1
|
Newman T, Bond DM, Ishihara T, Rizzoli P, Gouil Q, Hore TA, Shaw G, Renfree MB. PRKACB is a novel imprinted gene in marsupials. Epigenetics Chromatin 2024; 17:29. [PMID: 39342354 PMCID: PMC11438212 DOI: 10.1186/s13072-024-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders. RESULTS In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs. CONCLUSIONS We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Phoebe Rizzoli
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3010, Australia
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Koga A, Nishihara H, Tanabe H, Tanaka R, Kayano R, Matsumoto S, Endo T, Srikulnath K, O'Neill RJ. Kangaroo endogenous retrovirus (KERV) forms megasatellite DNA with a simple repetition pattern in which the provirus structure is retained. Virology 2023; 586:56-66. [PMID: 37487326 DOI: 10.1016/j.virol.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
The kangaroo endogenous retrovirus (KERV) was previously reported to have undergone a rapid copy number increase in the red-necked wallaby; however, the mode of amplification was left to be clarified. The present study revealed that the long terminal repeat (LTR) (0.6 kb) and internal region (2.0 kb) of a provirus are repeated alternately, forming megasatellite DNA which we named kervRep. This repetition pattern was the same as that observed for walbRep, megasatellite DNA originating from another endogenous retrovirus. Their formation process can be explained using a simple model: pairing slippage followed by homologous recombination. This model features that the initial step is triggered by the presence of two identical sequences within a short distance; the possession of LTRs by endogenous retroviruses fulfills this condition. The discovery of two cases suggests that formation of this type of satellite DNA is one of non-negligible effects of endogenous retroviruses on their host genomes.
Collapse
Affiliation(s)
- Akihiko Koga
- Center for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan; Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan
| | - Rieko Tanaka
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | - Rika Kayano
- Saitama Children's Zoo, Higashimatsuyama 355-0065, Japan
| | | | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Koga A, Hashimoto K, Honda Y, Nishihara H. Marsupial genome analysis suggests that satellite DNA formation from walb endogenous retrovirus is an event specific to the red-necked wallaby. Genes Cells 2023; 28:149-155. [PMID: 36527312 DOI: 10.1111/gtc.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
We recently identified walbRep, a satellite DNA residing in the genome of the red-necked wallaby Notamacropus rufogriseus. It originates from the walb endogenous retrovirus and is organized in a manner in which the provirus structure is retained. The walbRep repeat units feature an average pairwise nucleotide identity as high as 99.5%, raising the possibility of a recent origin. The tammar wallaby N. eugenii is a species estimated to have diverged from the red-necked wallaby 2-3 million years ago. In PCR analyses of these two and other related species, walbRep-specific fragment amplification was observed only in the red-necked wallaby. Sequence database searches for the tammar wallaby resulted in sequence alignment lists that were sufficiently powerful to exclude the possibility of walbRep existence. These results suggested that the walbRep formation occurred in the red-necked wallaby lineage after its divergence from the tammar wallaby lineage, thus in a time span of maximum 3 million years.
Collapse
Affiliation(s)
- Akihiko Koga
- Center for Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | | | - Yusuke Honda
- Noichi Zoological Park of Kochi Prefecture, Konan, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Hayashi S, Honda Y, Kanesaki E, Koga A. Marsupial satellite DNA as faithful reflections of long terminal repeat (LTR) retroelement structure. Genome 2022; 65:469-478. [PMID: 35930809 DOI: 10.1139/gen-2022-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long terminal repeat (LTR) retroelements, including endogenous retroviruses, are one of the origins of satellite DNAs. However, the vast majority of satellite DNAs originating from LTR retroelements consist of parts of the element. In addition, they frequently contain sequences unrelated to that element. Here we report a novel marsupial satellite DNA (named walbRep) that contains, and consists solely of, the entire sequence of an LTR retroelement (the walb element). As is common with LTR retroelements, walb copies exhibit length variation. We focused on the abundance of copies of a specific length (2.7 kb) in the genome of the red-necked wallaby. Cloning and analyses of long genomic DNA fragments revealed a satellite DNA in which the LTR sequence (0.4 kb) and the sequence of the internal region of a nonautonomous walb copy (2.3 kb) were repeated alternately. The junctions between these two components exhibited the same end-to-end arrangements as those in the walb element. This satellite organization could be accounted for by a simple formation model that includes slippage during chromosome pairing followed by homologous recombination but does not invoke any other types of rearrangements. We discuss the possible reasons why satellite DNAs having such structures are rarely found in mammals.
Collapse
Affiliation(s)
| | - Yusuke Honda
- Noichi Zoological Park of Kochi Prefecture, Konan, Japan;
| | | | | |
Collapse
|
5
|
Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y, Yang H, Chen G, Xie D, Sears KE, Franco LM, Gaitan-Espitia JD, Nespolo RF, Johnson WE, Yang H, Brandies PA, Hogg CJ, Belov K, Renfree MB, Helgen KM, Boomsma JJ, Schierup MH, Zhang G. Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 2022; 185:1646-1660.e18. [PMID: 35447073 PMCID: PMC9200472 DOI: 10.1016/j.cell.2022.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.
Collapse
Affiliation(s)
- Shaohong Feng
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Agriculture, Ningxia University, Yinchuan 750021, China; College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | | | - Cai Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Yijie Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China; Hainan Yazhou Bay Seed Lab, Building 1, No. 7 Yiju Road, Yazhou District, Sanya, Hainan 572024, China
| | - Haidong Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Guangji Chen
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duo Xie
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lida M Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile; Millenium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Warren E Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remont Road, Front Royal, VA 22630, USA; The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746-2863, USA; Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Parice A Brandies
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacobus J Boomsma
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, 2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
6
|
Epigenetic clock and methylation studies in marsupials: opossums, Tasmanian devils, kangaroos, and wallabies. GeroScience 2022; 44:1825-1845. [PMID: 35449380 PMCID: PMC9213610 DOI: 10.1007/s11357-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
The opossum (Monodelphis domestica), with its sequenced genome, ease of laboratory care and experimental manipulation, and unique biology, is the most used laboratory marsupial. Using the mammalian methylation array, we generated DNA methylation data from n = 100 opossum samples from the ear, liver, and tail. We contrasted postnatal development and later aging effects in the opossum methylome with those in mouse (Mus musculus, C57BL/6 J strain) and other marsupial species such as Tasmanian devil, kangaroos, and wallabies. While the opossum methylome is similar to that of mouse during postnatal development, it is distinct from that shared by other mammals when it comes to the age-related gain of methylation at target sites of polycomb repressive complex 2. Our immunohistochemical staining results provide additional support for the hypothesis that PRC2 activity increases with later aging in mouse tissues but remains constant in opossum tissues. We present several epigenetic clocks for opossums that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (opossum and human). Two dual-species human-opossum pan-tissue clocks accurately measure chronological age and relative age, respectively. The human-opossum epigenetic clocks are expected to provide a significant boost to the attractiveness of opossum as a biological model. Additional epigenetic clocks for Tasmanian devil, red kangaroos and other species of the genus Macropus may aid species conservation efforts.
Collapse
|
7
|
Lott MJ, Wright BR, Neaves LE, Frankham GJ, Dennison S, Eldridge MDB, Potter S, Alquezar-Planas DE, Hogg CJ, Belov K, Johnson RN. Future-proofing the koala: synergising genomic and environmental data for effective species management. Mol Ecol 2022; 31:3035-3055. [PMID: 35344635 DOI: 10.1111/mec.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Climatic and evolutionary processes are inextricably linked to conservation. Avoiding extinction in rapidly changing environments often depends upon a species' capacity to adapt in the face of extreme selective pressures. Here, we employed exon capture and high-throughput next-generation sequencing to investigate the mechanisms underlying population structure and adaptive genetic variation in the koala (Phascolarctos cinereus), an iconic Australian marsupial that represents a unique conservation challenge because it is not uniformly threatened across its range. An examination of 250 specimens representing 91 wild source locations revealed that five major genetic clusters currently exist on a continental scale. The initial divergence of these clusters appears to have been concordant with the Mid-Brunhes Transition (∼ 430-300 kya), a major climatic reorganization that increased the amplitude of Pleistocene glacial-interglacial cycles. While signatures of polygenic selection and environmental adaptation were detected, strong evidence for repeated, climate-associated range contractions and demographic bottleneck events suggests that geographically isolated refugia may have played a more significant role in the survival of the koala through the Pleistocene glaciation than in situ adaptation. Consequently, the conservation of genome-wide genetic variation must be aligned with the protection of core koala habitat to increase the resilience of threatened populations to accelerating anthropogenic threats. Finally, we propose that the five major genetic clusters identified in this study should be accounted for in future koala conservation efforts (e.g. guiding translocations), as existing management divisions in the states of Queensland and New South Wales do not reflect historic or contemporary population structure.
Collapse
Affiliation(s)
- Matthew J Lott
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Belinda R Wright
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia.,Sydney School of Veterinary Sciences, Faculty of Science, the University of Sydney, 2006, New South Wales, Australia
| | - Linda E Neaves
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,Fenner School of Environment and Society, the Australian National University, Canberra, Australian Capital Territory, 2600, Australia
| | - Greta J Frankham
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Siobhan Dennison
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Sally Potter
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,Division of Ecology & Evolution, Research School of Biology, the Australian National University, Australian Capital Territory, Canberra, 2600, Australia
| | - David E Alquezar-Planas
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, the University of Sydney, 2006, New South Wales, Australia
| | - Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, 1 William Street, 2010, New South Wales, Australia.,National Museum of Natural History, District of Columbia, Washington, 20560, United States
| |
Collapse
|
8
|
Peel E, Silver L, Brandies P, Hayakawa T, Belov K, Hogg CJ. Genome assembly of the numbat ( Myrmecobius fasciatus), the only termitivorous marsupial. GIGABYTE 2022; 2022:gigabyte47. [PMID: 36824518 PMCID: PMC9650251 DOI: 10.46471/gigabyte.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
The numbat (Myrmecobius fasciatus) is an endangered Australian marsupial, and the last surviving member of the Myrmecobiidae family. The numbat regularly undergoes torpor and is unique amongst marsupials as it is the only diurnal and termitivorous species. Here we sequenced the first draft genome of the numbat using 10× Genomics Chromium linked-read technology, resulting in a 3.42 Gbp genome with a scaffold N50 of 223 kbp. A global transcriptome from liver, lung and tongue was also generated to aid genome annotation, identifying 21,465 protein-coding genes. To investigate adaptation to the numbat's termitivorous diet and arid/semi-arid range, we interrogated the most highly expressed transcripts within the tongue and manually annotated taste, vomeronasal and aquaporin gene families. Antimicrobial proteins and proteins involved in digestion were highly expressed in the tongue, alongside umami taste receptors. However, sweet taste receptors were not expressed in this tissue, which combined with the putative contraction of the bitter taste receptor gene repertoire in the numbat genome, may indicate a potential evolutionary adaptation to their specialised termitivorous diet. Vomeronasal and aquaporin gene repertoires were similar to other marsupials. The draft numbat genome is a valuable tool for conservation and can be applied to population genetics/genomics studies and to investigate the unique biology of this interesting species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Chaora NS, Khanyile KS, Magwedere K, Pierneef R, Tabit FT, Muchadeyi FC. A 16S Next Generation Sequencing Based Molecular and Bioinformatics Pipeline to Identify Processed Meat Products Contamination and Mislabelling. Animals (Basel) 2022; 12:ani12040416. [PMID: 35203124 PMCID: PMC8868451 DOI: 10.3390/ani12040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Meat adulteration and fraud encompasses the deliberate fraudulent addition or substitution of proteins of animal or plant origin in edible products primarily for economic gain. The mitochondrial 16S ribosomal (rRNA) gene was used to identify species that are present in pure and processed meat samples. The meat samples were sequenced using an Illumina sequencing platform, and bioinformatics analysis was carried out for species identification. The results indicated that pork was the major contaminant in most of the meat samples. The bioinformatics pipeline demonstrated its specificity through identification of species specific and quantification of the contamination levels across all samples. Food business operators and regulatory sectors can validate this method for food fraud checks and manage any form of mislabeling in the animal or plant protein food ecosystem. Abstract Processed meat is a target in meat adulteration for economic gain. This study demonstrates a molecular and bioinformatics diagnostic pipeline, utilizing the mitochondrial 16S ribosomal RNA (rRNA) gene, to determine processed meat product mislabeling through Next-Generation Sequencing. Nine pure meat samples were collected and artificially mixed at different ratios to verify the specificity and sensitivity of the pipeline. Processed meat products (n = 155), namely, minced meat, biltong, burger patties, and sausages, were collected across South Africa. Sequencing was performed using the Illumina MiSeq sequencing platform. Each sample had paired-end reads with a length of ±300 bp. Quality control and filtering was performed using BBDuk (version 37.90a). Each sample had an average of 134,000 reads aligned to the mitochondrial genomes using BBMap v37.90. All species in the artificial DNA mixtures were detected. Processed meat samples had reads that mapped to the Bos (90% and above) genus, with traces of reads mapping to Sus and Ovis (2–5%) genus. Sausage samples showed the highest level of contamination with 46% of the samples having mixtures of beef, pork, or mutton in one sample. This method can be used to authenticate meat products, investigate, and manage any form of mislabeling.
Collapse
Affiliation(s)
- Nyaradzo Stella Chaora
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Rooderpoort 1709, South Africa; (N.S.C.); (F.T.T.)
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Khulekani Sedwell Khanyile
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
| | - Frederick Tawi Tabit
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Rooderpoort 1709, South Africa; (N.S.C.); (F.T.T.)
| | - Farai Catherine Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Private Bag X 05, Onderstepoort, Pretoria 0110, South Africa; (K.S.K.); (R.P.)
- Correspondence:
| |
Collapse
|
10
|
Kozulin P, Suárez R, Zhao QY, Paolino A, Richards LJ, Fenlon LR. Divergent evolution of developmental timing in the neocortex revealed by marsupial and eutherian transcriptomes. Development 2022; 149:274319. [DOI: 10.1242/dev.200212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Qiong-Yi Zhao
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Annalisa Paolino
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda J. Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura R. Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Hogg CJ, Ottewell K, Latch P, Rossetto M, Biggs J, Gilbert A, Richmond S, Belov K. Threatened Species Initiative: Empowering conservation action using genomic resources. Proc Natl Acad Sci U S A 2022; 119:e2115643118. [PMID: 35042806 PMCID: PMC8795520 DOI: 10.1073/pnas.2115643118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Kym Ottewell
- Conservation Science Centre, Department of Biodiversity, Conservation, & Attractions, Kensington, WA 6151, Australia
| | - Peter Latch
- Australian Government Department of Agriculture, Water & Environment, Canberra, ACT 2600, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - James Biggs
- Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | | | | | - Katherine Belov
- School of Life & Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Peel E, Silver L, Brandies P, Hogg CJ, Belov K. A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi. GIGABYTE 2021; 2021:gigabyte35. [PMID: 36824341 PMCID: PMC9650285 DOI: 10.46471/gigabyte.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Biodiversity is declining globally, and Australia has one of the worst extinction records for mammals. The development of sequencing technologies means that genomic approaches are now available as important tools for wildlife conservation and management. Despite this, genome sequences are available for only 5% of threatened Australian species. Here we report the first reference genome for the woylie (Bettongia penicillata ogilbyi), a critically endangered marsupial from Western Australia, and the first genome within the Potoroidae family. The woylie reference genome was generated using Pacific Biosciences HiFi long-reads, resulting in a 3.39 Gbp assembly with a scaffold N50 of 6.49 Mbp and 86.5% complete mammalian BUSCOs. Assembly of a global transcriptome from pouch skin, tongue, heart and blood RNA-seq reads was used to guide annotation with Fgenesh++, resulting in the annotation of 24,655 genes. The woylie reference genome is a valuable resource for conservation, management and investigations into disease-induced decline of this critically endangered marsupial.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Profile of Jennifer Marshall Graves. Proc Natl Acad Sci U S A 2021; 118:2116850118. [PMID: 34686610 DOI: 10.1073/pnas.2116850118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
|
14
|
Harding EF, Russo AG, Yan GJH, Waters PD, White PA. Ancient viral integrations in marsupials: a potential antiviral defence. Virus Evol 2021; 7:veab076. [PMID: 34548931 PMCID: PMC8449507 DOI: 10.1093/ve/veab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Marsupial viruses are understudied compared to their eutherian mammal counterparts, although they may pose severe threats to vulnerable marsupial populations. Genomic viral integrations, termed 'endogenous viral elements' (EVEs), could protect the host from infection. It is widely known past viral infections and EVEs play an active role in antiviral defence in invertebrates and plants. This study aimed to characterise actively transcribed EVEs in Australian marsupial species, because they may play an integral role in cellular defence against viruses. This study screened publicly available RNA sequencing data sets (n = 35) and characterised 200 viral transcripts from thirteen Australian marsupial species. Of the 200 transcripts, 188 originated from either Bornaviridae, Filoviridae, or Parvoviridae EVEs. The other twelve transcripts were from putative active infections from members of the Herpesviridae and Anelloviridae, and Hepadnaviridae. EVE transcripts (n = 188) were mapped to marsupial genomes (where available, n = 5/13) to identify the genomic insertion sites. Of the 188 transcripts, 117 mapped to 39 EVEs within the koala, bare-nosed wombat, tammar wallaby, brushtail possum, and Tasmanian devil genomes. The remaining eight animals had no available genome (transcripts n = 71). Every marsupial has Bornaviridae, Filoviridae, and Parvoviridae EVEs, a trend widely observed in eutherian mammals. Whilst eutherian bornavirus EVEs are predominantly nucleoprotein-derived, marsupial bornavirus EVEs demonstrate a surprising replicase gene bias. We predicted these widely distributed EVEs were conserved within marsupials from ancient germline integrations, as many were over 65 million years old. One bornavirus replicase EVE, present in six marsupial genomes, was estimated to be 160 million years old, predating the American-Australian marsupial split. We considered transcription of these EVEs through small non-coding RNA as an ancient viral defence. Consistent with this, in koala small RNA sequence data sets, we detected Bornaviridae replicase and Filoviridae nucleoprotein produced small RNA. These were enriched in testis tissue, suggesting they could protect marsupials from vertically transmitted viral integrations.
Collapse
Affiliation(s)
| | - Alice G Russo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grace J H Yan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW 2052, Australia
| | | |
Collapse
|
15
|
Stahlke AR, Epstein B, Barbosa S, Margres MJ, Patton AH, Hendricks SA, Veillet A, Fraik AK, Schönfeld B, McCallum HI, Hamede R, Jones ME, Storfer A, Hohenlohe PA. Contemporary and historical selection in Tasmanian devils ( Sarcophilus harrisii) support novel, polygenic response to transmissible cancer. Proc Biol Sci 2021; 288:20210577. [PMID: 34034517 PMCID: PMC8150010 DOI: 10.1098/rspb.2021.0577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. Here, we compared signatures of selection across temporal scales to determine whether genes or gene pathways under contemporary selection (six to eight generations) have also been subject to historical selection (65-85 Myr). First, we used targeted sequencing, RAD-capture, in approximately 2500 devils in six populations to identify genomic regions subject to rapid evolution. We documented genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. Then we used a molecular evolution approach to identify historical positive selection in devils compared to other marsupials and found evidence of selection in 1773 genes. However, we found limited overlap across time scales, with only 16 shared candidate genes, and no overlap in enriched functional gene sets. Our results are consistent with a novel, multi-locus evolutionary response of devils to DFTD. Our results can inform conservation by identifying high priority targets for genetic monitoring and guiding maintenance of adaptive potential in managed populations.
Collapse
Affiliation(s)
- Amanda R. Stahlke
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Brendan Epstein
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Soraia Barbosa
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Sarah A. Hendricks
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Anne Veillet
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| | - Alexandra K. Fraik
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Barbara Schönfeld
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Hamish I. McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Paul A. Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
16
|
Hartley GA, Okhovat M, O'Neill RJ, Carbone L. Comparative analyses of gibbon centromeres reveal dynamic genus specific shifts in repeat composition. Mol Biol Evol 2021; 38:3972-3992. [PMID: 33983366 PMCID: PMC8382927 DOI: 10.1093/molbev/msab148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. Despite their variation, a near universal feature of centromeres is the presence of repetitive sequences, such as DNA satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. In this study, we use ChIP-seq, RNA-seq, and fluorescence in situ hybridization to comprehensively investigate the centromeric repeat content of the four extant gibbon genera (Hoolock, Hylobates, Nomascus, and Siamang). In all gibbon genera, we find that CENP-A nucleosomes and the DNA-proteins that interface with the inner kinetochore preferentially bind retroelements of broad classes rather than satellite DNA. A previously identified gibbon-specific composite retrotransposon, LAVA, known to be expanded within the centromere regions of one gibbon genus (Hoolock), displays centromere- and species-specific sequence differences, potentially as a result of its co-option to a centromeric function. When dissecting centromere satellite composition, we discovered the presence of the retroelement-derived macrosatellite SST1 in multiple centromeres of Hoolock, whereas alpha-satellites represent the predominate satellite in the other genera, further suggesting an independent evolutionary trajectory for Hoolock centromeres. Finally, using de novo assembly of centromere sequences, we determined that transcripts originating from gibbon centromeres recapitulate the species-specific TE composition. Combined, our data reveal dynamic shifts in the repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity within this lineage.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269.,Department of Genomics and Genome Sciences, UConn Health, Farmington, CT, 06030
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, 97239
| |
Collapse
|
17
|
Dias CAR, Kuhn GCS, Svartman M, Santos Júnior JED, Santos FR, Pinto CM, Perini FA. Identification and characterization of repetitive DNA in the genus Didelphis Linnaeus, 1758 (Didelphimorphia, Didelphidae) and the use of satellite DNAs as phylogenetic markers. Genet Mol Biol 2021; 44:e20200384. [PMID: 33877257 PMCID: PMC8056902 DOI: 10.1590/1678-4685-gmb-2020-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Didelphis species have been shown to exhibit very conservative karyotypes, which mainly differ in their constitutive heterochromatin, known to be mostly composed by repetitive DNAs. In this study, we used genome skimming data combined with computational pipelines to identify the most abundant repetitive DNA families of Lutreolina crassicaudata and all six Didelphis species. We found that transposable elements (TEs), particularly LINE-1, endogenous retroviruses, and SINEs, are the most abundant mobile elements in the studied species. Despite overall similar TE proportions, we report that species of the D. albiventris group consistently present a less diverse TE composition and smaller proportions of LINEs and LTRs in their genomes than other studied species. We also identified four new putative satDNAs (sat206, sat907, sat1430 and sat2324) in the genomes of Didelphis species, which show differences in abundance and nucleotide composition. Phylogenies based on satDNA sequences showed well supported relationships at the species (sat1430) and groups of species (sat206) level, recovering topologies congruent with previous studies. Our study is one of the first attempts to present a characterization of the most abundant families of repetitive DNAs of Lutreolina and Didelphis species providing insights into the repetitive DNA composition in the genome landscape of American marsupials.
Collapse
Affiliation(s)
- Cayo Augusto Rocha Dias
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Evolução de Mamíferos, Belo Horizonte, MG, Brazil
| | - Gustavo C S Kuhn
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Citogenômica Evolutiva, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Citogenômica Evolutiva, Belo Horizonte, MG, Brazil
| | - José Eustáquio Dos Santos Júnior
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Evolução Molecular, Belo Horizonte, MG, Brazil
| | - Fabrício Rodrigues Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Evolução Molecular, Belo Horizonte, MG, Brazil
| | - Christian Miguel Pinto
- Escuela Politécnica Nacional, Facultad de Ciencias, Departamento de Biologia, Quito, Ecuador
| | - Fernando Araújo Perini
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Laboratório de Evolução de Mamíferos, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Old JM, Ong OTW, Stannard HJ. Red-tailed phascogales: A review of their biology and importance as model marsupial species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:217-227. [PMID: 33382214 DOI: 10.1002/jez.2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
There are many limitations when using traditional laboratory species. Limits on variation, may result in limited outcomes, at both the species and individual level, due to different individuals/species having diverse physiological processes, or differing molecular and genetic mechanisms. By using a variety of model species, we will be able to develop creative solutions to biological problems and identify differences of which we were not previously aware. The laboratory mouse has been a suitable model species for various mammalian studies, however most are bred specifically for laboratory research with limited variability due to selective breeding. Marsupial models offer unique research opportunities compared to eutherian models. We believe that there should be an expansion in marsupial model species, and the introduction of the red-tailed phascogale (Phascogale calura), a dasyurid marsupial, should be one of them. Phascogales are easily managed in captivity, and there are now multiple studies involving their development, reproduction, nutrition, behavior and immune system, which can serve as a baseline for future studies. The addition of the phascogale as a model species will improve future mammalian studies by introducing variability and offer alternate solutions to biological problems, particularly in the areas of genetics, nutrition, immunology, the neuro-endocrine system, and ageing, due to their semelparous reproductive strategy and hence, subsequent predictive physiology. In this review, we provide information based on existing research on red-tailed phascogales to support their inclusion as a model species.
Collapse
Affiliation(s)
- Julie M Old
- School of Science, Hawkesbury Campus, Western Sydney University, Penrith, New South Wales, Australia
| | - Oselyne T W Ong
- Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Hayley J Stannard
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
19
|
Alquezar‐Planas DE, Löber U, Cui P, Quedenau C, Chen W, Greenwood AD. DNA sonication inverse PCR for genome scale analysis of uncharacterized flanking sequences. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Alquezar‐Planas
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Australian Museum Research InstituteAustralian Museum Sydney NSW Australia
| | - Ulrike Löber
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- The Berlin Center for Genomics in Biodiversity Research Berlin Germany
- Experimental and Clinical Research Center A Cooperation of Charité – Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine Berlin Germany
| | - Pin Cui
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Claudia Quedenau
- Genomics Max Delbrück Center for Molecular Medicine Berlin Germany
| | - Wei Chen
- Berlin Institute for Medical Systems BiologyMax‐Delbrück Center for Molecular Medicine Berlin Germany
| | - Alex D. Greenwood
- Department of Wildlife Diseases Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Department of Veterinary Medicine Freie Universität Berlin Berlin Germany
| |
Collapse
|
20
|
Pharo EA. Marsupial milk: a fluid source of nutrition and immune factors for the developing pouch young. Reprod Fertil Dev 2020; 31:1252-1265. [PMID: 30641029 DOI: 10.1071/rd18197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300-350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother's pouch, permanently (0-100 days p.p.; Phase 2A) and then intermittently (100-200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.
Collapse
|
21
|
Deakin JE, Potter S. Marsupial chromosomics: bridging the gap between genomes and chromosomes. Reprod Fertil Dev 2020; 31:1189-1202. [PMID: 30630589 DOI: 10.1071/rd18201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Marsupials have unique features that make them particularly interesting to study, and sequencing of marsupial genomes is helping to understand their evolution. A decade ago, it was a huge feat to sequence the first marsupial genome. Now, the advances in sequencing technology have made the sequencing of many more marsupial genomes possible. However, the DNA sequence is only one component of the structures it is packaged into: chromosomes. Knowing the arrangement of the DNA sequence on each chromosome is essential for a genome assembly to be used to its full potential. The importance of combining sequence information with cytogenetics has previously been demonstrated for rapidly evolving regions of the genome, such as the sex chromosomes, as well as for reconstructing the ancestral marsupial karyotype and understanding the chromosome rearrangements involved in the Tasmanian devil facial tumour disease. Despite the recent advances in sequencing technology assisting in genome assembly, physical anchoring of the sequence to chromosomes is required to achieve a chromosome-level assembly. Once chromosome-level assemblies are achieved for more marsupials, we will be able to investigate changes in the packaging and interactions between chromosomes to gain an understanding of the role genome architecture has played during marsupial evolution.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
22
|
Saunders NR, Dziegielewska KM. Medications for pregnant women: A balancing act between the interests of the mother and of the fetus. Prenat Diagn 2020; 40:1156-1167. [PMID: 32335932 DOI: 10.1002/pd.5720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Drug entry into the adult brain is controlled by efflux mechanisms situated in various brain barrier interfaces. The effectiveness of these protective mechanisms in the embryo, fetus and newborn brain is less clear. The longstanding belief that "the" blood-brain barrier is absent or immature in the fetus and newborn has led to many misleading statements with potential clinical implications. Here we review the properties of brain barrier mechanisms in the context of drug entry into the developing brain and discuss the limited number of studies published on the subject. We noticed that most of available literature suffers from some experimental limitations, notably that drug levels in fetal blood and cerebrospinal fluid have not been measured. This means that the relative contribution to the overall brain protection provided by individual barriers such as the placenta (which contains similar efflux mechanisms) and the brain barriers cannot be separately ascertained. Finally, we propose that systematic studies in appropriate animal models of drug entry into the brain at different stages of development would provide a rational basis for use of medications in pregnancy and in newborns, especially prematurely born, where protection usually provided by the placenta is no longer present.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Paranjpe M, Yu H, Frankenberg S, Pask AJ, Shaw G, Renfree MB. Transcriptomic Analysis of MAP3K1 and MAP3K4 in the Developing Marsupial Gonad. Sex Dev 2020; 13:195-204. [DOI: 10.1159/000505799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
|
24
|
Abstract
Marsupial genomes, which are packaged into large chromosomes, provide a powerful resource for studying the mechanisms of genome evolution. The extensive and valuable body of work on marsupial cytogenetics, combined more recently with genome sequence data, has enabled prediction of the 2n = 14 karyotype ancestral to all marsupial families. The application of both chromosome biology and genome sequencing, or chromosomics, has been a necessary approach for various aspects of mammalian genome evolution, such as understanding sex chromosome evolution and the origin and evolution of transmissible tumors in Tasmanian devils. The next phase of marsupial genome evolution research will employ chromosomics approaches to begin addressing fundamental questions in marsupial genome evolution and chromosome evolution more generally. The answers to these complex questions will impact our understanding across a broad range of fields, including the genetics of speciation, genome adaptation to environmental stressors, and species management.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia;
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA;
| |
Collapse
|
25
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
26
|
Moros-Nicolás C, Chevret P, Izquierdo-Rico MJ, Holt WV, Esteban-Díaz D, López-Béjar M, Martínez-Nevado E, Nilsson MA, Ballesta J, Avilés M. Composition of marsupial zona pellucida: a molecular and phylogenetic approach. Reprod Fertil Dev 2019; 30:721-733. [PMID: 29162213 DOI: 10.1071/rd16519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/20/2017] [Indexed: 11/23/2022] Open
Abstract
The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex, since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five Australian species (brushtail possum, koala, Bennett's wallaby, Tammar wallaby and Tasmanian devil). This analysis identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore, evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3 (three copies) and ZP4) for the Australasian species.
Collapse
Affiliation(s)
- Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69622, France
| | - María José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | | | - Daniela Esteban-Díaz
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Eva Martínez-Nevado
- Veterinary Department, Zoo-Aquarium Madrid, Casa de Campo s/n., Madrid 28011, Spain
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main D-60325, Germany
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain
| |
Collapse
|
27
|
Eldridge MDB, Beck RMD, Croft DA, Travouillon KJ, Fox BJ. An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). J Mammal 2019. [DOI: 10.1093/jmammal/gyz018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Robin M D Beck
- School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Darin A Croft
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Barry J Fox
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Duda Z, Trusiak S, O'Neill R. Centromere Transcription: Means and Motive. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:257-281. [PMID: 28840241 DOI: 10.1007/978-3-319-58592-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.
Collapse
Affiliation(s)
- Zachary Duda
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
29
|
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, Song C. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 2019; 10:19. [PMID: 31080521 PMCID: PMC6501411 DOI: 10.1186/s13100-019-0161-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Retrotransposons are the major determinants of genome sizes and they have shaped both genes and genomes in mammalian organisms, but their overall activity, diversity, and evolution dynamics, particularly their impact on protein coding and lncRNA genes in pigs remain largely unknown. RESULTS In the present study, we performed de novo detection of retrotransposons in pigs by using multiple pipelines, four distinct families of pig-specific L1 s classified into 51 distinct subfamilies and representing four evolution models and three expansion waves of pig-specific SINEs represented by three distinct families were identified. ERVs were classified into 18 families and found two most "modern" subfamilies in the pig genome. The transposition activity of pig L1 was verified by experiment, the sense and antisense promoter activities of young L1 5'UTRs and ERV LTRs and expression profiles of young retrotransposons in multiple tissues and cell lines were also validated. Furthermore, retrotransposons had an extensive impact on lncRNA and protein coding genes at both the genomic and transcriptomic levels. Most protein coding and lncRNA (> 80%) genes contained retrotransposon insertions, and about half of protein coding genes (44.30%) and one-fourth (24.13%) of lncRNA genes contained the youngest retrotransposon insertions. Nearly half of protein coding genes (43.78%) could generate chimeric transcripts with retrotransposons. Significant distribution bias of retrotransposon composition, location, and orientation in lncRNA and protein coding genes, and their transcripts, were observed. CONCLUSIONS In the current study, we characterized the classification and evolution profile of retrotransposons in pigs, experimentally proved the transposition activity of the young pig L1 subfamily, characterized the sense and antisense expression profiles and promoter activities of young retrotransposons, and investigated their impact on lncRNA and protein coding genes by defining the mobilome landscapes at the genomic and transcriptomic levels. These findings help provide a better understanding of retrotransposon evolution in mammal and their impact on the genome and transcriptome.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wei Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jiude Mao
- Life Science Center, University of Missouri, Columbia, MO 65211 USA
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
30
|
Chang CH, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, Chen CC, Erceg J, Beliveau BJ, Wu CT, Larracuente AM, Mellone BG. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol 2019; 17:e3000241. [PMID: 31086362 PMCID: PMC6516634 DOI: 10.1371/journal.pbio.3000241] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nuno M. C. Martins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce Santinello
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J. Beliveau
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genome Sciences, University of Washington Seattle, Seattle, Washington, United States of America
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut Storrs, Connecticut, United States of America
| |
Collapse
|
31
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
32
|
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol 2018; 596:5723-5756. [PMID: 29774535 PMCID: PMC6265560 DOI: 10.1113/jp275376] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the 'blood-brain barrier'. These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products, and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Katarzyna M. Dziegielewska
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Kjeld Møllgård
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Mark D. Habgood
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| |
Collapse
|
33
|
Graves JAM. Marsupial genomics meet marsupial reproduction. Reprod Fertil Dev 2018; 31:1181-1188. [PMID: 30482268 DOI: 10.1071/rd18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
We came from very different backgrounds, with different skills and interests. Marilyn Renfree was recognised as 'a giant of marsupial embryology'; I had spent my working life studying genes and chromosomes. We teamed up out of mutual respect (awe on my side) to form, with Des Cooper, the ARC Centre of Excellence in Kangaroo Genomics. This is the story of how our collaboration came to be, and what it has produced for our knowledge of some of the world's most remarkable animals.
Collapse
|
34
|
Nilsson MA, Zheng Y, Kumar V, Phillips MJ, Janke A. Speciation Generates Mosaic Genomes in Kangaroos. Genome Biol Evol 2018; 10:33-44. [PMID: 29182740 PMCID: PMC5758907 DOI: 10.1093/gbe/evx245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
The iconic Australasian kangaroos and wallabies represent a successful marsupial radiation. However, the evolutionary relationship within the two genera, Macropus and Wallabia, is controversial: mitochondrial and nuclear genes, and morphological data have produced conflicting scenarios regarding the phylogenetic relationships, which in turn impact the classification and taxonomy. We sequenced and analyzed the genomes of 11 kangaroos to investigate the evolutionary cause of the observed phylogenetic conflict. A multilocus coalescent analysis using ∼14,900 genome fragments, each 10 kb long, significantly resolved the species relationships between and among the sister-genera Macropus and Wallabia. The phylogenomic approach reconstructed the swamp wallaby (Wallabia) as nested inside Macropus, making this genus paraphyletic. However, the phylogenomic analyses indicate multiple conflicting phylogenetic signals in the swamp wallaby genome. This is interpreted as at least one introgression event between the ancestor of the genus Wallabia and a now extinct ghost lineage outside the genus Macropus. Additional phylogenetic signals must therefore be caused by incomplete lineage sorting and/or introgression, but available statistical methods cannot convincingly disentangle the two processes. In addition, the relationships inside the Macropus subgenus M. (Notamacropus) represent a hard polytomy. Thus, the relationships between tammar, red-necked, agile, and parma wallabies remain unresolvable even with whole-genome data. Even if most methods resolve bifurcating trees from genomic data, hard polytomies, incomplete lineage sorting, and introgression complicate the interpretation of the phylogeny and thus taxonomy.
Collapse
Affiliation(s)
- Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Yichen Zheng
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Vikas Kumar
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany.,Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Kasai F, O'Brien PCM, Pereira JC, Ferguson-Smith MA. Marsupial chromosome DNA content and genome size assessed from flow karyotypes: invariable low autosomal GC content. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171539. [PMID: 30224977 PMCID: PMC6124049 DOI: 10.1098/rsos.171539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Extensive chromosome homologies revealed by cross-species chromosome painting between marsupials have suggested a high level of genome conservation during evolution. Surprisingly, it has been reported that marsupial genome sizes vary by more than 1.2 Gb between species. We have shown previously that individual chromosome sizes and GC content can be measured in flow karyotypes, and have applied this method to compare four marsupial species. Chromosome sizes and GC content were calculated for the grey short-tailed opossum (2n = 18), tammar wallaby (2n = 16), Tasmanian devil (2n = 14) and fat-tailed dunnart (2n = 14), resulting in genome sizes of 3.41, 3.31, 3.17 and 3.25 Gb, respectively. The findings under the same conditions allow a comparison between the four species, indicating that the genomes of these four species are 1-8% larger than human. We show that marsupial genomes are characterized by a low GC content invariable between autosomes and distinct from the higher GC content of the marsupial × chromosome.
Collapse
Affiliation(s)
- Fumio Kasai
- Author for correspondence: Fumio Kasai e-mail:
| | | | | | | |
Collapse
|
36
|
Johnson RN, O'Meally D, Chen Z, Etherington GJ, Ho SYW, Nash WJ, Grueber CE, Cheng Y, Whittington CM, Dennison S, Peel E, Haerty W, O'Neill RJ, Colgan D, Russell TL, Alquezar-Planas DE, Attenbrow V, Bragg JG, Brandies PA, Chong AYY, Deakin JE, Di Palma F, Duda Z, Eldridge MDB, Ewart KM, Hogg CJ, Frankham GJ, Georges A, Gillett AK, Govendir M, Greenwood AD, Hayakawa T, Helgen KM, Hobbs M, Holleley CE, Heider TN, Jones EA, King A, Madden D, Graves JAM, Morris KM, Neaves LE, Patel HR, Polkinghorne A, Renfree MB, Robin C, Salinas R, Tsangaras K, Waters PD, Waters SA, Wright B, Wilkins MR, Timms P, Belov K. Adaptation and conservation insights from the koala genome. Nat Genet 2018; 50:1102-1111. [PMID: 29967444 PMCID: PMC6197426 DOI: 10.1038/s41588-018-0153-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.
Collapse
Affiliation(s)
- Rebecca N Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| | - Denis O'Meally
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Simon Y W Ho
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Will J Nash
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, CA, USA
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- UQ Genomics Initiative, University of Queensland, St Lucia, Queensland, Australia
| | - Camilla M Whittington
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Siobhan Dennison
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | | | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Don Colgan
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Val Attenbrow
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Jason G Bragg
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Sydney, New South Wales, Australia
| | - Parice A Brandies
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Amanda Yoon-Yee Chong
- Earlham Institute, Norwich Research Park, Norwich, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zachary Duda
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Kyle M Ewart
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Greta J Frankham
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Amber K Gillett
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Biological Sciences, Environment Institute, Centre for Applied Conservation Science, and ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Hobbs
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Clare E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Thomas N Heider
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Elizabeth A Jones
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew King
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Danielle Madden
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Jennifer A Marshall Graves
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Katrina M Morris
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Linda E Neaves
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles Robin
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan Salinas
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kyriakos Tsangaras
- Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Shafagh A Waters
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Belinda Wright
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Ramaciotti Centre for Genomics, University of New South Wales, Kensington, New South Wales, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Alvarez-Ponce D, Torres-Sánchez M, Feyertag F, Kulkarni A, Nappi T. Molecular evolution of DNMT1 in vertebrates: Duplications in marsupials followed by positive selection. PLoS One 2018; 13:e0195162. [PMID: 29621315 PMCID: PMC5886458 DOI: 10.1371/journal.pone.0195162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is mediated by a conserved family of DNA methyltransferases (Dnmts). The human genome encodes three active Dnmts (Dnmt1, Dnmt3a and Dnmt3b), the tRNA methyltransferase Dnmt2, and the regulatory protein Dnmt3L. Despite their high degree of conservation among different species, genes encoding Dnmts have been duplicated and/or lost in multiple lineages throughout evolution, indicating that the DNA methylation machinery has some potential to undergo evolutionary change. However, little is known about the extent to which this machinery, or the methylome, varies among vertebrates. Here, we study the molecular evolution of Dnmt1, the enzyme responsible for maintenance of DNA methylation patterns after replication, in 79 vertebrate species. Our analyses show that all studied species exhibit a single copy of the DNMT1 gene, with the exception of tilapia and marsupials (tammar wallaby, koala, Tasmanian devil and opossum), each of which displays two apparently functional DNMT1 copies. Our phylogenetic analyses indicate that DNMT1 duplicated before the radiation of major marsupial groups (i.e., at least ~75 million years ago), thus giving rise to two DNMT1 copies in marsupials (copy 1 and copy 2). In the opossum lineage, copy 2 was lost, and copy 1 recently duplicated again, generating three DNMT1 copies: two putatively functional genes (copy 1a and 1b) and one pseudogene (copy 1ψ). Both marsupial copies (DNMT1 copies 1 and 2) are under purifying selection, and copy 2 exhibits elevated rates of evolution and signatures of positive selection, suggesting a scenario of neofunctionalization. This gene duplication might have resulted in modifications in marsupial methylomes and their dynamics.
Collapse
Affiliation(s)
- David Alvarez-Ponce
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| | - María Torres-Sánchez
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Asmita Kulkarni
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Taylen Nappi
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
38
|
Abstract
Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.
Collapse
Affiliation(s)
- Jennifer A. Marshall Graves
- School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Australia Institute of Applied Ecology, University of Canberra, ACT 2617, Australia
| |
Collapse
|
39
|
Deakin JE. Chromosome Evolution in Marsupials. Genes (Basel) 2018; 9:E72. [PMID: 29415454 PMCID: PMC5852568 DOI: 10.3390/genes9020072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Marsupials typically possess very large, distinctive chromosomes that make them excellent subjects for cytogenetic analysis, and the high level of conservation makes it relatively easy to track chromosome evolution. There are two speciose marsupial families with contrasting rates of karyotypic evolution that could provide insight into the mechanisms driving genome reshuffling and speciation. The family Dasyuridae displays exceptional karyotype conservation with all karyotyped species possessing a 2n = 14 karyotype similar to that predicted for the ancestral marsupial. In contrast, the family Macropodidae has experienced a higher rate of genomic rearrangement and one genus of macropods, the rock-wallabies (Petrogale), has experienced extensive reshuffling. For at least some recently diverged Petrogale species, there is still gene flow despite hybrid fertility issues, making this species group an exceptional model for studying speciation. This review highlights the unique chromosome features of marsupial chromosomes, particularly for these two contrasting families, and the value that a combined cytogenetics, genomics, and epigenomics approach will have for testing models of genome evolution and speciation.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
40
|
Transcriptomic changes in the pre-implantation uterus highlight histotrophic nutrition of the developing marsupial embryo. Sci Rep 2018; 8:2412. [PMID: 29402916 PMCID: PMC5799185 DOI: 10.1038/s41598-018-20744-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Early pregnancy is a critical time for successful reproduction; up to half of human pregnancies fail before the development of the definitive chorioallantoic placenta. Unlike the situation in eutherian mammals, marsupial pregnancy is characterised by a long pre-implantation period prior to the development of the short-lived placenta, making them ideal models for study of the uterine environment promoting embryonic survival pre-implantation. Here we present a transcriptomic study of pre-implantation marsupial pregnancy, and identify differentially expressed genes in the Sminthopsis crassicaudata uterus involved in metabolism and biosynthesis, transport, immunity, tissue remodelling, and uterine receptivity. Interestingly, almost one quarter of the top 50 genes that are differentially upregulated in early pregnancy are putatively involved in histotrophy, highlighting the importance of nutrient transport to the conceptus prior to the development of the placenta. This work furthers our understanding of the mechanisms underlying survival of pre-implantation embryos in the earliest live bearing ancestors of mammals.
Collapse
|
41
|
Abstract
Marsupials and monotremes differ from eutherian mammals in many features of their reproduction and development. Some features appear to be representative of transitional stages in evolution from therapsid reptiles to humans and mice, particularly with respect to the extraembryonic tissues that have undergone remarkable modifications to accommodate reduced egg size and quantity of yolk/deutoplasm, and increasing emphasis on viviparity and placentation. Trophoblast and hypoblast contribute the epithelial layers in most of the extraembryonic membranes and are the first two lineages to differentiate from the embryonic lineage. How they are specified varies greatly among mammals, perhaps largely due to heterochrony in the stage at which they must function. Differences probably also exist in the stage at which lineages are specified relative to the stage at which they fully commit to differentiation. The dogma of sequential commitment to trophoblast and hypoblast with progressive loss of potency may not be a fundamental feature of early mammalian development, but merely a recently acquired developmental pattern in eutherians, or at least mice.
Collapse
|
42
|
Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, Gower G, Llamas B, Soubrier J, Heider TN, Menzies BR, Cooper A, O'Neill RJ, Pask AJ. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat Ecol Evol 2017; 2:182-192. [PMID: 29230027 DOI: 10.1038/s41559-017-0417-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
The Tasmanian tiger or thylacine (Thylacinus cynocephalus) was the largest carnivorous Australian marsupial to survive into the modern era. Despite last sharing a common ancestor with the eutherian canids ~160 million years ago, their phenotypic resemblance is considered the most striking example of convergent evolution in mammals. The last known thylacine died in captivity in 1936 and many aspects of the evolutionary history of this unique marsupial apex predator remain unknown. Here we have sequenced the genome of a preserved thylacine pouch young specimen to clarify the phylogenetic position of the thylacine within the carnivorous marsupials, reconstruct its historical demography and examine the genetic basis of its convergence with canids. Retroposon insertion patterns placed the thylacine as the basal lineage in Dasyuromorphia and suggest incomplete lineage sorting in early dasyuromorphs. Demographic analysis indicated a long-term decline in genetic diversity starting well before the arrival of humans in Australia. In spite of their extraordinary phenotypic convergence, comparative genomic analyses demonstrated that amino acid homoplasies between the thylacine and canids are largely consistent with neutral evolution. Furthermore, the genes and pathways targeted by positive selection differ markedly between these species. Together, these findings support models of adaptive convergence driven primarily by cis-regulatory evolution.
Collapse
Affiliation(s)
- Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Axel H Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Liliya Doronina
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Christy A Hipsley
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Museums Victoria, Melbourne, Victoria, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Graham Gower
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Julien Soubrier
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas N Heider
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Brandon R Menzies
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, South Australia, Australia
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia. .,Museums Victoria, Melbourne, Victoria, Australia.
| |
Collapse
|
43
|
Dodt WG, Gallus S, Phillips MJ, Nilsson MA. Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Sci Rep 2017; 7:16811. [PMID: 29196678 PMCID: PMC5711953 DOI: 10.1038/s41598-017-16148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/26/2017] [Indexed: 01/31/2023] Open
Abstract
Reconstructing phylogeny from retrotransposon insertions is often limited by access to only a single reference genome, whereby support for clades that do not include the reference taxon cannot be directly observed. Here we have developed a new statistical framework that accounts for this ascertainment bias, allowing us to employ phylogenetically powerful retrotransposon markers to explore the radiation of the largest living marsupials, the kangaroos and wallabies of the genera Macropus and Wallabia. An exhaustive in silico screening of the tammar wallaby (Macropus eugenii) reference genome followed by experimental screening revealed 29 phylogenetically informative retrotransposon markers belonging to a family of endogenous retroviruses. We identified robust support for the enigmatic swamp wallaby (Wallabia bicolor) falling within a paraphyletic genus, Macropus. Our statistical approach provides a means to test for incomplete lineage sorting and introgression/hybridization in the presence of the ascertainment bias. Using retrotransposons as “molecular fossils”, we reveal one of the most complex patterns of hemiplasy yet identified, during the rapid diversification of kangaroos and wallabies. Ancestral state reconstruction incorporating the new retrotransposon phylogenetic information reveals multiple independent ecological shifts among kangaroos into more open habitats, coinciding with the Pliocene onset of increased aridification in Australia from ~3.6 million years ago.
Collapse
Affiliation(s)
- William G Dodt
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Sarker S, Roberts HK, Tidd N, Ault S, Ladmore G, Peters A, Forwood JK, Helbig K, Raidal SR. Molecular and microscopic characterization of a novel Eastern grey kangaroopox virus genome directly from a clinical sample. Sci Rep 2017; 7:16472. [PMID: 29184134 PMCID: PMC5705601 DOI: 10.1038/s41598-017-16775-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Poxviruses are large DNA viruses with varying zoonotic potential, and are recognised in a broad range of wildlife. Although poxviruses have been detected in kangaroos, their genetic relationships to poxviruses in other animals and humans is not well understood. Here, we present a novel genome sequence of a marsupial poxvirus, the Eastern grey kangaroopox virus (EKPV-NSW), isolated from a wild eastern grey kangaroo. In the present study, histopathologically confirmed epidermal pox lesions were used to recover the full-length viral genome and perform electron microscopic analysis, with both immature virions and intracellular mature virions detected. Subsequent analysis of the EKPV-NSW genome demonstrated the highest degree of sequence similarity with EKPV-SC strain (91.51%), followed by WKPV-WA (87.93%), and MOCV1 (44.05%). The novel EKPV-NSW complete genome encompasses most of the chordopoxviruses protein coding genes (138) that are required for genome replication and expression, with only three essential protein coding genes being absent. The novel EKPV-NSW is missing 28 predicted genes compared to the recently isolated EKPV-SC, and carries 21 additional unique genes, encoding unknown proteins. Phylogenetic and recombination analyses showed EKPV-NSW to be the distinct available candidate genome of chordopoxviruses.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| | - Hayley K Roberts
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Naomie Tidd
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shayne Ault
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Lake Road Veterinary Clinic, 327 Lake Albert Road, Kooringal, NSW 2650, Australia
| | - Georgia Ladmore
- Lake Road Veterinary Clinic, 327 Lake Albert Road, Kooringal, NSW 2650, Australia
| | - Andrew Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Karla Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Shane R Raidal
- Veterinary Diagnostic Laboratory, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
45
|
Bennett M, Tu SL, Upton C, McArtor C, Gillett A, Laird T, O’Dea M. Complete genomic characterisation of two novel poxviruses (WKPV and EKPV) from western and eastern grey kangaroos. Virus Res 2017; 242:106-121. [DOI: 10.1016/j.virusres.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
46
|
Guernsey MW, Chuong EB, Cornelis G, Renfree MB, Baker JC. Molecular conservation of marsupial and eutherian placentation and lactation. eLife 2017; 6. [PMID: 28895534 PMCID: PMC5595433 DOI: 10.7554/elife.27450] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.
Collapse
Affiliation(s)
- Michael W Guernsey
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Edward B Chuong
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Guillaume Cornelis
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
47
|
Liu H, Wei Q, Huang C, Zhang Y, Guo Z. Potential Roles of Intrinsic Disorder in Maternal-Effect Proteins Involved in the Maintenance of DNA Methylation. Int J Mol Sci 2017; 18:E1898. [PMID: 28869544 PMCID: PMC5618547 DOI: 10.3390/ijms18091898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic modification that needs to be carefully controlled as a prerequisite for normal early embryogenesis. Compelling evidence now suggests that four maternal-effect proteins, primordial germ cell 7 (PGC7), zinc finger protein 57 (ZFP57), tripartite motif-containing 28 (TRIM28) and DNA methyltransferase (cytosine-5) 1 (DNMT1) are involved in the maintenance of DNA methylation. However, it is still not fully understood how these maternal-effect proteins maintain the DNA methylation imprint. We noticed that a feature common to these proteins is the presence of significant levels of intrinsic disorder so in this study we started from an intrinsic disorder perspective to try to understand these maternal-effect proteins. To do this, we firstly analysed the intrinsic disorder predispositions of PGC7, ZFP57, TRIM28 and DNMT1 by using a set of currently available computational tools and secondly conducted an intensive literature search to collect information on their interacting partners and structural characterization. Finally, we discuss the potential effect of intrinsic disorder on the function of these proteins in maintaining DNA methylation.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
48
|
Hickford DE, Wong SFL, Frankenberg SR, Shaw G, Yu H, Chew KY, Renfree MB. Expression of STRA8 is conserved in therian mammals but expression of CYP26B1 differs between marsupials and mice. Biol Reprod 2017; 97:217-229. [DOI: 10.1093/biolre/iox083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
|
49
|
Wang J, Liu Y, Su H, Guo X, Han F. Centromere structure and function analysis in wheat-rye translocation lines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:199-207. [PMID: 28370580 DOI: 10.1111/tpj.13554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 05/12/2023]
Abstract
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
50
|
Deakin JE. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation. Gen Comp Endocrinol 2017; 244:130-138. [PMID: 26431612 DOI: 10.1016/j.ygcen.2015.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 12/30/2022]
Abstract
Studies of chromosomes from monotremes and marsupials endemic to Australasia have provided important insight into the evolution of their genomes as well as uncovering fundamental differences in their sex determination/differentiation pathways. Great advances have been made this century into solving the mystery of the complicated sex chromosome system in monotremes. Monotremes possess multiple different X and Y chromosomes and a candidate sex determining gene has been identified. Even greater advancements have been made for marsupials, with reconstruction of the ancestral karyotype enabling the evolutionary history of marsupial chromosomes to be determined. Furthermore, the study of sex chromosomes in intersex marsupials has afforded insight into differences in the sexual differentiation pathway between marsupials and eutherians, together with experiments showing the insensitivity of the mammary glands, pouch and scrotum to exogenous hormones, led to the hypothesis that there is a gene (or genes) on the X chromosome responsible for the development of either pouch or scrotum. This review highlights the major advancements made towards understanding chromosome evolution and how this has impacted on our understanding of sex determination and differentiation in these interesting mammals.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|