1
|
Liu LC, Chen YH, Lu DW. The Application of Rho Kinase Inhibitors in the Management of Glaucoma. Int J Mol Sci 2024; 25:5576. [PMID: 38891764 PMCID: PMC11171673 DOI: 10.3390/ijms25115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Glaucoma is a chronic neurodegenerative disease that poses a significant threat of irreversible blindness worldwide. Current treatments for glaucoma focus on reducing intraocular pressure (IOP), which is the only modifiable risk factor. Traditional anti-glaucomatous agents, including carbonic anhydrase inhibitors, beta-blockers, alpha-2 agonists, and prostaglandin analogs, work by either improving uveoscleral outflow or reducing aqueous humor production. Rho kinase (ROCK) inhibitors represent a novel class of anti-glaucomatous drugs that have emerged from bench to bedside in the past decade, offering multifunctional characteristics. Unlike conventional medications, ROCK inhibitors directly target the trabecular meshwork outflow pathway. This review aims to discuss the mechanism of ROCK inhibitors in reducing IOP, providing neuroprotection, and preventing fibrosis. We also highlight recent studies and clinical trials evaluating the efficacy and safety of ROCK inhibitors, compare them with other clinical anti-glaucomatous medications, and outline future prospects for ROCK inhibitors in glaucoma treatment.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
2
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of multiple Eph receptors on neuronal membranes correlates with the onset of optic neuropathy. EYE AND VISION (LONDON, ENGLAND) 2023; 10:42. [PMID: 37779186 PMCID: PMC10544557 DOI: 10.1186/s40662-023-00359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA
| | - Juan Esquivel
- Department of Physics, University of Florida College of Liberal Arts and Sciences, Gainesville, FL, USA
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Paul J Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Vrapciu AD, Rusu MC, Jianu AM, Motoc AGM, Nicolescu MI. Astrocytes - friends or foes in neurodegenerative disorders. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:305-309. [PMID: 37867348 PMCID: PMC10720932 DOI: 10.47162/rjme.64.3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Astrocytes (AS) are the most abundant glial cells in the central nervous system (CNS). They have various morphologies and numerous (50-60) branching prolongations, with roles in the maintenance of the CNS function and homeostasis. AS in the optic nerve head (ONH) have specific distribution and function and are involved in the pathogenesis of glaucoma and other neural diseases, modify their morphologies, location, immune phenotype, and ultrastructure, thus being the key players in the active remodeling processes of the ONH.
Collapse
Affiliation(s)
- Alexandra Diana Vrapciu
- Discipline of Anatomy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | | | | | |
Collapse
|
5
|
Strong TA, Esquivel J, Wang Q, Ledon PJ, Wang H, Gaidosh G, Tse D, Pelaez D. Activation of Multiple Eph Receptors on Neuronal Membranes Correlates with The Onset of Traumatic Optic Neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543735. [PMID: 37333178 PMCID: PMC10274644 DOI: 10.1101/2023.06.05.543735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.
Collapse
Affiliation(s)
- Thomas A. Strong
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
| | - Juan Esquivel
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Qikai Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Paul J. Ledon
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hua Wang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Gabriel Gaidosh
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - David Tse
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Biomedical Engineering, University of Miami College of Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
6
|
Narta K, Teltumbade MR, Vishal M, Sadaf S, Faruq M, Jama H, Waseem N, Rao A, Sen A, Ray K, Mukhopadhyay A. Whole Exome Sequencing Reveals Novel Candidate Genes in Familial Forms of Glaucomatous Neurodegeneration. Genes (Basel) 2023; 14:495. [PMID: 36833422 PMCID: PMC9957298 DOI: 10.3390/genes14020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.
Collapse
Affiliation(s)
- Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Ramesh Teltumbade
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vishal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samreen Sadaf
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
| | - Mohd. Faruq
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hodan Jama
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Naushin Waseem
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Aparna Rao
- L. V. Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Kunal Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Translational Medicine Unit, Biomedical Research & Innovation Centre, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
7
|
Nagar AM, Maghsoudlou P, Wormald R, Barton K, Hysi P, Lim KS. Differences in the Surgical Outcomes of Glaucoma Surgery in Patients of African Caribbean Descent. Curr Eye Res 2022; 47:1567-1577. [PMID: 36214781 DOI: 10.1080/02713683.2022.2126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE People of African Caribbean Descent (ACD) have a higher prevalence of glaucoma compared to people of European Descent (ED) and there is uncertainty if treatment outcomes are equivalent between the two groups. To assess surgical failure rates comparing ACD with ED focusing on trabeculectomy, aqueous shunt implantation, non-penetrating filtering surgery (NPFS), and minimally invasive glaucoma surgery (MIGS) by performing a systematic review in accordance with the PRISMA guidelines and to determine whether there is any evidence in to show a difference in success rates based on race. METHODS A systematic review of articles using the CENTRAL, Ovid MEDLINE, PubMed, EMBASE, and ClinicalTrials.gov databases was completed. Additional studies were identified by contacting clinical experts and searching bibliographies. All retrospective and prospective studies on trabeculectomy, aqueous shunt implantation, NPFS, and MIGS that included at least 20% ACD were included. Two review authors independently screened search results for eligibility and inclusion and extracted the data using pre-determined fields. RESULTS A total of 76 studies were identified for inclusion in the review. Glaucoma surgical outcomes in ACD appear to be poorer compared to ED overall, particularly for trabeculectomy. Data on NPFS are limited, but the studies completed thus far demonstrate surprisingly good results for ACD, particularly when compared to ED, who have significantly lower pre-operative IOPs. Evidence from studies investigating aqueous shunts does not suggest that ACD have poorer outcomes than ED. There is not enough data on MIGS to provide a significant conclusion. CONCLUSION In a population where trabeculectomy may no longer be the gold standard, sufficiently powered studies assessing surgical outcomes in aqueous shunts, NPFS, and MIGS are needed to guide clinicians.
Collapse
Affiliation(s)
- A M Nagar
- Department of Ophthalmology, St Thomas' Hospital, London, UK.,King's College London, London, UK
| | | | - R Wormald
- International Centre for Eye Health at the LSHTM and Institute of Ophthalmology UCL, London, UK
| | - K Barton
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - P Hysi
- King's College London, London, UK
| | - K S Lim
- Department of Ophthalmology, St Thomas' Hospital, London, UK.,King's College London, London, UK
| |
Collapse
|
8
|
Suo L, Dai W, Qin X, Li G, Zhang D, Cheng T, Yao T, Zhang C. Screening of primary open-angle glaucoma diagnostic markers based on immune-related genes and immune infiltration. BMC Genom Data 2022; 23:67. [PMID: 36002796 PMCID: PMC9400315 DOI: 10.1186/s12863-022-01072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Primary open-angle glaucoma (POAG) continues to be a poorly understood disease. Although there were multiple researches on the identification of POAG biomarkers, few studies systematically revealed the immune-related cells and immune infiltration of POAG. Bioinformatics analyses of optic nerve (ON) and trabecular meshwork (TM) gene expression data were performed to further elucidate the immune-related genes of POAG and identify candidate target genes for treatment.
Methods
We performed a gene analysis of publicly available microarray data, namely, the GSE27276-GPL2507, GSE2378-GPL8300, GSE9944-GPL8300, and GSE9944-GPL571 datasets from the Gene Expression Omnibus database. The obtained datasets were used as input for parallel pathway analyses. Based on random forest and support vector machine (SVM) analysis to screen the key genes, significantly changed pathways were clustered into functional categories, and the results were further investigated. CIBERSORT was used to evaluate the infiltration of immune cells in POAG tissues. A network visualizing the differences between the data in the POAG and normal groups was created. GO and KEGG enrichment analyses were performed using the Metascape database. We divided the differentially expressed mRNAs into upregulated and downregulated groups and predicted the drug targets of the differentially expressed genes through the Connectivity Map (CMap) database.
Results
A total of 49 differentially expressed genes, including 19 downregulated genes and 30 upregulated genes, were detected. Five genes ((Keratin 14) KRT14, (Hemoglobin subunit beta) HBB, (Acyl-CoA Oxidase 2) ACOX2, (Hephaestin) HEPH and Keratin 13 (KRT13)) were significantly changed. The results showed that the expression profiles of drug disturbances, including those for avrainvillamide-analysis-3, cytochalasin-D, NPI-2358, oxymethylone and vinorelbine, were negatively correlated with the expression profiles of disease disturbances. This finding indicated that these drugs may reduce or even reverse the POAG disease state.
Conclusion
This study provides an overview of the processes involved in the molecular pathogenesis of POAG in the ON and TM. The findings provide a new understanding of the molecular mechanism of POAG from the perspective of immunology.
Collapse
|
9
|
Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve. Int J Mol Sci 2021; 22:ijms22147660. [PMID: 34299278 PMCID: PMC8306213 DOI: 10.3390/ijms22147660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-β) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-βs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-β2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-β1, TGF-β2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-β1, and TGF-β2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-β and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-β and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.
Collapse
|
10
|
Kim KY, Ju WK. cAMP/PKA pathway and mitochondrial protection in oxidative stress-induced optic nerve head astrocytes. Neural Regen Res 2021; 16:108-109. [PMID: 32788457 PMCID: PMC7818876 DOI: 10.4103/1673-5374.286962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Keun-Young Kim
- National Center for Microscopy and Imaging Research and Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Zhang DW, Zhang S, Wu J. Expression profile analysis to predict potential biomarkers for glaucoma: BMP1, DMD and GEM. PeerJ 2020; 8:e9462. [PMID: 32953253 PMCID: PMC7474882 DOI: 10.7717/peerj.9462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Glaucoma is the second commonest cause of blindness. We assessed the gene expression profile of astrocytes in the optic nerve head to identify possible prognostic biomarkers for glaucoma. Method A total of 20 patient and nine normal control subject samples were derived from the GSE9944 (six normal samples and 13 patient samples) and GSE2378 (three normal samples and seven patient samples) datasets, screened by microarray-tested optic nerve head tissues, were obtained from the Gene Expression Omnibus (GEO) database. We used a weighted gene coexpression network analysis (WGCNA) to identify coexpressed gene modules. We also performed a functional enrichment analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Genes expression was represented by boxplots, functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all the key genes. Then the key genes were validated by the external dataset. Results A total 8,606 genes and 19 human optic nerve head samples taken from glaucoma patients in the GSE9944 were compared with normal control samples to construct the co-expression gene modules. After selecting the most common clinical traits of glaucoma, their association with gene expression was established, which sorted two modules showing greatest correlations. One with the correlation coefficient is 0.56 (P = 0.01) and the other with the correlation coefficient is −0.56 (P = 0.01). Hub genes of these modules were identified using scatterplots of gene significance versus module membership. A functional enrichment analysis showed that the former module was mainly enriched in genes involved in cellular inflammation and injury, whereas the latter was mainly enriched in genes involved in tissue homeostasis and physiological processes. This suggests that genes in the green–yellow module may play critical roles in the onset and development of glaucoma. A LASSO regression analysis identified three hub genes: Recombinant Bone Morphogenetic Protein 1 gene (BMP1), Duchenne muscular dystrophy gene (DMD) and mitogens induced GTP-binding protein gene (GEM). The expression levels of the three genes in the glaucoma group were significantly lower than those in the normal group. GSEA further illuminated that BMP1, DMD and GEM participated in the occurrence and development of some important metabolic progresses. Using the GSE2378 dataset, we confirmed the high validity of the model, with an area under the receiver operator characteristic curve of 85%. Conclusion We identified several key genes, including BMP1, DMD and GEM, that may be involved in the pathogenesis of glaucoma. Our results may help to determine the prognosis of glaucoma and/or to design gene- or molecule-targeted drugs.
Collapse
Affiliation(s)
- Dao Wei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
12
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Yazdankhah M, Shang P, Ghosh S, Hose S, Liu H, Weiss J, Fitting CS, Bhutto IA, Zigler JS, Qian J, Sahel JA, Sinha D, Stepicheva NA. Role of glia in optic nerve. Prog Retin Eye Res 2020; 81:100886. [PMID: 32771538 DOI: 10.1016/j.preteyeres.2020.100886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Glial cells are critically important for maintenance of neuronal activity in the central nervous system (CNS), including the optic nerve (ON). However, the ON has several unique characteristics, such as an extremely high myelination level of retinal ganglion cell (RGC) axons throughout the length of the nerve (with virtually all fibers myelinated by 7 months of age in humans), lack of synapses and very narrow geometry. Moreover, the optic nerve head (ONH) - a region where the RGC axons exit the eye - represents an interesting area that is morphologically distinct in different species. In many cases of multiple sclerosis (demyelinating disease of the CNS) vision problems are the first manifestation of the disease, suggesting that RGCs and/or glia in the ON are more sensitive to pathological conditions than cells in other parts of the CNS. Here, we summarize current knowledge on glial organization and function in the ON, focusing on glial support of RGCs. We cover both well-established concepts on the important role of glial cells in ON health and new findings, including novel insights into mechanisms of remyelination, microglia/NG2 cell-cell interaction, astrocyte reactivity and the regulation of reactive astrogliosis by mitochondrial fragmentation in microglia.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012, Paris, France
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Wang H, Deng Y, Wan L, Huang L. A comprehensive map of disease networks and molecular drug discoveries for glaucoma. Sci Rep 2020; 10:9719. [PMID: 32546683 PMCID: PMC7298047 DOI: 10.1038/s41598-020-66350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. The molecular etiology of glaucoma is complex and unclear. At present, there are few drugs available for glaucoma treatment. The aim of the present study was to perform a systematic analysis of glaucoma candidate drugs/chemicals based on glaucoma genes, including genetic factors and differentially expressed (DE) genes. In total, 401 genes from the genetic databases and 1656 genes from the DE gene analysis were included in further analyses. In terms of glaucoma-related genetic factors, 54 pathways were significantly enriched (FDR < 0.05), and 96 pathways for DE genes were significantly enriched (FDR < 0.05). A search of the PheWAS database for diseases associated with glaucoma-related genes returned 1,289 diseases, and a search for diseases associated with DE glaucoma-related genes returned 1,356 diseases. Cardiovascular diseases, neurodegenerative diseases, cancer, and ophthalmic diseases were highly related to glaucoma genes. A search of the DGIdb, KEGG, and CLUE databases revealed a set of drugs/chemicals targeting glaucoma genes. A subsequent analysis of the electronic medical records (EMRs) of 136,128 patients treated in Sichuan Provincial People’s Hospital for candidate drug usage and the onset of glaucoma revealed nine candidate drugs. Among these drugs, individuals treated with nicardipine had the lowest incidence of glaucoma. Taken together with the information from the drug databases, the 40 most likely candidate drugs for glaucoma treatment were highlighted. Based on these findings, we concluded that the molecular mechanism of glaucoma is complex and may be a reflection of systemic diseases. A set of ready-to-use candidate drugs targeting glaucoma genes may be developed for glaucoma clinical drug treatments. Our results provide a systematic interpretation of glaucoma genes, interactions with other systemic diseases, and candidate drugs/chemicals.
Collapse
Affiliation(s)
- Haixin Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Center of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China.,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yanhui Deng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Center of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Center of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China. .,Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Inhibition of cAMP/PKA Pathway Protects Optic Nerve Head Astrocytes against Oxidative Stress by Akt/Bax Phosphorylation-Mediated Mfn1/2 Oligomerization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8060962. [PMID: 31781352 PMCID: PMC6875302 DOI: 10.1155/2019/8060962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022]
Abstract
Glaucoma is characterized by a progressive optic nerve degeneration and retinal ganglion cell loss, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role in glaucomatous neurodegeneration. Here, we investigate the impact of activation of cyclic adenosine 3′,5′-monophosphate (cAMP)/protein kinase A (PKA) pathway on mitochondrial dynamics of ONH astrocytes exposed to oxidative stress. ONH astrocytes showed a significant loss of astrocytic processes in the glial lamina of glaucomatous DBA/2J mice, accompanied by basement membrane thickening and collagen deposition in blood vessels and axonal degeneration. Serial block-face scanning electron microscopy data analysis demonstrated that numbers of total and branched mitochondria were significantly increased in ONH astrocytes, while mitochondrial length and volume density were significantly decreased. We found that hydrogen peroxide- (H2O2-) induced oxidative stress compromised not only mitochondrial bioenergetics by reducing the basal and maximal respiration but also balance of mitochondrial dynamics by decreasing dynamin-related protein 1 (Drp1) protein expression in rat ONH astrocytes. In contrast, elevated cAMP by dibutyryl-cAMP (dbcAMP) or isobutylmethylxanthine treatment significantly increased Drp1 protein expression in ONH astrocytes. Elevated cAMP exacerbated the impairment of mitochondrial dynamics and reduction of cell viability to oxidative stress in ONH astrocytes by decreasing optic atrophy type 1 (OPA1), and mitofusin (Mfn)1/2 protein expression. Following combined treatment with H2O2 and dbcAMP, PKA inhibition restored mitochondrial dynamics by increasing mitochondrial length and decreasing mitochondrial number, and this promoted cell viability in ONH astrocytes. Also, PKA inhibition significantly promoted Akt/Bax phosphorylation and Mfn1/2 oligomerization in ONH astrocytes. These results suggest that modulation of the cAMP/PKA signaling pathway may have therapeutic potential by activating Akt/Bax phosphorylation and promoting Mfn1/2 oligomerization in glaucomatous ONH astrocytes.
Collapse
|
16
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Nguyen AH, Fatehi N, Romero P, Miraftabi A, Kim E, Morales E, Giaconi J, Coleman AL, Law SK, Caprioli J, Nouri-Mahdavi K. Observational Outcomes of Initial Trabeculectomy With Mitomycin C in Patients of African Descent vs Patients of European Descent: Five-Year Results. JAMA Ophthalmol 2019; 136:1106-1113. [PMID: 30027217 DOI: 10.1001/jamaophthalmol.2018.2897] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance There is evidence that patients of African descent (AD) experience higher surgical failure rate after trabeculectomy without antimetabolites. Objective To compare outcomes of initial trabeculectomy with mitomycin C in AD patients with those of patients of European descent (ED) and to identify prognostic factors for failure. Design, Setting, and Participants In this retrospective matched cohort study, 135 eyes of 105 AD patients were matched with 135 eyes of 117 ED patients by age (within 5 years), surgeon, lens status, and follow-up time (within 1 year) from a single tertiary academic center. Interventions Initial trabeculectomy with mitomycin C. Main Outcomes and Measures Criteria A, B, and C defined qualified success rates as final intraocular pressure of 18 mm Hg or less, 15 mm Hg or less, and 12 mm Hg or less, respectively, in addition to 20% or more, 25% or more, and 30% or more reduction of intraocular pressure or reduction of 2 or more medications. Kaplan-Meier survival curves were compared with log-rank test in AD and ED patients, and Cox proportional hazard models were used to estimate the influence of race/ethnicity on surgical success accounting for confounding variables. Results Of the 105 AD patients, 56 (53.3%) were female, and the mean (SD) age was 67.5 (10.4) years; of the 117 ED patients, 64 (54.7%) were female, and the mean (SD) age was 68.2 (10.0) years. For AD patients compared with ED patients, the qualified success rates at 5 years for criteria A were 61% and 67%, respectively (difference, 7.3%; 95% CI, 4.4-10.4); for criteria B, 43% and 60% (difference, 17.6%; 95% CI, 15.2-20.0); and for criteria C, 25% and 40% (difference, 15.8%; 95% CI, 11.1-20.5). On multivariable Cox regression analyses, AD was associated with higher failure rate with criteria B and C for qualified success and with all criteria for complete success (ie, no need for medications). Incidence of bleb leaks was higher in the AD group (29 vs 11 eyes; P = .002). Additionally, AD patients required additional glaucoma surgeries more often than ED patients (47 vs 26 eyes; P = .004). Conclusions and Relevance African descent was associated with higher failure rates and higher incidence of bleb leaks after initial trabeculectomy with mitomycin C compared with European descent. If this is subsequently shown to be a cause and effect, the findings need to be considered when surgical treatment of glaucoma is contemplated in AD patients.
Collapse
Affiliation(s)
- Andrew H Nguyen
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Nima Fatehi
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Pablo Romero
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles.,Department of Ophthalmology, University of Chile, Santiago, Chile
| | - Arezoo Miraftabi
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles.,Eye Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - EunAh Kim
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Esteban Morales
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - JoAnn Giaconi
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Anne L Coleman
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Simon K Law
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Joseph Caprioli
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Kouros Nouri-Mahdavi
- Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| |
Collapse
|
18
|
Belmares R, Raychaudhuri U, Maansson S, Clark AF. Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head. Clin Anat 2018; 31:1031-1049. [PMID: 30117188 DOI: 10.1002/ca.23263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 11/09/2022]
Abstract
Glaucoma is a leading cause of irreversible vision loss and is associated with fibrotic changes in two ocular tissues-the optic nerve head (ONH) and trabecular meshwork (TM). We investigated the differences in extracellular matrix components (ECM) including collagen, elastin, transforming growth factor beta-2, type-II receptor (TGFβRII) and Galectin3 (Gal3) in the glaucomatous human eyes to quantify fibrotic changes in ONH and TM. Glaucomatous and control human donor eyes were prepared for chemical and immunological staining to quantify ECM protein expression in the TM and ONH. Chemical staining included: Trichrome (collagen), Vernhoeff-Van Giesen (elastin) and Sirius Red (collagen). Immunohistochemistry was used to determine levels of Gal3 and TGFβ2RII. Quantitative analyses were performed using Image J software. Student's t-test was used to compare groups and Pearson's test was used to determine correlations P-values of 0.05 (or less) were considered statistically significant. Deposition of ECM proteins was elevated in glaucomatous tissues. There was increased collagen (P = 0.0469), Gal3 (P < 0.0001) and TGFβ2RII (P = 0.0005) in the TM of glaucomatous eyes. Likewise, collagen (P = 0.0517) and Galectin3 (P = 0.041) were increased in the ONH glaucomatous eyes. There was a correlation of TGFβRII with Gal3 in the TM (P < 0.0001) and optic nerve (P = 0.0003). The TM and ONH of glaucomatous eyes showed increased expression of ECM proteins supporting a fibrotic pathology. Galectin3 and TGFβ-2R II showed a positive correlation in TM and optic nerve supporting co-localization and suggesting their potential role in the glaucoma fibrotic process. Clin. Anat. 31:1031-1049, 2018. © 2018 The Authors. Clinical Anatomy published by Wiley Periodicals, Inc. on behalf of American Association of Clinical Anatomists.
Collapse
Affiliation(s)
- Ricardo Belmares
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas.,Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, Texas
| | - Urmimala Raychaudhuri
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sandra Maansson
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
19
|
A 2-transcript host cell signature distinguishes viral from bacterial diarrhea and it is influenced by the severity of symptoms. Sci Rep 2018; 8:8043. [PMID: 29795312 PMCID: PMC5966427 DOI: 10.1038/s41598-018-26239-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Recently, a biomarker signature consisting of 2-transcript host RNAs was proposed for discriminating bacterial from viral infections in febrile children. We evaluated the performance of this signature in a different disease scenario, namely a cohort of Mexican children (n = 174) suffering from acute diarrhea of different infectious etiologies. We first examined the admixed background of the patients, indicating that most of them have a predominantly Native American genetic ancestry with a variable amount of European background (ranging from 0% to 57%). The results confirm that the RNA test can discriminate between viral and bacterial causes of infection (t-test; P-value = 6.94×10−11; AUC = 80%; sensitivity: 68% [95% CI: 55%–79%]; specificity: 84% [95% CI: 78%–90%]), but the strength of the signal differs substantially depending on the causal pathogen, with the stronger signal being that of Shigella (P-value = 3.14 × 10−12; AUC = 89; sensitivity: 70% [95% CI: 57%–83%]; specificity: 100% [95% CI: 100%–100%]). The accuracy of this test improves significantly when excluding mild cases (P-value = 2.13 × 10−6; AUC = 85%; sensitivity: 79% [95% CI: 58%–95%]; specificity: 78% [95% CI: 65%–88%]). The results broaden the scope of previous studies by incorporating different pathogens, variable levels of disease severity, and different ancestral background of patients, and add confirmatory support to the clinical utility of these 2-transcript biomarkers.
Collapse
|
20
|
Shim MS, Kim KY, Bu JH, Nam HS, Jeong SW, Park TL, Ellisman MH, Weinreb RN, Ju WK. Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes. Cell Death Dis 2018; 9:285. [PMID: 29459737 PMCID: PMC5833440 DOI: 10.1038/s41419-017-0171-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022]
Abstract
Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jung Hyun Bu
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Hye Seung Nam
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Seung Won Jeong
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Tae Lim Park
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Wang J, Qu D, An J, Yuan G, Liu Y. Integrated microarray analysis provided novel insights to the pathogenesis of glaucoma. Mol Med Rep 2017; 16:8735-8746. [PMID: 28990066 PMCID: PMC5779953 DOI: 10.3892/mmr.2017.7711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Glaucoma is characterized as a visual field defect, which is the second most common cause of blindness. The present study performed an integrated analysis of microarray studies of glaucoma derived from Gene Expression Omnibus (GEO). Following the identification of the differentially expressed genes (DEGs) in glaucoma compared with normal control (NC) tissues, the functional annotation, glaucoma-specific protein-protein interaction (PPI) network and transcriptional regulatory network constructions were performed. The acute intraocular pressure (IOP) elevation rat models were established and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for DEGs expression confirmation. Three datasets were downloaded from GEO. A total of 97 DEGs, 82 upregulated and 15 downregulated were identified in glaucoma compared with NC groups with false discovery rate <0.05. Response to virus and immune response were two significantly enriched GO terms in glaucoma. Valine, leucine and isoleucine degradation was a significantly enriched pathway of DEGs in glaucoma. According to the PPI network, HDAC1, HBN, UBR4 and PDK1 were hub proteins in glaucoma. FOXD3, HNF-4 and AP-1 were the three transcription factors (TFs) derived from top 10 TFs which covered the majority of downstream DEGs in glaucoma. Based on the RT-qPCR results, the expression levels of 3 DEGs, raftlin, lipid raft linker 1 (RFTN1), PBX homeobox 1 (PBX1), HDAC1 were significantly upregulated and the expression of GEM was significantly downregulated in acute IOP elevation rat model at the first and fifth day. These four DEGs had the same expression pattern with our integrated analysis. Therefore, the current study concluded that 6 DEGs, including HEPH, SELENBP1, RFTN1, ID1, HDAC-1 and PBX1 and three TFs, including FOXD3, HNF-4 and AP-1 may be involved with the pathogenesis of glaucoma. The findings of the current study may improve diagnosis and drug design for glaucoma.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Daofei Qu
- Department of Ophthalmology, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Jinghong An
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Guoming Yuan
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Yufu Liu
- Department of Ophthalmology, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Liu Y, Allingham RR. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. [PMID: 28499933 DOI: 10.1016/j.exer.2017.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common type, is a complex inherited disorder that is characterized by progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The discovery of a large, and growing, number of genetic and chromosomal loci has been shown to contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing our mechanistic understanding in this common, blinding disorder. In this review we summarize recent developments in POAG genetics and molecular genetics research.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States; Duke - National University of Singapore (Duke-NUS), Singapore.
| |
Collapse
|
23
|
Abstract
Glaucoma is characterized by a slow and progressive degeneration of the optic nerve, including retinal ganglion cell (RGC) axons in the optic nerve head (ONH), leading to visual impairment. Despite its high prevalence, the biological basis of glaucoma pathogenesis still is not yet fully understood, and the factors contributing to its progression are currently not well characterized. Intraocular pressure (IOP) is the only modifiable risk factor, and reduction of IOP is the standard treatment for glaucoma. However, lowering IOP itself is not always effective for preserving visual function in patients with primary open-angle glaucoma. The second messenger cyclic adenosine 3′,5′-monophosphate (cAMP) regulates numerous biological processes in the central nervous system including the retina and the optic nerve. Although recent studies revealed that cAMP generated by adenylyl cyclases (ACs) is important in regulating aqueous humor dynamics in ocular tissues, such as the ciliary body and trabecular meshwork, as well as cell death and growth in the retina and optic nerve, the functional role and significance of cAMP in glaucoma remain to be elucidated. In this review, we will discuss the functional role of cAMP in aqueous humor dynamics and IOP regulation, and review the current medications, which are related to the cAMP signaling pathway, for glaucoma treatment. Also, we will further focus on cAMP signaling in RGC growth and regeneration by soluble AC as well as ONH astrocytes by transmembrane ACs to understand its potential role in the pathogenesis of glaucoma neurodegeneration
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla 92093, CA 92093, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Moazzeni H, Akbari MT, Yazdani S, Elahi E. Expression of CXCL6 and BBS5 that may be glaucoma relevant genes is regulated by PITX2. Gene 2016; 593:76-83. [PMID: 27520585 DOI: 10.1016/j.gene.2016.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
The transcription factor PITX2 is implicated in glaucoma pathology. In an earlier study we had used microarray analysis to identify genes in the trabecular meshwork (TM) that are affected by knock down of PITX2. Here, those studies were pursued to identify genes that are direct targets of PITX2 and that may be relevant to glaucoma. Initially, bioinformatics tools were used to select among the genes that had been affected by PITX2 knock down those that have PITX2 binding sites and that may be involved in glaucoma related functions. Subsequently, the effect of PITX2 was tested using the dual luciferase assay in four cell cultures including two primary TM cultures co-transfected with vectors containing promoter fragments of six candidate genes upstream of a luciferase gene and a vector that expressed PITX2. Finally, the effect of PITX2 on endogenous expression of two genes was assessed by over expression and knock down of PITX2 in TM cells. Thirty four genes were found to contain PITX2 binding sites in their putative promoter regions, and 16 were found to be associated with TM-specific and/or glaucoma associated functions. Results of dual luciferase assays confirmed that two of six genes tested were directly targeted by PITX2. The two genes were CXCL6 (chemokine (C-X-C motif) ligand 6) and BBS5 (Bardet-Biedl syndrome 5). Over expression and knock down of PITX2 showed that this transcription factor affects endogenous expression of these two genes in TM cells. CXCL6 encodes a pro-inflammatory cytokine, and many studies have suggested that cytokines and other immune system functions are involved in glaucoma pathogenesis. BBS5 is a member of the BBS family of genes that affect ciliary functions, and ciliary bodies in the anterior chamber of the eye produce the aqueous fluid that affects intraocular pressure. Immune related functions and intraocular pressure are both important components of glaucoma pathology. The role of PITX2 in glaucoma may be mediated partly by regulating the expression of CXCL6 and BBS5 and thus affecting immune functions and intraocular pressure.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-331, Tehran, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-331, Tehran, Iran.
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
25
|
Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res 2016; 158:23-32. [PMID: 27593914 DOI: 10.1016/j.exer.2016.08.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is considered to be a predominant risk factor for primary open angle glaucoma, the most prevalent form of glaucoma. Although the etiological mechanisms responsible for increased IOP are not completely clear, impairment in aqueous humor (AH) drainage through the conventional or trabecular pathway is recognized to be a primary cause in glaucoma patients. Importantly, lowering of IOP has been demonstrated to reduce progression of vision loss and is a mainstay of treatment for all types of glaucoma. Currently however, there are limited therapeutic options available for lowering IOP especially as it relates to enhancement of AH outflow through the trabecular pathway. Towards addressing this challenge, bench and bedside research conducted over the course of the last decade and a half has identified the significance of inhibiting Rho kinase for lowering IOP. Rho kinase is a downstream effector of Rho GTPase signaling that regulates actomyosin dynamics in numerous cell types. Studies from several laboratories have demonstrated that inhibition of Rho kinase lowers IOP via relaxation of the trabecular meshwork which enhances AH outflow. By contrast, activation of Rho GTPase/Rho kinase signaling in the trabecular outflow pathway increases IOP by altering the contractile, cell adhesive and permeability barrier characteristics of the trabecular meshwork and Schlemm's canal tissues, and by influencing extracellular matrix production and fibrotic activity. This article, written in honor of the late David Epstein, MD, summarizes findings from both basic and clinical studies that have been instrumental for recognition of the importance of the Rho/Rho kinase signaling pathway in regulation of AH outflow, and in the development of Rho kinase inhibitors as promising IOP- lowering agents for glaucoma treatment.
Collapse
|
26
|
Saracaloglu A, Demiryürek S, Okumus S, Oztuzcu S, Bozgeyik I, Coskun E, Aksoy U, Kaydu E, Erbagci I, Gürler B, Alasehirli B, Demiryürek AT. Toward Novel Diagnostics for Primary Open-Angle Glaucoma? An Association Study of Polymorphic Variation in Ras Homolog Family Member (A, B, C, D) Genes RHOA, RHOB, RHOC, and RHOD. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:290-5. [DOI: 10.1089/omi.2016.0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seydi Okumus
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Erol Coskun
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Umit Aksoy
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Erdal Kaydu
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Erbagci
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Bulent Gürler
- Department of Ophthalmology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Belgin Alasehirli
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdullah T. Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
27
|
Oglesby EN, Tezel G, Cone-Kimball E, Steinhart MR, Jefferys J, Pease ME, Quigley HA. Scleral fibroblast response to experimental glaucoma in mice. Mol Vis 2016; 22:82-99. [PMID: 26900327 PMCID: PMC4734151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/27/2016] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To study the detailed cellular and molecular changes in the mouse sclera subjected to experimental glaucoma. METHODS Three strains of mice underwent experimental bead-injection glaucoma and were euthanized at 3 days and 1, 3, and 6 weeks. Scleral protein expression was analyzed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using (16)O/(18)O labeling for quantification in 1- and 6-week tissues. Sclera protein samples were also analyzed with immunoblotting with specific antibodies to selected proteins. The proportion of proliferating scleral fibroblasts was quantified with Ki67 and 4',6-diamidino-2-phenylindole (DAPI) labeling, and selected proteins were studied with immunohistochemistry. RESULTS Proteomic analysis showed increases in molecules involved in integrin-linked kinase signaling and actin cytoskeleton signaling pathways at 1 and 6 weeks after experimental glaucoma. The peripapillary scleral region had more fibroblasts than equatorial sclera (p=0.001, n=217, multivariable regression models). There was a sixfold increase in proliferating fibroblasts in the experimental glaucoma sclera at 1 week and a threefold rise at 3 and 6 weeks (p=0.0005, univariate regression). Immunoblots confirmed increases for myosin, spectrin, and actinin at 1 week after glaucoma. Thrombospondin-1 (TSP-1), HINT1, vimentin, actinin, and α-smooth muscle actin were increased according to immunohistochemistry. CONCLUSIONS Scleral fibroblasts in experimental mouse glaucoma show increases in actin cytoskeleton and integrin-related signaling, increases in cell division, and features compatible with myofibroblast transition.
Collapse
Affiliation(s)
- Ericka N. Oglesby
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Gülgün Tezel
- Department of Ophthalmology, Columbia University, New York, NY
| | - Elizabeth Cone-Kimball
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Matthew R. Steinhart
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Joan Jefferys
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Mary E. Pease
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| | - Harry A. Quigley
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute Department of Ophthalmology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
28
|
Yang X, Hondur G, Li M, Cai J, Klein JB, Kuehn MH, Tezel G. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina. Invest Ophthalmol Vis Sci 2015; 56:5816-30. [PMID: 26348630 DOI: 10.1167/iovs.15-17294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To better understand ocular hypertension-induced early molecular alterations that may determine the initiation of neurodegeneration in human glaucoma, this study analyzed retinal proteomic alterations in the ocular hypertensive human retina. METHODS Retina samples were obtained from six human donors with ocular hypertension (without glaucomatous injury) and six age- and sex-matched normotensive controls. Retinal proteins were analyzed by two-dimensional LC-MS/MS (liquid chromatography and linear ion trap mass spectrometry) using oxygen isotope labeling for relative quantification of protein expression. Proteomics data were validated by Western blot and immunohistochemical analyses of selected proteins. RESULTS Out of over 2000 retinal proteins quantified, hundreds exhibited over 2-fold increased or decreased expression in ocular hypertensive samples relative to normotensive controls. Bioinformatics linked the proteomics datasets to various pathways important for maintenance of cellular homeostasis in the ocular hypertensive retina. Upregulated proteins included various heat shock proteins, ubiquitin proteasome pathway components, antioxidants, and DNA repair enzymes, while many proteins involved in mitochondrial oxidative phosphorylation exhibited downregulation in the ocular hypertensive retina. Despite the altered protein expression reflecting intrinsic adaptive/protective responses against mitochondrial energy failure, oxidative stress, and unfolded proteins, no alterations suggestive of an ongoing cell death process or neuroinflammation were detectable. CONCLUSIONS This study provides information about ocular hypertension-related molecular risk factors for glaucoma development. Molecular alterations detected in the ocular hypertensive human retina as opposed to previously detected alterations in human donor retinas with clinically manifest glaucoma suggest that proteome alterations determine the individual threshold to tolerate the ocular hypertension-induced tissue stress or convert to glaucomatous neurodegeneration when intrinsic adaptive/protective responses are overwhelmed.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Gözde Hondur
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Ming Li
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Jian Cai
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States 3Robley Rex Veterans Administration Medical Center, Louisville, Kentucky, United States
| | - Markus H Kuehn
- Department of Ophthalmology & Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Gülgün Tezel
- Department of Ophthalmology Columbia University College of Physicians and Surgeons, New York, New York, United States
| |
Collapse
|
29
|
Schneider M, Fuchshofer R. The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 2015; 142:49-55. [PMID: 26321510 DOI: 10.1016/j.exer.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Glaucoma is defined as a progressive optic neuropathy and is characterized by an irreversible loss of retinal ganglion cells. The main risk factor to develop glaucoma is an increased intraocular pressure (IOP). During the course of glaucoma structural changes in the optic nerve head (ONH) take place which lead to the characteristic excavation or cupping of the ONH. In this review we will focus on mechanisms and processes involved in structural alterations of the extracellular matrix in the lamina cribrosa (LC) of the ONH, which are associated with astrocytes. In glaucoma, a disordered deposition of elastic and collagen fibers and a typical pronounced thickening of the connective tissue septae surrounding the nerve fibers can be observed in the LC region. The remodeling process of the LC and the loss of ON axons are associated with a conversion of astrocytes from quiescent to a reactivated state. The extracellular matrix changes in the LC are thought to be due to a disturbed homeostatic balance of growth factors and the reactivated astrocytes are part of this process. Reactivated astrocytes, remodeling of the ECM within the LC and an elevated IOP are taking part in the retinal ganglion cell loss in glaucoma.
Collapse
Affiliation(s)
- Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
30
|
Wiggs JL. Glaucoma Genes and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:315-42. [PMID: 26310163 DOI: 10.1016/bs.pmbts.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.
Collapse
Affiliation(s)
- Janey L Wiggs
- Harvard Medical School, and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Ju WK, Kim KY, Noh YH, Hoshijima M, Lukas TJ, Ellisman MH, Weinreb RN, Perkins GA. Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 2015; 63:736-53. [PMID: 25557093 PMCID: PMC4373968 DOI: 10.1002/glia.22781] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. GLIA 2015;63:736-753.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - You Hyun Noh
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Masahiko Hoshijima
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
- Department of Medicine, University of California San DiegoLa Jolla, California
| | - Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern UniversityChicago, Illinois
| | - Mark H Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - Robert N Weinreb
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Guy A Perkins
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| |
Collapse
|
32
|
RhoA GTPase-induced ocular hypertension in a rodent model is associated with increased fibrogenic activity in the trabecular meshwork. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:496-512. [PMID: 25499974 DOI: 10.1016/j.ajpath.2014.10.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Ocular hypertension arising from increased resistance to aqueous humor (AH) outflow through the trabecular meshwork is a primary risk factor for open-angle glaucoma, a leading cause of blindness. Ongoing efforts have found little about the molecular and cellular bases of increased resistance to AH outflow through the trabecular meshwork in ocular hypertension patients. To test the hypothesis that dysregulated Rho GTPase signaling and a resulting fibrotic activity within the trabecular meshwork may result in ocular hypertension, we investigated the effects of expressing a constitutively active RhoA GTPase (RhoAV14) in the AH outflow pathway in Sprague-Dawley rats by using lentiviral vector-based gene delivery. Rats expressing RhoAV14 in the iridocorneal angle exhibited a significantly elevated intraocular pressure. Elevated intraocular pressure in the RhoAV14-expressing rats was associated with fibrotic trabecular meshwork and increased levels of F-actin, phosphorylated myosin light chain, α-smooth muscle actin, collagen-1A, and total collagen in the trabecular AH outflow pathway. Most of these changes were ameliorated by topical application of Rho kinase inhibitor. Human autopsy eyes from patients with glaucoma exhibited significant increases in levels of collagen-1A and total collagen in the trabecular AH outflow pathway. Collectively, these observations indicate that increased fibrogenic activity because of dysregulated RhoA GTPase activity in the trabecular AH outflow pathway increases intraocular pressure in a Rho kinase-dependent manner.
Collapse
|
33
|
Kimball EC, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Oveson BC, Quigley HA. Experimental scleral cross-linking increases glaucoma damage in a mouse model. Exp Eye Res 2014; 128:129-40. [PMID: 25285424 PMCID: PMC4254118 DOI: 10.1016/j.exer.2014.08.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/21/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model.CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure-strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice.
Collapse
Affiliation(s)
- Elizabeth C Kimball
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Cathy Nguyen
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Matthew R Steinhart
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Thao D Nguyen
- The Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mary E Pease
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ericka N Oglesby
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Brian C Oveson
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Harry A Quigley
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013; 43:1357-67. [PMID: 24042317 DOI: 10.3892/ijo.2013.2100] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | |
Collapse
|
35
|
FOXC1 in human trabecular meshwork cells is involved in regulatory pathway that includes miR-204, MEIS2, and ITGβ1. Exp Eye Res 2013; 111:112-21. [PMID: 23541832 DOI: 10.1016/j.exer.2013.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/13/2013] [Accepted: 03/10/2013] [Indexed: 01/06/2023]
Abstract
Forkhead box C1 (FOXC1) is a transcription factor that affects eye development. FOXC1 is implicated in the etiology of glaucoma because mutations in the gene are among the causes of Axenfeld-Rieger syndrome which is often accompanied by glaucoma. Glaucoma is the second leading cause of blindness. It is a complex disorder whose genetic basis in most patients remains unknown. Microarrays expression analysis was performed to identify genes in human trabecular meshwork (TM) primary cultures that are affected by FOXC1 and genes that may have roles in glaucoma. This represents the first genome wide analysis of FOXC1 target genes in any tissue. FOXC1 knock down by siRNAs affected the expression of 849 genes. Results on selected genes were confirmed by real time PCR, immunoblotting, and dual luciferase reporter assays. Observation of MEIS2 as a FOXC1 target and consideration of FOXC1 as a potential target of miR-204 prompted testing the effect of this micro RNA on expression of FOXC1 and several genes identified by array analysis as FOXC1 target genes. It was observed that miR-204 caused decreased expression of FOXC1 and the FOXC1 target genes CLOCK, PLEKHG5, ITGβ1, and MEIS2 in the TM cultures. Expression of CLOCK, PLEKHG5, ITGβ1 has not previously been reported to be affected by miR-204. The data suggest existence of a complex regulatory pathway in the TM part of which includes interactions between FOXC1, miR-204, MEIS2, and ITGβ1. All these molecules are known to have TM relevant functions, and the TM is strongly implicated in the etiology of glaucoma.
Collapse
|
36
|
Luo D, Liu K, Zhu B, Xu X. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach. Curr Eye Res 2013; 38:767-73. [PMID: 23484957 DOI: 10.3109/02713683.2013.770039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In primary open angle glaucoma (POAG) patients, elevated intraocular pressure usually leads to extracellular matrix remodeling and astrocytes activation. Thus, lamina cribrosa (LC) cells may play an important role in POAG progression. The objective of this study was to comprehensively explore gene expression profiles in LC cells of POAG patients. MATERIALS AND METHODS Using the GSE13534 microarray datasets downloaded from Gene Expression Omnibus database, the differentially expressed genes (DEGs) between LC cells from POAG patients and controls were firstly screened based on the classical t-test and false discovery rate <0.05 as a significant threshold. Subsequently, these DEGs were grouped into gene sets using a graph-clustering approach. The underlying molecular mechanisms were investigated by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. RESULTS A total of 57 DEGs were identified and 478 co-expression relationships were constructed among these DEGs. Among them, cytochrome p450 family 1 subfamily B (CYP1B1), brain-derived neurotrophic factor (BDNF) and myelin basic protein (MBP) showed high-degree relationships and they could interact with several genes. CYP1B1 is an important genetic gene involved in POAG and BDNF is an effective growth neurotrophic factor to weak POAG damage. MBP, versican (VCAN), integrin, alpha 4 (ITGA4) and N-cadherin (CDH2) may be involved in extracellular matrix remodeling in LC cells. FZD2 and FZD7 were enriched in basal cell carcinoma pathway. CONCLUSIONS The results demonstrate that the genes above may be associated with the pathogenesis of POAG.
Collapse
Affiliation(s)
- Dawei Luo
- Division of Ophthalmology, The First Affiliated People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE To determine changes in the expression profile of RhoA and Rho kinase (ROCK-1 and ROCK-2) in the aqueous humor outflow pathway and optic nerve head (ONH) of human eyes with or without glaucoma to explore their potential involvement in glaucoma pathophysiology. METHODS Age-matched paraffin-embedded postmortem eyes from patients with or without glaucoma were stained immunohistochemically using polyclonal antibodies raised against RhoA, ROCK-1, and ROCK-2. The intensity of the immunostaining in the aqueous humor outflow pathway and the ONH was graded by 4 individuals who were masked concerning whether the eyes were from normal individuals or those with glaucoma. RESULTS Both normal eyes and those with glaucoma showed a positive staining for RhoA, ROCK-1, and ROCK-2 in the trabecular meshwork, ciliary muscle, and ONH. There was a significant increase in the RhoA protein levels in the glaucomatous ONH compared with the age-matched controls. CONCLUSIONS Elevated levels of RhoA in the ONH of glaucomatous eyes suggest possible involvement of RhoA in the pathophysiology of glaucoma.
Collapse
|
38
|
Liu T, Xie L, Ye J, Liu Y, He X. Screening of candidate genes for primary open angle glaucoma. Mol Vis 2012; 18:2119-26. [PMID: 22876139 PMCID: PMC3413431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness in the world. To make progress in understanding POAG, it is necessary to identify more POAG-causing genes. METHODS Using haplotype analysis, we found that mutational region is located on chromosome 2 in two families. Furthermore, we screened 11 candidate genes on chromosome 2 by protein-protein interaction (PPI) analysis, including mutS homolog 6 (MSH6), mutS homolog 2 (MSH2), v-rel reticuloendotheliosis viral oncogene homolog (REL), endothelial PAS domain protein 1 (EPAS1), vaccinia related kinase 2 (VRK2), F-box protein 11 (FBXO11), EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1), reticulon 4 (RTN4), RAB1A, member RAS oncogene family (RAB1A), ARP2 actin-related protein 2 homolog (ACTR2), and calmodulin 2 (phosphorylase kinase, delta; CALM2). These 11 genes are all predicted to be related to trabecular meshwork changes and progressive loss of retinal ganglion cells in POAG patients. RESULTS According to our study, FBXO11 and VRK2 may interact with tumor protein p53 to regulate mitochondrial membrane permeability, mitochondrial membrane organization, and apoptosis. MSH2 is responsible for repairing DNA mismatches and RTN4 is for neuronal regeneration. Therefore, they are supposed to play a negative role in cellular process in POAG. CALM2 may be involved in retinal ganglion cell death and oxidative damage to cell communication. CONCLUSIONS The results demonstrate that the genes above may be associated with pathogenesis of POAG.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| | - Yuewuyang Liu
- Ninth Team of the Cader Brigade of Third Military Medical University of PLA, Chongqing, China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital, Research Institute of Surgery, Third Military Medical University of PLA, Chongqing, China
| |
Collapse
|
39
|
Tribute to Rosario Hernandez. Exp Eye Res 2011; 93:116-9. [DOI: 10.1016/j.exer.2011.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022]
|
40
|
Bush WS, McCauley JL, DeJager PL, Dudek SM, Hafler DA, Gibson RA, Matthews PM, Kappos L, Naegelin Y, Polman CH, Hauser SL, Oksenberg J, Haines JL, Ritchie MD. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility. Genes Immun 2011; 12:335-40. [PMID: 21346779 PMCID: PMC3136581 DOI: 10.1038/gene.2011.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 02/05/2023]
Abstract
Gene-gene interactions are proposed as an important component of the genetic architecture of complex diseases, and are just beginning to be evaluated in the context of genome-wide association studies (GWAS). In addition to detecting epistasis, a benefit to interaction analysis is that it also increases power to detect weak main effects. We conducted a knowledge-driven interaction analysis of a GWAS of 931 multiple sclerosis (MS) trios to discover gene-gene interactions within established biological contexts. We identify heterogeneous signals, including a gene-gene interaction between CHRM3 (muscarinic cholinergic receptor 3) and MYLK (myosin light-chain kinase) (joint P=0.0002), an interaction between two phospholipase C-β isoforms, PLCβ1 and PLCβ4 (joint P=0.0098), and a modest interaction between ACTN1 (actinin alpha 1) and MYH9 (myosin heavy chain 9) (joint P=0.0326), all localized to calcium-signaled cytoskeletal regulation. Furthermore, we discover a main effect (joint P=5.2E-5) previously unidentified by single-locus analysis within another related gene, SCIN (scinderin), a calcium-binding cytoskeleton regulatory protein. This work illustrates that knowledge-driven interaction analysis of GWAS data is a feasible approach to identify new genetic effects. The results of this study are among the first gene-gene interactions and non-immune susceptibility loci for MS. Further, the implicated genes cluster within inter-related biological mechanisms that suggest a neurodegenerative component to MS.
Collapse
Affiliation(s)
- William S. Bush
- Center for Human Genetics Research, Dept of Molecular Physiology and Biophysics, Vanderbilt University, 519 Light Hall, Nashville, TN 37232
| | - Jacob L. McCauley
- Miami Institute for Human Genomics, University of Miami, Miller School of Medicine, 1501 NW 10 Ave, Miami, FL 33136
| | - Philip L. DeJager
- Division of Molecular Immunology, Center for Neurologic Diseases, Dept of Neurology, Brigham & Women’s Hospital and Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| | - Scott M. Dudek
- Center for Human Genetics Research, Dept of Molecular Physiology and Biophysics, Vanderbilt University, 519 Light Hall, Nashville, TN 37232
| | - David A. Hafler
- Division of Molecular Immunology, Center for Neurologic Diseases, Dept of Neurology, Brigham & Women’s Hospital and Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| | - Rachel A. Gibson
- GlaxoSmithKline, Research & Development, 980 Great West Rd., Brentford, Middlesex, UK TW8 9GS
| | - Paul M. Matthews
- GlaxoSmithKline, Research & Development, 980 Great West Rd., Brentford, Middlesex, UK TW8 9GS
| | - Ludwig Kappos
- Dept of Neurology, University Hospital Basel, Spitalstrasse21/Petersgraben 4, 4031 Basel, Switzerland
| | - Yvonne Naegelin
- Dept of Neurology, University Hospital Basel, Spitalstrasse21/Petersgraben 4, 4031 Basel, Switzerland
| | - Chris H. Polman
- Dept of Neurology, Vrije Universiteit Medical Centre, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Stephen L. Hauser
- Dept of Neurology, School of Medicine, University of California, San Francisco, M798, Box 0114, San Francisco, CA 34143
| | - Jorge Oksenberg
- Dept of Neurology, School of Medicine, University of California, San Francisco, M798, Box 0114, San Francisco, CA 34143
| | - Jonathan L. Haines
- Center for Human Genetics Research, Dept of Molecular Physiology and Biophysics, Vanderbilt University, 519 Light Hall, Nashville, TN 37232
| | - Marylyn D. Ritchie
- Center for Human Genetics Research, Dept of Molecular Physiology and Biophysics, Vanderbilt University, 519 Light Hall, Nashville, TN 37232
| |
Collapse
|
41
|
Paylakhi SH, Fan JB, Mehrabian M, Sadeghizadeh M, Yazdani S, Katanforoush A, Kanavi MR, Ronaghi M, Elahi E. Effect of PITX2 knockdown on transcriptome of primary human trabecular meshwork cell cultures. Mol Vis 2011; 17:1209-21. [PMID: 21617755 PMCID: PMC3102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To identify genes whose expressions in primary human trabecular meshwork (TM) cell cultures are affected by the transcription factor pituitary homeobox 2 (PITX2) and to identify genes that may have roles in glaucoma. Known glaucoma causing genes account for disease in a small fraction of patients, and we aimed at identification of other genes that may have subtle and accumulative effects not easily identifiable by a genetic approach. METHODS Expression profiles derived using microarrays were compared between TM control cells and cells treated with PITX2 siRNAs using three protocols so as to minimize false positive and negative results. The first protocol was based on the commonly used B statistic. The second and third protocols were based on fold change in expression. The second protocol used a threshold of at least 2 fold change in expression, whereas the third protocol used ranking in fold change without setting a threshold. The likelihood of a selected gene being a true positive was considered to correlate with the number of protocols by which it was selected. By considering all genes that were selected by at least one protocol, the likelihood of false negatives was expected to decrease. Effects on a subset of selected genes were verified by real time PCR, western blots, and immunocytochemistry. Effects on ALDH1A1, were further pursued because its protein product, aldehyde dehydrogenase 1 family, member A1, has roles in oxidative stress and because oxidative stress is known to be relevant to the etiology of glaucoma. RESULTS The expression level of 41 genes was assessed by to be possibly affected by PITX2 knockdown. Twenty one genes were down-regulated and twenty were upregulated. The expression of five genes was assessed to be altered by all three analysis protocols. The five genes were DIRAS3 (DIRAS family, GTP-binding RAS-like 3), CXCL6 (chemokine (C-X-C motif) ligand 6), SAMD5 (sterile alpha motif domain containing 5), CBFB (core-binding factor, beta subunit), and MEIS2 (meis homeobox 2). Real time PCR experiments verified results on a subset of genes tested. Notably, the results were also confirmed in two independent TMs. Effects on CXCL6 and ALDH1A1 were also confirmed by western blots, and effects on ALDH1A1 were further shown by immunocytochemistry. Data consistent with PITX2 involvement in ALDH1A1 mediated response to oxidative stress were presented. CONCLUSIONS Bioinformatics tools revealed that the genes identified affect functions and pathways relevant to glaucoma. Involvement of PITX2 in expression of some of the genes and in some of the pathways is being reported here for the first time. As many of the genes identified have not been studied vis-à-vis glaucoma, we feel they introduce new candidates for understanding this devastating disease.
Collapse
Affiliation(s)
- Seyed Hassan Paylakhi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Katanforoush
- Department of Computer Science, Faculty of Mathematics, Shahid Beheshti University G.C., Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Eye Bank of Iran, Tehran, Iran
| | | | - Elahe Elahi
- Department of Biotechnology, University of Tehran, Tehran, Iran
- Department of Biology, University College of Science, University of Tehran, Tehran, Iran
- Center of Excellence in Biomathematics, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
42
|
Miao H, Crabb AW, Hernandez MR, Lukas TJ. Modulation of factors affecting optic nerve head astrocyte migration. Invest Ophthalmol Vis Sci 2010; 51:4096-103. [PMID: 20375339 DOI: 10.1167/iovs.10-5177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The authors investigated the role of myosin light chain kinase (MYLK) and transforming growth factor beta (TGFbeta) receptor pathways in optic nerve head (ONH) astrocyte migration. They further investigated how the expression of these genes is altered by elevated hydrostatic pressure (HP). METHODS PCR was used to determine the isoforms of MYLK expressed in ONH astrocytes. siRNAs against MYLK (all isoforms) and TGFbeta receptor 2 (TGFBR2) were prepared and tested for effects on the migration of cultured ONH astrocytes. Finally, the effects of elevated HP (24-96 hours) on the expression of MYLK isoforms and selected TGFbeta pathway components were measured. RESULTS Multiple isoforms of MYLK are present in ONH astrocytes from Caucasian (CA) and African American (AA) donors. Both populations express the short form (MYLK-130) and the long form (MYLK-210) of MYLK and a splicing variant within MYLK-210. MYLK-directed siRNA decreased MYLK expression and cell migration compared with control siRNA. siRNA directed against TGFbeta receptor 2 also decreased cell migration compared with control and decreased extracellular matrix genes regulated by TGFbeta signaling. Elevated HP increased the expression of MYLK-130 and MYLK-210 in both populations of astrocytes. However, TGFbeta2 was uniquely upregulated by exposure to elevated HP in CA compared with AA astrocytes. CONCLUSIONS Differential expression of TGFbeta pathway genes and MYLK isoforms observed in populations of glaucomatous astrocytes applies to the elevated HP model system. MYLK may be a new target for intervention in glaucoma to alter reactive astrocyte migration in the ONH.
Collapse
Affiliation(s)
- Haixi Miao
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
43
|
Norris V, Bresson-Dumont H, Gardea E, Reusch RN, Gruber D. Hypothesis: Poly-(R)-3-hydroxybutyrate is a major factor in intraocular pressure. Med Hypotheses 2009; 73:398-401. [DOI: 10.1016/j.mehy.2008.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 04/12/2009] [Accepted: 10/15/2008] [Indexed: 01/27/2023]
|