooperative stabilization interactions serve as building blocks for protein complex assembly. We further develop a protein stability-guided method to compare the assembly processes of paralogous complexes in cellulo. Our findings support that oligomeric state and the structural organization of paralogous complexes can be maintained even if their assembly processes are rearranged. Our results indicate that divergent assembly processes by paralogous complexes not only enable the complexes to evolve new functions, but also reinforce their segregation by establishing incompatibility against deleterious hybrid assemblies.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Lun Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chieh Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Li-Chin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ting-Ting Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
5
|
Després PC, Dubé AK, Picard MÈ, Grenier J, Shi R, Landry CR. Compensatory mutations potentiate constructive neutral evolution by gene duplication. Science 2024; 385:770-775. [PMID: 39146405 DOI: 10.1126/science.ado5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The functions of proteins generally depend on their assembly into complexes. During evolution, some complexes have transitioned from homomers encoded by a single gene to heteromers encoded by duplicate genes. This transition could occur without adaptive evolution through intermolecular compensatory mutations. Here, we experimentally duplicated and evolved a homodimeric enzyme to determine whether and how this could happen. We identified hundreds of deleterious mutations that inactivate individual homodimers but produce functional enzymes when coexpressed as duplicated proteins that heterodimerize. The structure of one such heteromer reveals how both losses of function are buffered through the introduction of asymmetry in the complex that allows them to subfunctionalize. Constructive neutral evolution can thus occur by gene duplication followed by only one deleterious mutation per duplicate.
Collapse
Affiliation(s)
- Philippe C Després
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jordan Grenier
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- PROTEO, Le Regroupement Québécois de Recherche sur la Fonction, L'Ingénierie et les Applications des Protéines, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Wiseglass G, Rubinstein R. Following the Evolutionary Paths of Dscam1 Proteins toward Highly Specific Homophilic Interactions. Mol Biol Evol 2024; 41:msae141. [PMID: 38989909 PMCID: PMC11272049 DOI: 10.1093/molbev/msae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.
Collapse
Affiliation(s)
- Gil Wiseglass
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Cisneros AF, Nielly-Thibault L, Mallik S, Levy ED, Landry CR. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol Syst Biol 2024; 20:549-572. [PMID: 38499674 PMCID: PMC11066126 DOI: 10.1038/s44320-024-00030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Biological systems can gain complexity over time. While some of these transitions are likely driven by natural selection, the extent to which they occur without providing an adaptive benefit is unknown. At the molecular level, one example is heteromeric complexes replacing homomeric ones following gene duplication. Here, we build a biophysical model and simulate the evolution of homodimers and heterodimers following gene duplication using distributions of mutational effects inferred from available protein structures. We keep the specific activity of each dimer identical, so their concentrations drift neutrally without new functions. We show that for more than 60% of tested dimer structures, the relative concentration of the heteromer increases over time due to mutational biases that favor the heterodimer. However, allowing mutational effects on synthesis rates and differences in the specific activity of homo- and heterodimers can limit or reverse the observed bias toward heterodimers. Our results show that the accumulation of more complex protein quaternary structures is likely under neutral evolution, and that natural selection would be needed to reverse this tendency.
Collapse
Affiliation(s)
- Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lou Nielly-Thibault
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada.
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada.
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
| |
Collapse
|
8
|
Schweke H, Pacesa M, Levin T, Goverde CA, Kumar P, Duhoo Y, Dornfeld LJ, Dubreuil B, Georgeon S, Ovchinnikov S, Woolfson DN, Correia BE, Dey S, Levy ED. An atlas of protein homo-oligomerization across domains of life. Cell 2024; 187:999-1010.e15. [PMID: 38325366 DOI: 10.1016/j.cell.2024.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Collapse
Affiliation(s)
- Hugo Schweke
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Prasun Kumar
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Yoan Duhoo
- Protein Production and Structure Characterization Core Facility (PTPSP), School of Life Sciences, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin Dubreuil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, India.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Després PC, Dubé AK, Grenier J, Picard MÈ, Shi R, Landry CR. Compensatory mutations potentiate constructive neutral evolution by gene duplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579783. [PMID: 38405844 PMCID: PMC10888846 DOI: 10.1101/2024.02.12.579783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Protein functions generally depend on their assembly into complexes. During evolution, some complexes have transitioned from homomers encoded by a single gene to heteromers encoded by duplicate genes. This transition could occur without adaptive evolution through intermolecular compensatory mutations. Here, we experimentally duplicate and evolve an homodimeric enzyme to examine if and how this could happen. We identify hundreds of deleterious mutations that inactivate individual homodimers but produce functional enzymes when co-expressed as duplicated proteins that heterodimerize. The structure of one such heteromer reveals how both losses of function are buffered through the introduction of asymmetry in the complex that allows them to subfunctionalize. Constructive neutral evolution can thus occur by gene duplication followed by only one deleterious mutation per duplicate.
Collapse
Affiliation(s)
- Philippe C Després
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada
| | - Alexandre K Dubé
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
| | - Jordan Grenier
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
| | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
| |
Collapse
|
10
|
Leblanc S, Brunet MA, Jacques JF, Lekehal AM, Duclos A, Tremblay A, Bruggeman-Gascon A, Samandi S, Brunelle M, Cohen AA, Scott MS, Roucou X. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:515-534. [PMID: 36183975 PMCID: PMC10787177 DOI: 10.1016/j.gpb.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recent proteogenomic approaches have led to the discovery that regions of the transcriptome previously annotated as non-coding regions [i.e., untranslated regions (UTRs), open reading frames overlapping annotated coding sequences in a different reading frame, and non-coding RNAs] frequently encode proteins, termed alternative proteins (altProts). This suggests that previously identified protein-protein interaction (PPI) networks are partially incomplete because altProts are not present in conventional protein databases. Here, we used the proteogenomic resource OpenProt and a combined spectrum- and peptide-centric analysis for the re-analysis of a high-throughput human network proteomics dataset, thereby revealing the presence of 261 altProts in the network. We found 19 genes encoding both an annotated (reference) and an alternative protein interacting with each other. Of the 117 altProts encoded by pseudogenes, 38 are direct interactors of reference proteins encoded by their respective parental genes. Finally, we experimentally validate several interactions involving altProts. These data improve the blueprints of the human PPI network and suggest functional roles for hundreds of altProts.
Collapse
Affiliation(s)
- Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Amina M Lekehal
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Andréa Duclos
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexia Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexis Bruggeman-Gascon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sondos Samandi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Mylène Brunelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Alan A Cohen
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
11
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
12
|
Hu Y, Ewen-Campen B, Comjean A, Rodiger J, Mohr SE, Perrimon N. Paralog Explorer: A resource for mining information about paralogs in common research organisms. Comput Struct Biotechnol J 2022; 20:6570-6577. [PMID: 36467589 PMCID: PMC9712503 DOI: 10.1016/j.csbj.2022.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Paralogs are genes which arose via gene duplication, and when such paralogs retain overlapping or redundant function, this poses a challenge to functional genetics research. Recent technological advancements have made it possible to systematically probe gene function for redundant genes using dual or multiplex gene perturbation, and there is a need for a simple bioinformatic tool to identify putative paralogs of a gene(s) of interest. We have developed Paralog Explorer (https://www.flyrnai.org/tools/paralogs/), an online resource that allows researchers to quickly and accurately identify candidate paralogous genes in the genomes of the model organisms D. melanogaster, C. elegans, D. rerio, M. musculus, and H. sapiens. Paralog Explorer deploys an effective between-species ortholog prediction software, DIOPT, to analyze within-species paralogs. Paralog Explorer allows users to identify candidate paralogs, and to navigate relevant databases regarding gene co-expression, protein-protein and genetic interaction, as well as gene ontology and phenotype annotations. Altogether, this tool extends the value of current ortholog prediction resources by providing sophisticated features useful for identification and study of paralogous genes.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| |
Collapse
|
13
|
Mallik S, Tawfik DS, Levy ED. How gene duplication diversifies the landscape of protein oligomeric state and function. Curr Opin Genet Dev 2022; 76:101966. [PMID: 36007298 PMCID: PMC9548406 DOI: 10.1016/j.gde.2022.101966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Oligomeric proteins are central to cellular life and the duplication and divergence of their genes is a key driver of evolutionary innovations. The duplication of a gene coding for an oligomeric protein has numerous possible outcomes, which motivates questions on the relationship between structural and functional divergence. How do protein oligomeric states diversify after gene duplication? In the simple case of duplication of a homo-oligomeric protein gene, what properties can influence the fate of descendant paralogs toward forming independent homomers or maintaining their interaction as a complex? Furthermore, how are functional innovations associated with the diversification of oligomeric states? Here, we review recent literature and present specific examples in an attempt to illustrate and answer these questions.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Reply to Ocklenburg and Mundorf: The interplay of developmental bias and natural selection. Proc Natl Acad Sci U S A 2022; 119:e2205299119. [PMID: 35787035 PMCID: PMC9282226 DOI: 10.1073/pnas.2205299119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Li Y, Zhang R, Wang C, Forouhar F, Clarke OB, Vorobiev S, Singh S, Montelione GT, Szyperski T, Xu Y, Hunt JF. Oligomeric interactions maintain active-site structure in a noncooperative enzyme family. EMBO J 2022; 41:e108368. [PMID: 35801308 DOI: 10.15252/embj.2021108368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/09/2022] Open
Abstract
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chi Wang
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Cryo-Electron Microscopy Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Farhad Forouhar
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA.,Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics and Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Vorobiev
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Shikha Singh
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Department of Chemistry & Chemical Biology and Center for Biotechnology & Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - John F Hunt
- Department of Biological Sciences, 702 Sherman Fairchild Center, MC2434, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Wang Y, Wang LL, Wong L, Li Y, Wang L, You ZH. SIPGCN: A Novel Deep Learning Model for Predicting Self-Interacting Proteins from Sequence Information Using Graph Convolutional Networks. Biomedicines 2022; 10:biomedicines10071543. [PMID: 35884848 PMCID: PMC9313220 DOI: 10.3390/biomedicines10071543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Protein is the basic organic substance that constitutes the cell and is the material condition for the life activity and the guarantee of the biological function activity. Elucidating the interactions and functions of proteins is a central task in exploring the mysteries of life. As an important protein interaction, self-interacting protein (SIP) has a critical role. The fast growth of high-throughput experimental techniques among biomolecules has led to a massive influx of available SIP data. How to conduct scientific research using the massive amount of SIP data has become a new challenge that is being faced in related research fields such as biology and medicine. In this work, we design an SIP prediction method SIPGCN using a deep learning graph convolutional network (GCN) based on protein sequences. First, protein sequences are characterized using a position-specific scoring matrix, which is able to describe the biological evolutionary message, then their hidden features are extracted by the deep learning method GCN, and, finally, the random forest is utilized to predict whether there are interrelationships between proteins. In the cross-validation experiment, SIPGCN achieved 93.65% accuracy and 99.64% specificity in the human data set. SIPGCN achieved 90.69% and 99.08% of these two indicators in the yeast data set, respectively. Compared with other feature models and previous methods, SIPGCN showed excellent results. These outcomes suggest that SIPGCN may be a suitable instrument for predicting SIP and may be a reliable candidate for future wet experiments.
Collapse
Affiliation(s)
- Ying Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China;
| | - Lin-Lin Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China;
- Correspondence: (L.-L.W.); (L.W.)
| | - Leon Wong
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (L.W.); (Z.-H.Y.)
| | - Yang Li
- School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China;
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (L.W.); (Z.-H.Y.)
- Correspondence: (L.-L.W.); (L.W.)
| | - Zhu-Hong You
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (L.W.); (Z.-H.Y.)
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
17
|
Schulz L, Sendker FL, Hochberg GKA. Non-adaptive complexity and biochemical function. Curr Opin Struct Biol 2022; 73:102339. [PMID: 35247750 DOI: 10.1016/j.sbi.2022.102339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Intricate biochemical structures are usually thought to be useful, because natural selection preserves them from degradation by a constant hail of destructive mutations. Biochemists therefore often deliberately disrupt them to understand how complexity improves protein function or fitness. However, evolutionary theory suggests that even useless complexity that never improved fitness can become completely essential if a simple set of evolutionary conditions is fulfilled. We review evidence that stable protein complexes, protein-chaperone interactions, and complexes consisting of several paralogs all fulfill these conditions. This makes reverse genetics or destructive mutagenesis unsuitable for assigning functions to these kinds of complexity. Instead, we advocate that incorporating evolutionary approaches into biochemistry overcomes this difficulty and allows us to distinguish useless from useful biochemical complexity.
Collapse
Affiliation(s)
- Luca Schulz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany. https://twitter.com/schulluc
| | - Franziska L Sendker
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany. https://twitter.com/SendkerFL
| | - Georg K A Hochberg
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein-Straße 6, 35032 Marburg, Germany.
| |
Collapse
|
18
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
19
|
Jouffrey V, Leonard AS, Ahnert SE. Gene duplication and subsequent diversification strongly affect phenotypic evolvability and robustness. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201636. [PMID: 34168886 PMCID: PMC8220273 DOI: 10.1098/rsos.201636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
We study the effects of non-determinism and gene duplication on the structure of genotype-phenotype (GP) maps by introducing a non-deterministic version of the Polyomino self-assembly model. This model has previously been used in a variety of contexts to model the assembly and evolution of protein quaternary structure. Firstly, we show the limit of the current deterministic paradigm which leads to built-in anti-correlation between evolvability and robustness at the genotypic level. We develop a set of metrics to measure structural properties of GP maps in a non-deterministic setting and use them to evaluate the effects of gene duplication and subsequent diversification. Our generalized versions of evolvability and robustness exhibit positive correlation for a subset of genotypes. This positive correlation is only possible because non-deterministic phenotypes can contribute to both robustness and evolvability. Secondly, we show that duplication increases robustness and reduces evolvability initially, but that the subsequent diversification that duplication enables has a stronger, inverse effect, greatly increasing evolvability and reducing robustness relative to their original values.
Collapse
Affiliation(s)
- V. Jouffrey
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - A. S. Leonard
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - S. E. Ahnert
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
20
|
Ascencio D, Diss G, Gagnon-Arsenault I, Dubé AK, DeLuna A, Landry CR. Expression attenuation as a mechanism of robustness against gene duplication. Proc Natl Acad Sci U S A 2021; 118:e2014345118. [PMID: 33526669 PMCID: PMC7970654 DOI: 10.1073/pnas.2014345118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene duplication is ubiquitous and a major driver of phenotypic diversity across the tree of life, but its immediate consequences are not fully understood. Deleterious effects would decrease the probability of retention of duplicates and prevent their contribution to long-term evolution. One possible detrimental effect of duplication is the perturbation of the stoichiometry of protein complexes. Here, we measured the fitness effects of the duplication of 899 essential genes in the budding yeast using high-resolution competition assays. At least 10% of genes caused a fitness disadvantage when duplicated. Intriguingly, the duplication of most protein complex subunits had small to nondetectable effects on fitness, with few exceptions. We selected four complexes with subunits that had an impact on fitness when duplicated and measured the impact of individual gene duplications on their protein-protein interactions. We found that very few duplications affect both fitness and interactions. Furthermore, large complexes such as the 26S proteasome are protected from gene duplication by attenuation of protein abundance. Regulatory mechanisms that maintain the stoichiometric balance of protein complexes may protect from the immediate effects of gene duplication. Our results show that a better understanding of protein regulation and assembly in complexes is required for the refinement of current models of gene duplication.
Collapse
Affiliation(s)
- Diana Ascencio
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Guillaume Diss
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre K Dubé
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico
| | - Christian R Landry
- Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC G1V 0A6, Canada;
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche en Données Massives de l'Université Laval, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
21
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Kocyła A, Tran JB, Krężel A. Galvanization of Protein-Protein Interactions in a Dynamic Zinc Interactome. Trends Biochem Sci 2020; 46:64-79. [PMID: 32958327 DOI: 10.1016/j.tibs.2020.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The presence of Zn2+ at protein-protein interfaces modulates complex function, stability, and introduces structural flexibility/complexity, chemical selectivity, and reversibility driven in a Zn2+-dependent manner. Recent studies have demonstrated that dynamically changing Zn2+ affects numerous cellular processes, including protein-protein communication and protein complex assembly. How Zn2+-involved protein-protein interactions (ZPPIs) are formed and dissociate and how their stability and reactivity are driven in a zinc interactome remain poorly understood, mostly due to experimental obstacles. Here, we review recent research advances on the role of Zn2+ in the formation of interprotein sites, their architecture, function, and stability. Moreover, we underline the importance of zinc networks in intersystemic communication and highlight bioinformatic and experimental challenges required for the identification and investigation of ZPPIs.
Collapse
Affiliation(s)
- Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Józef Ba Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
23
|
Mallik S, Tawfik DS. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput Biol 2020; 16:e1008145. [PMID: 32853212 PMCID: PMC7480870 DOI: 10.1371/journal.pcbi.1008145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/09/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomeric proteins are central to life. Duplication and divergence of their genes is a key evolutionary driver, also because duplications can yield very different outcomes. Given a homomeric ancestor, duplication can yield two paralogs that form two distinct homomeric complexes, or a heteromeric complex comprising both paralogs. Alternatively, one paralog remains a homomer while the other acquires a new partner. However, so far, conflicting trends have been noted with respect to which fate dominates, primarily because different methods and criteria are being used to assign the interaction status of paralogs. Here, we systematically analyzed all Saccharomyces cerevisiae and Escherichia coli oligomeric complexes that include paralogous proteins. We found that the proportions of homo-hetero duplication fates strongly depend on a variety of factors, yet that nonetheless, rigorous filtering gives a consistent picture. In E. coli about 50%, of the paralogous pairs appear to have retained the ancestral homomeric interaction, whereas in S. cerevisiae only ~10% retained a homomeric state. This difference was also observed when unique complexes were counted instead of paralogous gene pairs. We further show that this difference is accounted for by multiple cases of heteromeric yeast complexes that share common ancestry with homomeric bacterial complexes. Our analysis settles contradicting trends and conflicting previous analyses, and provides a systematic and rigorous pipeline for delineating the fate of duplicated oligomers in any organism for which protein-protein interaction data are available. About half of all proteins assemble as oligomers, either by self-interaction (homomers) or via interaction with another protein (heteromers). The latter can be unrelated, yet, quite commonly, the interacting proteins are paralogs, namely two genes that arose by gene duplication. Indeed, while a homomer is encoded by a single gene, heteromers demand two genes as a minimum. Duplication can therefore yield two discrete homomeric complexes or a single heteromer. Do paralogs tend to retain the ancestral homomeric interaction, or do they mostly diverge into heteromeric complexes? Despite several studies addressing this question, to date, we lack a systematic, rigorous approach for delineating the oligomeric fates of paralogs on an organism scale. To this end, we developed a new pipeline for analysis of molecular interaction databases that includes various filtering steps and unambiguous definitions of all possible oligomeric fates. Applying this method to Escherichia coli and Saccharomyces cerevisiae we noted that paralogous pairs tend to remain homomeric in the former while in the latter heteromeric complexes dominate. We consequently note a systematic trend of homomeric bacterial proteins diverging into heteromeric complexes in eukaryotes.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
24
|
Dadinova LA, Soshinskaia EY, Jeffries CM, Svergun DI, Shtykova EV. Tetrameric Structures of Inorganic CBS-Pyrophosphatases from Various Bacterial Species Revealed by Small-Angle X-ray Scattering in Solution. Biomolecules 2020; 10:E564. [PMID: 32272694 PMCID: PMC7226116 DOI: 10.3390/biom10040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
Quaternary structure of CBS-pyrophosphatases (CBS-PPases), which belong to the PPases of family II, plays an important role in their function ensuring cooperative behavior of the enzymes. Despite an intensive research, high resolution structures of the full-length CBS-PPases are not yet available making it difficult to determine the signal transmission path from the regulatory to the active center. In the present work, small-angle X-ray scattering (SAXS) combined with size-exclusion chromatography was applied to determine the solution structures of the full-length wild-type CBS-PPases from three different bacterial species. Previously, in the absence of an experimentally determined full-length CBS-PPase structure, a homodimeric model of the enzyme based on known crystal structures of the CBS domain and family II PPase without this domain has been proposed. Our SAXS analyses demonstrate, for the first time, the existence of stable tetramers in solution for all studied CBS-PPases from different sources. Our findings show that further studies are required to establish the functional properties of these enzymes. This is important not only to enhance our understanding of the relation between CBS-PPases structure and function under normal conditions but also because some human pathogens harbor this class of enzymes.
Collapse
Affiliation(s)
- Liubov A. Dadinova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (E.Y.S.); (E.V.S.)
| | - Ekaterina Yu. Soshinskaia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (E.Y.S.); (E.V.S.)
| | - Cy M. Jeffries
- EMBL, Hamburg Unit, c/o DESY, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany; (C.M.J.); (D.I.S.)
| | - Dmitri I. Svergun
- EMBL, Hamburg Unit, c/o DESY, Notkestr. 85, Geb. 25a, 22607 Hamburg, Germany; (C.M.J.); (D.I.S.)
| | - Eleonora V. Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; (E.Y.S.); (E.V.S.)
| |
Collapse
|
25
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 2020; 18:23. [PMID: 32122335 PMCID: PMC7052976 DOI: 10.1186/s12915-020-0754-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. Results We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. Conclusions The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Olga Flegontova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vladimír Hampl
- Faculty of Science, Charles University, Biocev, Vestec, Czech Republic
| | - Patrick Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Denis Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, Canada.,Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Present address: Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic. .,Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
27
|
Dandage R, Landry CR. Paralog dependency indirectly affects the robustness of human cells. Mol Syst Biol 2019; 15:e8871. [PMID: 31556487 PMCID: PMC6757259 DOI: 10.15252/msb.20198871] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
The protective redundancy of paralogous genes partly relies on the fact that they carry their functions independently. However, a significant fraction of paralogous proteins may form functionally dependent pairs, for instance, through heteromerization. As a consequence, one could expect these heteromeric paralogs to be less protective against deleterious mutations. To test this hypothesis, we examined the robustness landscape of gene loss-of-function by CRISPR-Cas9 in more than 450 human cell lines. This landscape shows regions of greater deleteriousness to gene inactivation as a function of key paralog properties. Heteromeric paralogs are more likely to occupy such regions owing to their high expression and large number of protein-protein interaction partners. Further investigation revealed that heteromers may also be under stricter dosage balance, which may also contribute to the higher deleteriousness upon gene inactivation. Finally, we suggest that physical dependency may contribute to the deleteriousness upon loss-of-function as revealed by the correlation between the strength of interactions between paralogs and their higher deleteriousness upon loss of function.
Collapse
Affiliation(s)
- Rohan Dandage
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| | - Christian R Landry
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| |
Collapse
|
28
|
Marchant A, Cisneros AF, Dubé AK, Gagnon-Arsenault I, Ascencio D, Jain H, Aubé S, Eberlein C, Evans-Yamamoto D, Yachie N, Landry CR. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 2019; 8:46754. [PMID: 31454312 PMCID: PMC6711710 DOI: 10.7554/elife.46754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/11/2019] [Indexed: 01/07/2023] Open
Abstract
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Axelle Marchant
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Alexandre K Dubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Isabelle Gagnon-Arsenault
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Diana Ascencio
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Honey Jain
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India
| | - Simon Aubé
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Chris Eberlein
- PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| | - Daniel Evans-Yamamoto
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nozomu Yachie
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.,PROTEO, le réseau québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Université Laval, Québec, Canada.,Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada.,Département de biologie, Université Laval, Québec, Canada
| |
Collapse
|
29
|
Leonard AS, Ahnert SE. Evolution of interface binding strengths in simplified model of protein quaternary structure. PLoS Comput Biol 2019; 15:e1006886. [PMID: 31158218 PMCID: PMC6564041 DOI: 10.1371/journal.pcbi.1006886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/13/2019] [Accepted: 05/11/2019] [Indexed: 11/18/2022] Open
Abstract
The self-assembly of proteins into protein quaternary structures is of fundamental importance to many biological processes, and protein misassembly is responsible for a wide range of proteopathic diseases. In recent years, abstract lattice models of protein self-assembly have been used to simulate the evolution and assembly of protein quaternary structure, and to provide a tractable way to study the genotype-phenotype map of such systems. Here we generalize these models by representing the interfaces as mutable binary strings. This simple change enables us to model the evolution of interface strengths, interface symmetry, and deterministic assembly pathways. Using the generalized model we are able to reproduce two important results established for real protein complexes: The first is that protein assembly pathways are under evolutionary selection to minimize misassembly. The second is that the assembly pathway of a complex mirrors its evolutionary history, and that both can be derived from the relative strengths of interfaces. These results demonstrate that the generalized lattice model offers a powerful new idealized framework to facilitate the study of protein self-assembly processes and their evolution.
Collapse
Affiliation(s)
- Alexander S. Leonard
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Sebastian E. Ahnert
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Abstract
The emergence of eukaryotes from ancient prokaryotic lineages embodied a remarkable increase in cellular complexity. While prokaryotes operate simple systems to connect DNA to the segregation machinery during cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually similar, prokaryotic segregation systems and the eukaryotic kinetochore are not homologous. Here we investigate the origins of the kinetochore before the last eukaryotic common ancestor (LECA) using phylogenetic trees, sensitive profile-versus-profile homology detection, and structural comparisons of its protein components. We show that LECA's kinetochore proteins share deep evolutionary histories with proteins involved in a few prokaryotic systems and a multitude of eukaryotic processes, including ubiquitination, transcription, and flagellar and vesicular transport systems. We find that gene duplications played a major role in shaping the kinetochore; more than half of LECA's kinetochore proteins have other kinetochore proteins as closest homologs. Some of these have no detectable homology to any other eukaryotic protein, suggesting that they arose as kinetochore-specific folds before LECA. We propose that the primordial kinetochore evolved from proteins involved in various (pre)eukaryotic systems as well as evolutionarily novel folds, after which a subset duplicated to give rise to the complex kinetochore of LECA.
Collapse
|
31
|
Koch I, Schäfer T. Protein super-secondary structure and quaternary structure topology: theoretical description and application. Curr Opin Struct Biol 2018; 50:134-143. [DOI: 10.1016/j.sbi.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/26/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
|
32
|
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 2018; 359:930-935. [PMID: 29472485 PMCID: PMC6587588 DOI: 10.1126/science.aam7229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dale A Shepherd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Indu Santhanagoplan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Matteo T Degiacomi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Arthur Laganowsky
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Eman Basha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael T Marty
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
33
|
Dey S, Levy ED. Inferring and Using Protein Quaternary Structure Information from Crystallographic Data. Methods Mol Biol 2018; 1764:357-375. [PMID: 29605927 DOI: 10.1007/978-1-4939-7759-8_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A precise knowledge of the quaternary structure of proteins is essential to illuminate both their function and their evolution. The major part of our knowledge on quaternary structure is inferred from X-ray crystallography data, but this inference process is hard and error-prone. The difficulty lies in discriminating fortuitous protein contacts, which make up the lattice of protein crystals, from biological protein contacts that exist in the native cellular environment. Here, we review methods devised to discriminate between both types of contacts and describe resources for downloading protein quaternary structure information and identifying high-confidence quaternary structures. The use of high-confidence datasets of quaternary structures will be critical for the analysis of structural, functional, and evolutionary properties of proteins.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
34
|
Abstract
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Collapse
Affiliation(s)
- Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, Commissariat à l'énergie Atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), University Paris Sud, University Paris Saclay, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
35
|
PDB-wide identification of biological assemblies from conserved quaternary structure geometry. Nat Methods 2017; 15:67-72. [DOI: 10.1038/nmeth.4510] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
|
36
|
Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci 2017; 42:850-861. [PMID: 28964624 PMCID: PMC5660625 DOI: 10.1016/j.tibs.2017.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Collapse
Affiliation(s)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
37
|
Diss G, Gagnon-Arsenault I, Dion-Coté AM, Vignaud H, Ascencio DI, Berger CM, Landry CR. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 2017; 355:630-634. [PMID: 28183979 DOI: 10.1126/science.aai7685] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.
Collapse
Affiliation(s)
- Guillaume Diss
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Anne-Marie Dion-Coté
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Hélène Vignaud
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Diana I Ascencio
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.,Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Caroline M Berger
- Département de Biologie, Université Laval, Québec, QC, Canada.,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Christian R Landry
- Département de Biologie, Université Laval, Québec, QC, Canada. .,The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| |
Collapse
|
38
|
Signalling assemblies: the odds of symmetry. Biochem Soc Trans 2017; 45:599-611. [PMID: 28620024 DOI: 10.1042/bst20170009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The assembly of proteins into complexes is fundamental to nearly all biological signalling processes. Symmetry is a dominant feature of the structures of experimentally determined protein complexes, observed in the vast majority of homomers and many heteromers. However, some asymmetric structures exist, and asymmetry also often forms transiently, intractable to traditional structure determination methods. Here, we explore the role of protein complex symmetry and asymmetry in cellular signalling, focusing on receptors, transcription factors and transmembrane channels, among other signalling assemblies. We highlight a recurrent tendency for asymmetry to be crucial for signalling function, often being associated with activated states. We conclude with a discussion of how consideration of protein complex symmetry and asymmetry has significant potential implications and applications for pharmacology and human disease.
Collapse
|
39
|
Pál C, Papp B. Evolution of complex adaptations in molecular systems. Nat Ecol Evol 2017; 1:1084-1092. [PMID: 28782044 PMCID: PMC5540182 DOI: 10.1038/s41559-017-0228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular 'springboards', such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths.
Collapse
Affiliation(s)
- Csaba Pál
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary
| |
Collapse
|
40
|
Jiao W, Blackmore NJ, Nazmi AR, Parker EJ. Quaternary structure is an essential component that contributes to the sophisticated allosteric regulation mechanism in a key enzyme from Mycobacterium tuberculosis. PLoS One 2017; 12:e0180052. [PMID: 28665948 PMCID: PMC5493349 DOI: 10.1371/journal.pone.0180052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 01/26/2023] Open
Abstract
The first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS), adopts a range of distinct allosteric regulation mechanisms in different organisms, related to different quaternary assemblies. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) is a homotetramer, with the allosteric sites in close proximity to the interfaces. Here we examine the importance of the quaternary structure on catalysis and regulation, by amino acid substitution targeting the tetramer interface of MtuDAH7PS. Using only single amino acid substitutions either in, or remote from the interface, two dimeric variants of MtuDAH7PS (MtuDAH7PSF227D and MtuDAH7PSG232P) were successfully generated. Both dimeric variants maintained activity due to the distance between the sites of amino acid substitution and the active sites, but attenuated catalytic efficiency was observed. Both dimeric variants showed significantly disrupted allosteric regulation with greatly impaired binding affinity for one of the allosteric ligands. Molecular dynamics simulations revealed changes in protein dynamics and average conformations in the dimeric variant caused by amino acid substitution remote to the tetramer interface (MtuDAH7PSG232P), which are consistent with the observed reduction in catalytic efficiency and loss of allosteric response.
Collapse
Affiliation(s)
- Wanting Jiao
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Nicola J. Blackmore
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Ali Reza Nazmi
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Emily J. Parker
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
41
|
van Hooff JJE, Snel B, Kops GJPL. Unique Phylogenetic Distributions of the Ska and Dam1 Complexes Support Functional Analogy and Suggest Multiple Parallel Displacements of Ska by Dam1. Genome Biol Evol 2017; 9:1295-1303. [PMID: 28472331 PMCID: PMC5439489 DOI: 10.1093/gbe/evx088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Faithful chromosome segregation relies on kinetochores, the large protein complexes that connect chromatin to spindle microtubules. Although human and yeast kinetochores are largely homologous, they track microtubules with the unrelated protein complexes Ska (Ska-C, human) and Dam1 (Dam1-C, yeast). We here uncovered that Ska-C and Dam1-C are both widespread among eukaryotes, but in an exceptionally inverse manner, supporting their functional analogy. Within the complexes, all Ska-C and various Dam1-C subunits are ancient paralogs, showing that gene duplication shaped these complexes. We examined various evolutionary scenarios to explain the nearly mutually exclusive patterns of Ska-C and Dam1-C in present-day species. We propose that Ska-C was present in the last eukaryotic common ancestor, that subsequently Dam1-C displaced Ska-C in an early fungus and was horizontally transferred to diverse non-fungal lineages, displacing Ska-C in these lineages too.
Collapse
Affiliation(s)
- Jolien J. E. van Hooff
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
- Molecular Cancer Research, University Medical Center Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
42
|
Rouet R, Langley DB, Schofield P, Christie M, Roome B, Porebski BT, Buckle AM, Clifton BE, Jackson CJ, Stock D, Christ D. Structural reconstruction of protein ancestry. Proc Natl Acad Sci U S A 2017; 114:3897-3902. [PMID: 28356519 PMCID: PMC5393204 DOI: 10.1073/pnas.1613477114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ancestral protein reconstruction allows the resurrection and characterization of ancient proteins based on computational analyses of sequences of modern-day proteins. Unfortunately, many protein families are highly divergent and not suitable for sequence-based reconstruction approaches. This limitation is exemplified by the antigen receptors of jawed vertebrates (B- and T-cell receptors), heterodimers formed by pairs of Ig domains. These receptors are believed to have evolved from an extinct homodimeric ancestor through a process of gene duplication and diversification; however molecular evidence has so far remained elusive. Here, we use a structural approach and laboratory evolution to reconstruct such molecules and characterize their interaction with antigen. High-resolution crystal structures of reconstructed homodimeric receptors in complex with hen-egg white lysozyme demonstrate how nanomolar affinity binding of asymmetrical antigen is enabled through selective recruitment and structural plasticity within the receptor-binding site. Our results provide structural evidence in support of long-held theories concerning the evolution of antigen receptors, and provide a blueprint for the experimental reconstruction of protein ancestry in the absence of phylogenetic evidence.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - David B Langley
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Mary Christie
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Brendan Roome
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Daniela Stock
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia;
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
43
|
Shih O, Yeh YQ, Liao KF, Sung TC, Chiang YW, Jeng US. Oligomerization process of Bcl-2 associated X protein revealed from intermediate structures in solution. Phys Chem Chem Phys 2017; 19:7947-7954. [DOI: 10.1039/c6cp08820a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear oligomerization of ditopic BAX-dimers into tri-dimer helical units then into a rod-like structure, as revealed using integrated ESR/SAXS/MD analyses.
Collapse
Affiliation(s)
- Orion Shih
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Tai-Ching Sung
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
- Department of Chemical Engineering
- National Tsing Hua University
| |
Collapse
|
44
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
45
|
Mier P, Alanis-Lobato G, Andrade-Navarro MA. Protein-protein interactions can be predicted using coiled coil co-evolution patterns. J Theor Biol 2016; 412:198-203. [PMID: 27832945 DOI: 10.1016/j.jtbi.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/29/2022]
Abstract
Protein-protein interactions are sometimes mediated by coiled coil structures. The evolutionary conservation of interacting orthologs in different species, along with the presence or absence of coiled coils in them, may help in the prediction of interacting pairs. Here, we illustrate how the presence of coiled coils in a protein can be exploited as a potential indicator for its interaction with another protein with coiled coils. The prediction capability of our strategy improves when restricting our dataset to highly reliable, known protein-protein interactions. Our study of the co-evolution of coiled coils demonstrates that pairs of interacting proteins can be distinguished from not interacting pairs by means of their structural information. This hints at the potential of our strategy to predict new protein-protein interactions.
Collapse
Affiliation(s)
- Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
46
|
Yeates TO, Liu Y, Laniado J. The design of symmetric protein nanomaterials comes of age in theory and practice. Curr Opin Struct Biol 2016; 39:134-143. [DOI: 10.1016/j.sbi.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
|
47
|
Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies. J Mol Graph Model 2016; 65:1-7. [DOI: 10.1016/j.jmgm.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 02/06/2016] [Indexed: 01/27/2023]
|
48
|
Deshmukh R, Singh VK, Singh BD. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris. Genetica 2016; 144:229-41. [PMID: 26961357 DOI: 10.1007/s10709-016-9893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/04/2016] [Indexed: 12/24/2022]
Abstract
The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.
Collapse
Affiliation(s)
- Reena Deshmukh
- Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India
| | - V K Singh
- Faculty of Science, Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India
| | - B D Singh
- Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
49
|
Kaltenegger E, Ober D. Paralogue Interference Affects the Dynamics after Gene Duplication. TRENDS IN PLANT SCIENCE 2015; 20:814-821. [PMID: 26638775 DOI: 10.1016/j.tplants.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Department of Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, 24098 Kiel, Germany.
| | - Dietrich Ober
- Department of Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, 24098 Kiel, Germany
| |
Collapse
|
50
|
Lara-Gonzalez S, Estrella P, Portillo C, Cruces ME, Jimenez-Sandoval P, Fattori J, Migliorini-Figueira AC, Lopez-Hidalgo M, Diaz-Quezada C, Lopez-Castillo M, Trasviña-Arenas CH, Sanchez-Sandoval E, Gómez-Puyou A, Ortega-Lopez J, Arroyo R, Benítez-Cardoza CG, Brieba LG. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis. PLoS One 2015; 10:e0141747. [PMID: 26618356 PMCID: PMC4664265 DOI: 10.1371/journal.pone.0141747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/11/2015] [Indexed: 11/29/2022] Open
Abstract
The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.
Collapse
Affiliation(s)
- Samuel Lara-Gonzalez
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, CP 78216, San Luis Potosí, San Luis Potosí, México
| | - Priscilla Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - Carmen Portillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - María E. Cruces
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Juliana Fattori
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais Campinas SP, Brazil
| | - Ana C. Migliorini-Figueira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais Campinas SP, Brazil
| | - Marisol Lopez-Hidalgo
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - Margarita Lopez-Castillo
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - Eugenia Sanchez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
| | - Armando Gómez-Puyou
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Col. San Pedro Zacatenco, Av. IPN, 2508, C.P. 07360, D.F., México
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Col. San Pedro Zacatenco, Av. IPN, 2508, C.P. 07360, D.F., México
| | - Claudia G. Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
- * E-mail: (LGB); (CGB)
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36500, Irapuato, Guanajuato, México
- * E-mail: (LGB); (CGB)
| |
Collapse
|