1
|
Jain S, Bakolitsa C, Brenner SE, Radivojac P, Moult J, Repo S, Hoskins RA, Andreoletti G, Barsky D, Chellapan A, Chu H, Dabbiru N, Kollipara NK, Ly M, Neumann AJ, Pal LR, Odell E, Pandey G, Peters-Petrulewicz RC, Srinivasan R, Yee SF, Yeleswarapu SJ, Zuhl M, Adebali O, Patra A, Beer MA, Hosur R, Peng J, Bernard BM, Berry M, Dong S, Boyle AP, Adhikari A, Chen J, Hu Z, Wang R, Wang Y, Miller M, Wang Y, Bromberg Y, Turina P, Capriotti E, Han JJ, Ozturk K, Carter H, Babbi G, Bovo S, Di Lena P, Martelli PL, Savojardo C, Casadio R, Cline MS, De Baets G, Bonache S, Díez O, Gutiérrez-Enríquez S, Fernández A, Montalban G, Ootes L, Özkan S, Padilla N, Riera C, De la Cruz X, Diekhans M, Huwe PJ, Wei Q, Xu Q, Dunbrack RL, Gotea V, Elnitski L, Margolin G, Fariselli P, Kulakovskiy IV, Makeev VJ, Penzar DD, Vorontsov IE, Favorov AV, Forman JR, Hasenahuer M, Fornasari MS, Parisi G, Avsec Z, Çelik MH, Nguyen TYD, Gagneur J, Shi FY, Edwards MD, Guo Y, Tian K, Zeng H, Gifford DK, Göke J, Zaucha J, Gough J, Ritchie GRS, Frankish A, Mudge JM, Harrow J, Young EL, Yu Y, Huff CD, Murakami K, Nagai Y, Imanishi T, Mungall CJ, Jacobsen JOB, Kim D, Jeong CS, Jones DT, Li MJ, Guthrie VB, Bhattacharya R, Chen YC, Douville C, Fan J, Kim D, Masica D, Niknafs N, Sengupta S, Tokheim C, Turner TN, Yeo HTG, Karchin R, Shin S, Welch R, Keles S, Li Y, Kellis M, Corbi-Verge C, Strokach AV, Kim PM, Klein TE, Mohan R, Sinnott-Armstrong NA, Wainberg M, Kundaje A, Gonzaludo N, Mak ACY, Chhibber A, Lam HYK, Dahary D, Fishilevich S, Lancet D, Lee I, Bachman B, Katsonis P, Lua RC, Wilson SJ, Lichtarge O, Bhat RR, Sundaram L, Viswanath V, Bellazzi R, Nicora G, Rizzo E, Limongelli I, Mezlini AM, Chang R, Kim S, Lai C, O’Connor R, Topper S, van den Akker J, Zhou AY, Zimmer AD, Mishne G, Bergquist TR, Breese MR, Guerrero RF, Jiang Y, Kiga N, Li B, Mort M, Pagel KA, Pejaver V, Stamboulian MH, Thusberg J, Mooney SD, Teerakulkittipong N, Cao C, Kundu K, Yin Y, Yu CH, Kleyman M, Lin CF, Stackpole M, Mount SM, Eraslan G, Mueller NS, Naito T, Rao AR, Azaria JR, Brodie A, Ofran Y, Garg A, Pal D, Hawkins-Hooker A, Kenlay H, Reid J, Mucaki EJ, Rogan PK, Schwarz JM, Searls DB, Lee GR, Seok C, Krämer A, Shah S, Huang CV, Kirsch JF, Shatsky M, Cao Y, Chen H, Karimi M, Moronfoye O, Sun Y, Shen Y, Shigeta R, Ford CT, Nodzak C, Uppal A, Shi X, Joseph T, Kotte S, Rana S, Rao A, Saipradeep VG, Sivadasan N, Sunderam U, Stanke M, Su A, Adzhubey I, Jordan DM, Sunyaev S, Rousseau F, Schymkowitz J, Van Durme J, Tavtigian SV, Carraro M, Giollo M, Tosatto SCE, Adato O, Carmel L, Cohen NE, Fenesh T, Holtzer T, Juven-Gershon T, Unger R, Niroula A, Olatubosun A, Väliaho J, Yang Y, Vihinen M, Wahl ME, Chang B, Chong KC, Hu I, Sun R, Wu WKK, Xia X, Zee BC, Wang MH, Wang M, Wu C, Lu Y, Chen K, Yang Y, Yates CM, Kreimer A, Yan Z, Yosef N, Zhao H, Wei Z, Yao Z, Zhou F, Folkman L, Zhou Y, Daneshjou R, Altman RB, Inoue F, Ahituv N, Arkin AP, Lovisa F, Bonvini P, Bowdin S, Gianni S, Mantuano E, Minicozzi V, Novak L, Pasquo A, Pastore A, Petrosino M, Puglisi R, Toto A, Veneziano L, Chiaraluce R, Ball MP, Bobe JR, Church GM, Consalvi V, Cooper DN, Buckley BA, Sheridan MB, Cutting GR, Scaini MC, Cygan KJ, Fredericks AM, Glidden DT, Neil C, Rhine CL, Fairbrother WG, Alontaga AY, Fenton AW, Matreyek KA, Starita LM, Fowler DM, Löscher BS, Franke A, Adamson SI, Graveley BR, Gray JW, Malloy MJ, Kane JP, Kousi M, Katsanis N, Schubach M, Kircher M, Mak ACY, Tang PLF, Kwok PY, Lathrop RH, Clark WT, Yu GK, LeBowitz JH, Benedicenti F, Bettella E, Bigoni S, Cesca F, Mammi I, Marino-Buslje C, Milani D, Peron A, Polli R, Sartori S, Stanzial F, Toldo I, Turolla L, Aspromonte MC, Bellini M, Leonardi E, Liu X, Marshall C, McCombie WR, Elefanti L, Menin C, Meyn MS, Murgia A, Nadeau KCY, Neuhausen SL, Nussbaum RL, Pirooznia M, Potash JB, Dimster-Denk DF, Rine JD, Sanford JR, Snyder M, Cote AG, Sun S, Verby MW, Weile J, Roth FP, Tewhey R, Sabeti PC, Campagna J, Refaat MM, Wojciak J, Grubb S, Schmitt N, Shendure J, Spurdle AB, Stavropoulos DJ, Walton NA, Zandi PP, Ziv E, Burke W, Chen F, Carr LR, Martinez S, Paik J, Harris-Wai J, Yarborough M, Fullerton SM, Koenig BA, McInnes G, Shigaki D, Chandonia JM, Furutsuki M, Kasak L, Yu C, Chen R, Friedberg I, Getz GA, Cong Q, Kinch LN, Zhang J, Grishin NV, Voskanian A, Kann MG, Tran E, Ioannidis NM, Hunter JM, Udani R, Cai B, Morgan AA, Sokolov A, Stuart JM, Minervini G, Monzon AM, Batzoglou S, Butte AJ, Greenblatt MS, Hart RK, Hernandez R, Hubbard TJP, Kahn S, O’Donnell-Luria A, Ng PC, Shon J, Veltman J, Zook JM. CAGI, the Critical Assessment of Genome Interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol 2024; 25:53. [PMID: 38389099 PMCID: PMC10882881 DOI: 10.1186/s13059-023-03113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The Critical Assessment of Genome Interpretation (CAGI) aims to advance the state-of-the-art for computational prediction of genetic variant impact, particularly where relevant to disease. The five complete editions of the CAGI community experiment comprised 50 challenges, in which participants made blind predictions of phenotypes from genetic data, and these were evaluated by independent assessors. RESULTS Performance was particularly strong for clinical pathogenic variants, including some difficult-to-diagnose cases, and extends to interpretation of cancer-related variants. Missense variant interpretation methods were able to estimate biochemical effects with increasing accuracy. Assessment of methods for regulatory variants and complex trait disease risk was less definitive and indicates performance potentially suitable for auxiliary use in the clinic. CONCLUSIONS Results show that while current methods are imperfect, they have major utility for research and clinical applications. Emerging methods and increasingly large, robust datasets for training and assessment promise further progress ahead.
Collapse
|
2
|
Naggert ASEN, Collin GB, Wang J, Krebs MP, Chang B. A mouse model of cone photoreceptor function loss (cpfl9) with degeneration due to a mutation in Gucy2e. Front Mol Neurosci 2023; 15:1080136. [PMID: 36698779 PMCID: PMC9868315 DOI: 10.3389/fnmol.2022.1080136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
During routine screening of mouse strains and stocks by the Eye Mutant Resource at The Jackson Laboratory for genetic mouse models of human ocular disorders, we identified cpfl9, a mouse model with cone photoreceptor function loss. The mice exhibited an early-onset phenotype that was easily recognized by the absence of a cone-mediated b-wave electroretinography response and by a reduction in rod-mediated photoresponses at four weeks of age. By genetic mapping and high-throughput sequencing of a whole exome capture library of cpfl9, a homozygous 25 bp deletion within exon 11 of the Gucy2e gene was identified, which is predicted to result in a frame shift leading to premature termination. The corresponding protein in human, retinal guanylate cyclase 1 (GUCY2D), plays an important role in rod and cone photoreceptor cell function. Loss-of-function mutations in human GUCY2D cause LCA1, one of the most common forms of Leber congenital amaurosis, which results in blindness at birth or in early childhood. The early loss of cone and reduced rod photoreceptor cell function in the cpfl9 mutant is accompanied by a later, progressive loss of cone and rod photoreceptor cells, which may be relevant to understanding disease pathology in a subset of LCA1 patients and in individuals with cone-rod dystrophy caused by recessive GUCY2D variants. cpfl9 mice will be useful for studying the role of Gucy2e in the retina.
Collapse
|
3
|
Hyde LF, Kong Y, Zhao L, Rao SR, Wang J, Stone L, Njaa A, Collin GB, Krebs MP, Chang B, Fliesler SJ, Nishina PM, Naggert JK. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci 2022; 23:12005. [PMID: 36233305 PMCID: PMC9570038 DOI: 10.3390/ijms231912005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.
Collapse
Affiliation(s)
| | - Yang Kong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Lihong Zhao
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Andrew Njaa
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | | | | |
Collapse
|
4
|
Weatherly SM, Collin GB, Charette JR, Stone L, Damkham N, Hyde LF, Peterson JG, Hicks W, Carter GW, Naggert JK, Krebs MP, Nishina PM. Identification of Arhgef12 and Prkci as genetic modifiers of retinal dysplasia in the Crb1rd8 mouse model. PLoS Genet 2022; 18:e1009798. [PMID: 35675330 PMCID: PMC9212170 DOI: 10.1371/journal.pgen.1009798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/21/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.
Collapse
Affiliation(s)
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wanda Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
5
|
Machado DA, Ontiveros AE, Behringer RR. Mammalian uterine morphogenesis and variations. Curr Top Dev Biol 2022; 148:51-77. [DOI: 10.1016/bs.ctdb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Sun H, Lu Z, Singh A, Zhou Y, Zheng E, Zhou M, Wang J, Wu X, Hu Z, Gu Z, Campbell JL, Zheng L, Shen B. Error-prone, stress-induced 3' flap-based Okazaki fragment maturation supports cell survival. Science 2021; 374:1252-1258. [PMID: 34855483 PMCID: PMC8852821 DOI: 10.1126/science.abj1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How cells with DNA replication defects acquire mutations that allow them to escape apoptosis under environmental stress is a long-standing question. Here, we report that an error-prone Okazaki fragment maturation (OFM) pathway is activated at restrictive temperatures in rad27Δ yeast cells. Restrictive temperature stress activated Dun1, facilitating transformation of unprocessed 5′ flaps into 3′ flaps, which were removed by 3′ nucleases, including DNA polymerase δ (Polδ). However, at certain regions, 3′ flaps formed secondary structures that facilitated 3′ end extension rather than degradation, producing alternative duplications with short spacer sequences, such as pol3 internal tandem duplications. Consequently, little 5′ flap was formed, suppressing rad27Δ-induced lethality at restrictive temperatures. We define a stress-induced, error-prone OFM pathway that generates mutations that counteract replication defects and drive cellular evolution and survival.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zhaoning Lu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Amanpreet Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Yajing Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Eric Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Jinhui Wang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zunsong Hu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Judith L. Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering California Institute of Technology, Pasadena, CA 91125, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| |
Collapse
|
7
|
Valencia-Morales MDP, Sanchez-Flores A, Colín-Castelán D, Alvarado-Caudillo Y, Fragoso-Bargas N, López-González G, Peña-López T, Ramírez-Nava M, de la Rocha C, Rodríguez-Ríos D, Lund G, Zaina S. Somatic Genetic Mosaicism in the Apolipoprotein E-null Mouse Aorta. Thromb Haemost 2021; 121:1541-1553. [PMID: 33677828 DOI: 10.1055/a-1414-4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In addition to genetic and epigenetic inheritance, somatic variation may contribute to cardiovascular disease (CVD) risk. CVD-associated somatic mutations have been reported in human clonal hematopoiesis, but evidence in the atheroma is lacking. To probe for somatic variation in atherosclerosis, we sought single-nucleotide private variants (PVs) in whole-exome sequencing (WES) data of aorta, liver, and skeletal muscle of two C57BL/6J coisogenic male ApoE null/wild-type (WT) sibling pairs, and RNA-seq data of one of the two pairs. Relative to the C57BL/6 reference genome, we identified 9 and 11 ApoE null aorta- and liver-specific PVs that were shared by all WES and RNA-seq datasets. Corresponding PVs in WT sibling aorta and liver were 1 and 0, respectively, and not overlapping with ApoE null PVs. Pyrosequencing analysis of 4 representative PVs in 17 ApoE null aortas and livers confirmed tissue-specific shifts toward the alternative allele, in addition to significant deviations from mendelian allele ratios. Notably, all aorta and liver PVs were present in the dbSNP database and were predominantly transition mutations within atherosclerosis-related genes. The majority of PVs were in discrete clusters approximately 3 Mb and 65 to 73 Mb away from hypermutable immunoglobin loci in chromosome 6. These features were largely shared with previously reported CVD-associated somatic mutations in human clonal hematopoiesis. The observation that SNPs exhibit tissue-specific somatic DNA mosaicism in ApoE null mice is potentially relevant for genetic association study design. The proximity of PVs to hypermutable loci suggests testable mechanistic hypotheses.
Collapse
Affiliation(s)
- María Del Pilar Valencia-Morales
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
- Department of Developmental Genetics and Molecular Physiology, "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | - Alejandro Sanchez-Flores
- "Unidad Universitaria de Secuenciación Masiva y Bioinformática", Biotechnology Institute, UNAM, Cuernavaca, Mexico
| | | | | | | | - Gladys López-González
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Tania Peña-López
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Magda Ramírez-Nava
- Bachelor's Degree in Nutrition Programme, Division of Health Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| | - Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Leon Campus, University of Guanajuato, Leon, Mexico
| |
Collapse
|
8
|
Yang Y, Li X, Wang J, Tan J, Fitzmaurice B, Nishina PM, Sun K, Tian W, Liu W, Liu X, Chang B, Zhu X. A missense mutation in Pitx2 leads to early-onset glaucoma via NRF2-YAP1 axis. Cell Death Dis 2021; 12:1017. [PMID: 34716303 PMCID: PMC8556256 DOI: 10.1038/s41419-021-04331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
Glaucoma is a leading cause of blindness, affecting 70 million people worldwide. Owing to the similarity in anatomy and physiology between human and mouse eyes and the ability to genetically manipulate mice, mouse models are an invaluable resource for studying mechanisms underlying disease phenotypes and for developing therapeutic strategies. Here, we report the discovery of a new mouse model of early-onset glaucoma that bears a transversion substitution c. G344T, which results in a missense mutation, p. R115L in PITX2. The mutation causes an elevation in intraocular pressure (IOP) and progressive death of retinal ganglion cells (RGC). These ocular phenotypes recapitulate features of pathologies observed in human glaucoma. Increased oxidative stress was evident in the inner retina. We demonstrate that the mutant PITX2 protein was not capable of binding to Nuclear factor-like 2 (NRF2), which regulates Pitx2 expression and nuclear localization, and to YAP1, which is necessary for co-initiation of transcription of downstream targets. PITX2-mediated transcription of several antioxidant genes were also impaired. Treatment with N-Acetyl-L-cysteine exerted a profound neuroprotective effect on glaucoma-associated neuropathies, presumably through inhibition of oxidative stress. Our study demonstrates that a disruption of PITX2 leads to glaucoma optic pathogenesis and provides a novel early-onset glaucoma model that will enable elucidation of mechanisms underlying the disease as well as to serve as a resource to test new therapeutic strategies.
Collapse
Affiliation(s)
- Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China
| | - Xiao Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, 361006, Xiamen, Fujian, China
| | | | | | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Wanli Tian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Wenjing Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, 361006, Xiamen, Fujian, China.
- Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, 518020, Shenzhen, China.
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China.
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Shauli T, Brandes N, Linial M. Evolutionary and functional lessons from human-specific amino acid substitution matrices. NAR Genom Bioinform 2021; 3:lqab079. [PMID: 34541526 PMCID: PMC8445205 DOI: 10.1093/nargab/lqab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Human genetic variation in coding regions is fundamental to the study of protein structure and function. Most methods for interpreting missense variants consider substitution measures derived from homologous proteins across different species. In this study, we introduce human-specific amino acid (AA) substitution matrices that are based on genetic variations in the modern human population. We analyzed the frequencies of >4.8M single nucleotide variants (SNVs) at codon and AA resolution and compiled human-centric substitution matrices that are fundamentally different from classic cross-species matrices (e.g. BLOSUM, PAM). Our matrices are asymmetric, with some AA replacements showing significant directional preference. Moreover, these AA matrices are only partly predicted by nucleotide substitution rates. We further test the utility of our matrices in exposing functional signals of experimentally-validated protein annotations. A significant reduction in AA transition frequencies was observed across nine post-translational modification (PTM) types and four ion-binding sites. Our results propose a purifying selection signal in the human proteome across a diverse set of functional protein annotations and provide an empirical baseline for interpreting human genetic variation in coding regions.
Collapse
Affiliation(s)
- Tair Shauli
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Nadav Brandes
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Jackson T, Ishengoma E, Rhode C. Cross-species Exon Capture and Whole Exome Sequencing: Application, Utility and Challenges for Genomic Resource Development in Non-model Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:560-575. [PMID: 34241713 DOI: 10.1007/s10126-021-10046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Comprehending the genetic architecture of complex traits has many applications in evolution, ecology, conservation biology and plant and animal production systems. Underlying research questions in these fields are diverse species that often have limited genetic information available. In aquaculture, for example, genetic progress has been slow in many species due to a lack in such genetic information. In this study, zebrafish (as a well-studied model species) was used in cross-species transfer to develop genomic resources and identify candidate genes underling growth differentials in dusky kob. Dusky kob is a Sciaenid finfish and an emerging aquaculture species. The zebrafish All Exon Predesigned Probe-set capture protocol was used to enrich fractionated DNA samples from kob, classified as either large or small, before massive parallel sequencing on the Ion Torrent platform. Although vast quantities of sequence data were generated, only about 30% of contigs could be identified as zebrafish homologues. There were numerous species-specific sequences and inconsistent coverage of sequencing products across samples, likely due to non-specific binding of the probe-set as a result of the evolutionary divergence between zebrafish and kob. Nonetheless, more than 55,000 SNPs could be reliably identified and genotyped to the individual level. Using SNP genotypic divergence estimates, between large and small cohorts, a number of candidate genes associated with growth was also identified for future investigation. These findings contribute to the growing body of evidence demonstrating the utility of a cross-species capture approach in the development of important genomic resources for understanding traits of interest in species without reference genomes.
Collapse
Affiliation(s)
- T Jackson
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - E Ishengoma
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Department of Biological Sciences, Mkwawa University College of Education, University of Dar Es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania
| | - C Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
11
|
Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. Proc Natl Acad Sci U S A 2021; 118:2021390118. [PMID: 34183409 DOI: 10.1073/pnas.2021390118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Australia has the highest historically recorded rate of mammalian extinction in the world, with 34 terrestrial species declared extinct since European colonization in 1788. Among Australian mammals, rodents have been the most severely affected by these recent extinctions; however, given a sparse historical record, the scale and timing of their decline remain unresolved. Using museum specimens up to 184 y old, we generate genomic-scale data from across the entire assemblage of Australian hydromyine rodents (i.e., eight extinct species and their 42 living relatives). We reconstruct a phylogenomic tree for these species spanning ∼5.2 million years, revealing a cumulative total of 10 million years (>10%) of unique evolutionary history lost to extinction within the past ∼150 y. We find no evidence for reduced genetic diversity in extinct species just prior to or during decline, indicating that their extinction was extremely rapid. This suggests that populations of extinct Australian rodents were large prior to European colonization, and that genetic diversity does not necessarily protect species from catastrophic extinction. In addition, comparative analyses suggest that body size and biome interact to predict extinction and decline, with larger species more likely to go extinct. Finally, we taxonomically resurrect a species from extinction, Gould's mouse (Pseudomys gouldii Waterhouse, 1839), which survives as an island population in Shark Bay, Western Australia (currently classified as Pseudomys fieldi Waite, 1896). With unprecedented sampling across a radiation of extinct and living species, we unlock a previously inaccessible historical perspective on extinction in Australia. Our results highlight the capacity of collections-based research to inform conservation and management of persisting species.
Collapse
|
12
|
Roycroft E, Achmadi A, Callahan CM, Esselstyn JA, Good JM, Moussalli A, Rowe KC. Molecular Evolution of Ecological Specialisation: Genomic Insights from the Diversification of Murine Rodents. Genome Biol Evol 2021; 13:6275684. [PMID: 33988699 PMCID: PMC8258016 DOI: 10.1093/gbe/evab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Adaptive radiations are characterized by the diversification and ecological differentiation of species, and replicated cases of this process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation, genes related to ecological specialization may be subject to recurrent positive directional selection. However, it is not clear to what extent patterns of lineage-specific ecological specialization (including phenotypic convergence) are correlated with shared signatures of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent species, a group characterized by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We found that genes associated with immunity, reproduction, diet, digestion, and taste have been subject to pervasive positive selection during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and dietary specialization, with a higher proportion of positively selected codon sites in derived dietary forms (i.e., carnivores and herbivores) than in ancestral forms (i.e., omnivores). Despite striking convergent evolution of skull morphology and dentition in two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection than in a nonconvergent species comparison. Although a small number of the genes we detected can be incidentally linked to craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent phenotype. Our results suggest a link between positive selection and derived ecological phenotypes, and highlight specific genes and general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents.
Collapse
Affiliation(s)
- Emily Roycroft
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Anang Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Jawa Barat, Indonesia
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jacob A Esselstyn
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Los Angeles, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, Gasic S, Smagulova F, Grey C, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Petukhova GV, Trachtulec Z. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol 2021; 19:86. [PMID: 33910563 PMCID: PMC8082845 DOI: 10.1186/s12915-021-01017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vladimir Landa
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fitore Kusari
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- Present address: Inserm U1085 IRSET, 35042, Rennes, France
| | - Corinne Grey
- Institut de Génétique Humaine, CNRS UMR 9002, 34396, Montpellier, France
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
- Present address: Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Karel Tresnak
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Jan Silhavy
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| |
Collapse
|
14
|
Torres HM, Rodezno-Antunes T, VanCleave A, Cao Y, Callahan DL, Westendorf JJ, Tao J. Precise detection of a murine germline mutation of the Notch3 gene associated with kyphosis and developmental disorders. J Adv Vet Anim Res 2021; 8:7-13. [PMID: 33860007 PMCID: PMC8043348 DOI: 10.5455/javar.2021.h479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: Humpback (hpbk) mice harbor a pathogenic mutation in the Notch3 gene and can serve as a beneficial animal model for investigating human myopathy, kyphosis, and developmental disorders, including lateral meningocele syndrome. Detection of the point mutation in hpbk mice is important for maintaining strains and scrutinizing genetic rescues, especially considering that homozygous mice are infertile and indistinguishable from their littermates at a young age. This study aimed for the development of a novel, precise, and time-saving genotyping method to identify the mutation in hpbk mice. Materials and Methods: In order to study the hpbk mouse line, we describe how we applied several tools, including quantitative polymerase chain reaction (qPCR), multiplex tetra-primer amplification-refractory mutation system (ARMS-PCR) and Sanger sequencing, toward the recognition of heterozygous and homozygous mice. Results: The Notch3 mutation was clearly identified using qPCR and ARMS assays, but the latter was a more precise and cost-effective approach. The lengths of the ARMS-PCR amplicons are 210 bp and 164 bp for the wild-type and hpbk alleles, respectively. Moreover, the genotyping results for each mouse were corroborated by Sanger DNA sequencing. Conclusion: Our newly developed PCR-based ARMS system affords a swift and precise way to genotype the hpbk mice. ARMS-PCR does not rely on any advanced equipment and is useful as a genotyping method for other model organisms that harbor a pathogenic variant.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Department of Chemistry & Biochemistry, The South Dakota State University, Brookings, SD, USA
| | | | - Ashley VanCleave
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA
| | - Yuxia Cao
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA
| | - Dakota L Callahan
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Sanford Program for Undergraduate Research, University of Sioux Falls, Sioux Falls, SD, USA
| | | | - Jianning Tao
- Cancer Biology & Rare Diseases Groups, Sanford Research, Sioux Falls, SD, USA.,Department of Chemistry & Biochemistry, The South Dakota State University, Brookings, SD, USA.,Department of Biomedical Engineering, the University of South Dakota, Sioux Falls, SD, USA.,Department of Pediatrics the University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
15
|
Abstract
The morphogenesis of the mammalian secondary plate is a series of highly dynamic developmental process, including the palate shelves vertical outgrowth, elevation to the horizontal plane and complete fusion in the midline. Extracellular matrix (ECM) proteins not only form the basic infrastructure for palatal mesenchymal cells to adhere via integrins but also interact with cells to regulate their functions such as proliferation and differentiation. ECM remodeling is essential for palatal outgrowth, expansion, elevation, and fusion. Multiple signaling pathways important for palatogenesis such as FGF, TGF β, BMP, and SHH remodels ECM dynamics. Dysregulation of ECM such as HA synthesis or ECM breakdown enzymes MMPs or ADAMTS causes cleft palate in mouse models. A better understanding of ECM remodeling will contribute to revealing the pathogenesis of cleft palate.
Collapse
Affiliation(s)
- Xia Wang
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Chunman Li
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Zeyao Zhu
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Li Yuan
- Department of Stomatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University , Shenzhen, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | - Ou Sha
- Health Science Center, Shenzhen University , Shenzhen, China
| |
Collapse
|
16
|
Kim H, Yoshihara M, Suyama M. Comparative genomic analysis of inbred rat strains reveals the existence of ancestral polymorphisms. Mamm Genome 2020; 31:86-94. [PMID: 32166433 PMCID: PMC7200647 DOI: 10.1007/s00335-020-09831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Abstract
In an alignment of closely related genomic sequences, the existence of discordant mutation sites, which do not reflect the phylogenetic relationship of the genomes, is often observed. Although these discordant mutation sites are thought to have emerged by ancestral polymorphism or gene flow, their frequency and distribution in the genome have not yet been analyzed in detail. Using the genome sequences of all protein coding genes of 25 inbred rat strains, we analyzed the frequency and genome-wide distribution of the discordant mutation sites. From the comparison of different substrains, it was found that these loci are not substrain specific, but are common among different groups of substrains, suggesting that the discordant sites might have mainly emerged through ancestral polymorphism. It was also revealed that the discordant sites are not uniformly distributed along chromosomes, but are concentrated at certain genomic loci, such as RT1, major histocompatibility complex of rats, and olfactory receptors, indicating that genes known to be highly polymorphic tend to have more discordant sites. Our results also showed that loci with a high density of discordant sites are also rich in heterozygous variants, even though these are inbred strains.
Collapse
Affiliation(s)
- Hyeonjeong Kim
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Minako Yoshihara
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
17
|
An ENU-induced mutation in Twist1 transactivation domain causes hindlimb polydactyly with complete penetrance and dominant-negatively impairs E2A-dependent transcription. Sci Rep 2020; 10:2501. [PMID: 32051525 PMCID: PMC7016005 DOI: 10.1038/s41598-020-59455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Twist1 encodes a basic helix-loop-helix transcription factor (TF), which forms homodimer or heterodimer with other TFs, like E2A, to regulate target genes' expression. Mutations in TWIST1 are associated with Saethre-Chotzen syndrome (SCS), a rare congenital disorder characterized with osteogenesis abnormalities. However, how dysfunction of TWIST1 leads to SCS is still largely unknown. Here, using an unbiased ENU-induced mutagenesis screening, we identified a novel Twist1 mutation and the mutant mouse phenocopies some features of SCS in a dominant manner. Physically, our mutation p.F191S lies at the edge of a predicted α-helix in Twist1 transactivation (TA) domain. Adjacent to F191, a consecutive three-residue (AFS) has been hit by 3 human and 2 mouse disease-associated mutations, including ours. Unlike previously reported mouse null and p.S192P alleles that lead to hindlimb polydactyly with incomplete penetrance but a severe craniofacial malformation, our p.F191S causes the polydactyly (84.2% bilateral and 15.8% unilateral) with complete penetrance but a mild craniofacial malformation. Consistent with the higher penetrance, p.F191S has stronger impairment on E2A-dependent transcription than p.S192P. Although human p.A186T and mouse p.S192P disease mutations are adjacent to ours, these three mutations function differently to impair the E2A-dependent transcription. Unlike p.A186T and p.S192S that disturb local protein conformation and unstabilize the mutant proteins, p.F191S keeps the mutant protein stable and its interaction with E2A entire. Therefore, we argue that p.F191S we identified acts in a dominant-negative manner to impair E2A-dependent transcription and to cause the biological consequences. In addition, the mutant mouse we provided here could be an additional and valuable model for better understanding the disease mechanisms underlying SCS caused by TWIST1 dysfunction.
Collapse
|
18
|
Gorvin CM, Loh NY, Stechman MJ, Falcone S, Hannan FM, Ahmad BN, Piret SE, Reed AA, Jeyabalan J, Leo P, Marshall M, Sethi S, Bass P, Roberts I, Sanderson J, Wells S, Hough TA, Bentley L, Christie PT, Simon MM, Mallon AM, Schulz H, Cox RD, Brown MA, Huebner N, Brown SD, Thakker RV. Mice with a Brd4 Mutation Represent a New Model of Nephrocalcinosis. J Bone Miner Res 2019; 34:1324-1335. [PMID: 30830987 PMCID: PMC6658219 DOI: 10.1002/jbmr.3695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/26/2019] [Accepted: 02/05/2019] [Indexed: 12/30/2022]
Abstract
Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nellie Y Loh
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J Stechman
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara Falcone
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Bushra N Ahmad
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anita Ac Reed
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeshmi Jeyabalan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | - Siddharth Sethi
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul Bass
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - Ian Roberts
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Jeremy Sanderson
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Liz Bentley
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Paul T Christie
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michelle M Simon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Ann-Marie Mallon
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT) at Translational Research Institute, Brisbane, Australia
| | | | - Steve D Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Mihola O, Pratto F, Brick K, Linhartova E, Kobets T, Flachs P, Baker CL, Sedlacek R, Paigen K, Petkov PM, Camerini-Otero RD, Trachtulec Z. Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res 2019; 29:1078-1086. [PMID: 31186301 PMCID: PMC6633264 DOI: 10.1101/gr.244426.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/07/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of meiosis is the rearrangement of parental alleles to ensure genetic diversity in the gametes. These chromosome rearrangements are mediated by the repair of programmed DNA double-strand breaks (DSBs) as genetic crossovers between parental homologs. In mice, humans, and many other mammals, meiotic DSBs occur primarily at hotspots, determined by sequence-specific binding of the PRDM9 protein. Without PRDM9, meiotic DSBs occur near gene promoters and other functional sites. Studies in a limited number of mouse strains showed that functional PRDM9 is required to complete meiosis, but despite its apparent importance, Prdm9 has been repeatedly lost across many animal lineages. Both the reason for mouse sterility in the absence of PRDM9 and the mechanism by which Prdm9 can be lost remain unclear. Here, we explore whether mice can tolerate the loss of Prdm9 By generating Prdm9 functional knockouts in an array of genetic backgrounds, we observe a wide range of fertility phenotypes and ultimately demonstrate that PRDM9 is not required for completion of male meiosis. Although DSBs still form at a common subset of functional sites in all mice lacking PRDM9, meiotic outcomes differ substantially. We speculate that DSBs at functional sites are difficult to repair as a crossover and that by increasing the efficiency of crossover formation at these sites, genetic modifiers of recombination rates can allow for meiotic progression. This model implies that species with a sufficiently high recombination rate may lose Prdm9 yet remain fertile.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eliska Linhartova
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Christopher L Baker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Petko M Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
20
|
Chang B, FitzMaurice B, Wang J, Low BE, Wiles MV, Nishina PM. Spontaneous Posterior Segment Vascular Disease Phenotype of a Mouse Model, rnv3, Is Dependent on the Crb1rd8 Allele. Invest Ophthalmol Vis Sci 2019; 59:5127-5139. [PMID: 30372741 PMCID: PMC6203173 DOI: 10.1167/iovs.18-25046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine the molecular basis of lesion development in a murine model of spontaneous retinal vascularization, rnv3 (retinal vascularization 3, aka JR5558). Methods Disease progression of rnv3 was examined in longitudinal studies by clinical evaluation, electroretinography (ERG) and light microscopy analyses. The chromosomal position for the recessive rnv3 mutation was determined by DNA pooling and genome-wide linkage analysis. The causative mutation was discovered by comparison of whole exome sequences of rnv3 mutant and wild-type (WT) controls. In order to confirm the causative mutation, transcription activator-like effector nuclease (TALEN)-mediated oligonucleotide directed repair (ODR) was utilized to correct the mutant allele. Phenotypic correction was assessed by fundus imaging and optical coherence tomography of live mice. Results rnv3 exhibits early-onset, multifocal depigmented retinal lesions observable by fundus examination starting at 18 days of age. The retinal lesions are associated with fluorescein leakage around 25 days of age, with peak leakage at about 4 weeks of age. ERG responses deteriorate as rnv3 mutants age, concomitant with progressive photoreceptor disruption and loss that is observable by histology. Genetic analysis localized rnv3 to mouse chromosome (Chr) 1. By high throughput sequencing of a whole exome capture library of a rnv3/rnv3 mutant and subsequent sequence analysis, a single base deletion (del) in the Crb1 [crumbs family member 1] gene, which was previously reported to cause retinal degeneration 8, was identified. The TALEN-mediated ODR rescued the posterior segment vascularization phenotype; heterozygous Crb1rd8+em1Boc/Crb1rd8 and homozygous Crb1rd8+em1Boc/Crb1rd8+em1Boc mice showed a normal retinal phenotype. Additionally, six novel disruptions of Crb1 that were generated through aberrant non-homologous end joining induced by TALEN exhibited variable levels of vascularization, suggesting allelic effects. Conclusions The rnv3 model and the models of six novel disruptions of Crb1 are all reliable, novel mouse models for the study of both early and late events associated with posterior segment vascularization and can also be used to test the effects of pharmacological targets for treating human ocular vascular disorders. Further study of these models may provide a greater understanding about how different Crb1 alleles result in aberrant angiogenesis.
Collapse
Affiliation(s)
- Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Benjamin E Low
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | | | | |
Collapse
|
21
|
Yamamoto PK, Souza TA, Antiorio ATFB, Zanatto DA, Garcia‐Gomes MDSA, Alexandre‐Ribeiro SR, Oliveira NDS, Menck CFM, Bernardi MM, Massironi SMG, Mori CMC. Genetic and behavioral characterization of a
Kmt2d
mouse mutant, a new model for Kabuki Syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12568. [DOI: 10.1111/gbb.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Pedro K. Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Tiago A. Souza
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Ana T. F. B. Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Dennis A. Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | | | | | - Nicassia de Souza Oliveira
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Maria M. Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University São Paulo Brazil
| | - Silvia M. G. Massironi
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
- Department of Immunology, Institute of Biomedical ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| | - Claudia M. C. Mori
- Department of Pathology, School of Veterinary Medicine and Animal ScienceUniversity of São Paulo (USP) Sao Paulo Brazil
| |
Collapse
|
22
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
23
|
Mazzonetto PC, Ariza CB, Ocanha SG, de Souza TA, Ko GM, Menck CFM, Massironi SMG, Porcionatto MA. Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1502-1515. [PMID: 30853403 DOI: 10.1016/j.bbadis.2019.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023]
Abstract
Abnormalities in cerebellar structure and function may cause ataxia, a neurological dysfunction of motor coordination. In the course of the present study, we characterized a mutant mouse lineage with an ataxia-like phenotype. We localized the mutation on chromosome 17 and mapped it to position 1534 of the Nox3 gene, resulting in p.Asn64Tyr change. The primary defect observed in Nox3eqlb mice was increased proliferation of cerebellar granule cell precursors (GCPs). cDNA microarray comparing Nox3eqlb and BALB/c neonatal cerebellum revealed changes in the expression of genes involved in the control of cell proliferation. Nox3eqlb GCPs and NSC produce higher amounts of reactive oxygen species (ROS) and upregulate the expression of SHH target genes, such as Gli1-3 and Ccnd1 (CyclinD1). We hypothesize that this new mutation is responsible for an increase in proliferation via stimulation of the SHH pathway. We suggest this mutant mouse lineage as a new model to investigate the role of ROS in neuronal precursor cell proliferation.
Collapse
Affiliation(s)
- P C Mazzonetto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C B Ariza
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of General Pathology, Center of Biological Sciences, Universidade Estadual de Londrina (UEL), Brazil
| | - S G Ocanha
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - T A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - G M Ko
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - S M G Massironi
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo (USP), Brazil
| | - M A Porcionatto
- Department of Biochemistry, Laboratory of Neurobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Brazil.
| |
Collapse
|
24
|
Cao C, Zhang Y, Jia Q, Wang X, Zheng Q, Zhang H, Song R, Li Y, Luo A, Hong Q, Qin G, Yao J, Zhang N, Wang Y, Wang H, Zhou Q, Zhao J. An exonic splicing enhancer mutation in DUOX2 causes aberrant alternative splicing and severe congenital hypothyroidism in Bama pigs. Dis Model Mech 2019; 12:12/1/dmm036616. [PMID: 30651277 PMCID: PMC6361156 DOI: 10.1242/dmm.036616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pigs share many similarities with humans in terms of anatomy, physiology and genetics, and have long been recognized as important experimental animals in biomedical research. Using an N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we previously identified a large number of pig mutants, which could be further established as human disease models. However, the identification of causative mutations in large animals with great heterogeneity remains a challenging endeavor. Here, we select one pig mutant, showing congenital nude skin and thyroid deficiency in a recessive inheritance pattern. We were able to efficiently map the causative mutation using family-based genome-wide association studies combined with whole-exome sequencing and a small sample size. A loss-of-function variant (c.1226 A>G) that resulted in a highly conserved amino acid substitution (D409G) was identified in the DUOX2 gene. This mutation, located within an exonic splicing enhancer motif, caused aberrant splicing of DUOX2 transcripts and resulted in lower H2O2 production, which might cause a severe defect in thyroid hormone production. Our findings suggest that exome sequencing is an efficient way to map causative mutations and that DUOX2D409G/D409G mutant pigs could be a potential large animal model for human congenital hypothyroidism. Summary: Here, we show that an exonic splicing enhancer variant in DUOX2 (c.1226 A>G) causes aberrant splicing of DUOX2 transcripts, resulting in lower H2O2 production, to cause severe congenital hypothyroidism in Bama pigs.
Collapse
Affiliation(s)
- Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruigao Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Tomberg K, Westrick RJ, Kotnik EN, Cleuren AC, Siemieniak DR, Zhu G, Saunders TL, Ginsburg D. Whole exome sequencing of ENU-induced thrombosis modifier mutations in the mouse. PLoS Genet 2018; 14:e1007658. [PMID: 30188893 PMCID: PMC6143275 DOI: 10.1371/journal.pgen.1007658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/18/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
Although the Factor V Leiden (FVL) gene variant is the most prevalent genetic risk factor for venous thrombosis, only 10% of FVL carriers will experience such an event in their lifetime. To identify potential FVL modifier genes contributing to this incomplete penetrance, we took advantage of a perinatal synthetic lethal thrombosis phenotype in mice homozygous for FVL (F5L/L) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/-) to perform a sensitized dominant ENU mutagenesis screen. Linkage analysis conducted in the 3 largest pedigrees generated from the surviving F5L/L Tfpi+/- mice ('rescues') using ENU-induced coding variants as genetic markers was unsuccessful in identifying major suppressor loci. Whole exome sequencing was applied to DNA from 107 rescue mice to identify candidate genes enriched for ENU mutations. A total of 3,481 potentially deleterious candidate ENU variants were identified in 2,984 genes. After correcting for gene size and multiple testing, Arl6ip5 was identified as the most enriched gene, though not reaching genome-wide significance. Evaluation of CRISPR/Cas9 induced loss of function in the top 6 genes failed to demonstrate a clear rescue phenotype. However, a maternally inherited (not ENU-induced) de novo mutation (Plcb4R335Q) exhibited significant co-segregation with the rescue phenotype (p = 0.003) in the corresponding pedigree. Thrombosis suppression by heterozygous Plcb4 loss of function was confirmed through analysis of an independent, CRISPR/Cas9-induced Plcb4 mutation (p = 0.01).
Collapse
Affiliation(s)
- Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Randal J. Westrick
- Department of Biological Sciences and Center for Data Science and Big Data Analysis, Oakland University, Rochester, Michigan, United States of America
| | - Emilee N. Kotnik
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Audrey C. Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Transgenic Animal Model Core Laboratory, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David Ginsburg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sugaya K. Let's think again about using mammalian temperature-sensitive mutants to investigate functional molecules-The perspectives from the studies on three mutants showing chromosome instability. J Cell Biochem 2018; 119:7143-7150. [PMID: 29943840 DOI: 10.1002/jcb.27205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 11/06/2022]
Abstract
This review evaluates the use of temperature-sensitive (ts) mutants to investigate functional molecules in mammalian cells. A series of studies were performed in which mammalian cells expressing functional molecules were isolated from ts mutants using complementation by the introduction and expression of the responsible protein tagged with the green fluorescent protein. The results showed that chromosome instability and cell-cycle arrest were caused by ts defects in the following three molecules: the largest subunit of RNA polymerase II, a protein involved in splicing, and ubiquitin-activating enzyme. The cells expressing functional protein were then isolated by introducing the responsible gene tagged with the green fluorescent protein to complement the ts phenotype. These cells proved to be useful in analyzing the dynamics of RNA polymerase II in living cells. Analyses of the functional interaction between proteins involved in splicing were also useful in the investigation of ts mutants and their derivatives. In addition, these cells demonstrated the functional localization of ubiquitin-activating enzyme in the nucleus. Mammalian ts mutants continue to show great potential to aid in understanding the functions of the essential molecules in cells. Therefore, it is highly important that studies on the identification and characterization of the genes responsible for the phenotype of a mutant are carried out.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
27
|
Unpackaging the genetics of mammalian fertility: strategies to identify the “reproductive genome”†. Biol Reprod 2018; 99:1119-1128. [DOI: 10.1093/biolre/ioy133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
|
28
|
Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Sci Rep 2018; 8:5975. [PMID: 29654304 PMCID: PMC5899138 DOI: 10.1038/s41598-018-24199-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
By N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated the mutant mouse line TUB6 that is characterised by severe combined immunodeficiency (SCID) and systemic sterile autoinflammation in homozygotes, and a selective T cell defect in heterozygotes. The causative missense point mutation results in the single amino acid exchange G170W in multicatalytic endopeptidase complex subunit-1 (MECL-1), the β2i-subunit of the immuno- and thymoproteasome. Yeast mutagenesis and crystallographic data suggest that the severe TUB6-phenotype compared to the MECL-1 knockout mouse is caused by structural changes in the C-terminal appendage of β2i that prevent the biogenesis of immuno- and thymoproteasomes. Proteasomes are essential for cell survival, and defective proteasome assembly causes selective death of cells expressing the mutant MECL-1, leading to the severe immunological phenotype. In contrast to the immunosubunits β1i (LMP2) and β5i (LMP7), mutations in the gene encoding MECL-1 have not yet been assigned to human disorders. The TUB6 mutant mouse line exemplifies the involvement of MECL-1 in immunopathogenesis and provides the first mouse model for primary immuno- and thymoproteasome-associated immunodeficiency that may also be relevant in humans.
Collapse
|
29
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
30
|
Hashimoto H, Kawabe T, Fukuda T, Kusakabe M. A Novel Ataxic Mutant Mouse Line Having Sensory Neuropathy Shows Heavy Iron Deposition in Kidney. NEURODEGENER DIS 2017; 17:181-198. [DOI: 10.1159/000457126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023] Open
|
31
|
Sarver BA, Keeble S, Cosart T, Tucker PK, Dean MD, Good JM. Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach. Genome Biol Evol 2017; 9:726-739. [PMID: 28338821 PMCID: PMC5381554 DOI: 10.1093/gbe/evx034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
Comparative genomic studies are now possible across a broad range of evolutionary timescales, but the generation and analysis of genomic data across many different species still present a number of challenges. The most sophisticated genotyping and down-stream analytical frameworks are still predominantly based on comparisons to high-quality reference genomes. However, established genomic resources are often limited within a given group of species, necessitating comparisons to divergent reference genomes that could restrict or bias comparisons across a phylogenetic sample. Here, we develop a scalable pseudoreference approach to iteratively incorporate sample-specific variation into a genome reference and reduce the effects of systematic mapping bias in downstream analyses. To characterize this framework, we used targeted capture to sequence whole exomes (∼54 Mbp) in 12 lineages (ten species) of mice spanning the Mus radiation. We generated whole exome pseudoreferences for all species and show that this iterative reference-based approach improved basic genomic analyses that depend on mapping accuracy while preserving the associated annotations of the mouse reference genome. We then use these pseudoreferences to resolve evolutionary relationships among these lineages while accounting for phylogenetic discordance across the genome, contributing an important resource for comparative studies in the mouse system. We also describe patterns of genomic introgression among lineages and compare our results to previous studies. Our general approach can be applied to whole or partitioned genomic data and is easily portable to any system with sufficient genomic resources, providing a useful framework for phylogenomic studies in mice and other taxa.
Collapse
Affiliation(s)
- Brice A.J. Sarver
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Ted Cosart
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Priscilla K. Tucker
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI
| | - Matthew D. Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT
| |
Collapse
|
32
|
Mihola O, Trachtulec Z. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene. Folia Biol (Praha) 2017; 63:27-30. [PMID: 28374672 DOI: 10.14712/fb2017063010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.
Collapse
Affiliation(s)
- O Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Z Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| |
Collapse
|
33
|
Identification of a Novel ENU-Induced Mutation in Mouse Tbx1 Linked to Human DiGeorge Syndrome. Neural Plast 2016; 2016:5836143. [PMID: 28105375 PMCID: PMC5220494 DOI: 10.1155/2016/5836143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
The patients with DiGeorge syndrome (DGS), caused by deletion containing dozens of genes in chromosome 22, often carry cardiovascular problem and hearing loss associated with chronic otitis media. Inside the deletion region, a transcription factor TBX1 was highly suspected. Furthermore, similar DGS phenotypes were found in the Tbx1 heterozygous knockout mice. Using ENU-induced mutagenesis and G1 dominant screening strategy, here we identified a nonsynonymous mutation p.W118R in T-box of TBX1, the DNA binding domain for transcription activity. The mutant mice showed deficiency of inner ear functions, including head tossing and circling, plus increased hearing threshold determined by audiometry. Therefore, our result further confirms the pathogenic basis of Tbx1 in DGS, points out the crucial role of DNA binding activity of TBX1 for the ear function, and provides additional animal model for studying the DGS disease mechanisms.
Collapse
|
34
|
Shin S, Hong C, Song S, Ahn K, Chung E. Single nucleotide polymorphisms in exomes of high- and low-marbled meats in Korean cattle. Anim Genet 2016; 47:756-757. [DOI: 10.1111/age.12479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sungchul Shin
- Division of Animal Science and Resources; College of Life Science and Natural Resources; Sangji University; 660 Usnadong Wonju Gangwondo 220-702 Republic of Korea
| | - Changpyo Hong
- Theragen Etex Bio Institute, Theragen Etex; Suwon 443-270 Republic of Korea
| | - Sanghoon Song
- Theragen Etex Bio Institute, Theragen Etex; Suwon 443-270 Republic of Korea
| | - Kung Ahn
- Theragen Etex Bio Institute, Theragen Etex; Suwon 443-270 Republic of Korea
| | - Euiryong Chung
- Division of Animal Science and Resources; College of Life Science and Natural Resources; Sangji University; 660 Usnadong Wonju Gangwondo 220-702 Republic of Korea
| |
Collapse
|
35
|
Yoshihara M, Saito D, Sato T, Ohara O, Kuramoto T, Suyama M. Design and application of a target capture sequencing of exons and conserved non-coding sequences for the rat. BMC Genomics 2016; 17:593. [PMID: 27506932 PMCID: PMC4979189 DOI: 10.1186/s12864-016-2975-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Target capture sequencing is an efficient approach to directly identify the causative mutations of genetic disorders. To apply this strategy to laboratory rats exhibiting various phenotypes, we developed a novel target capture probe set, TargetEC (target capture for exons and conserved non-coding sequences), which can identify mutations not only in exonic regions but also in conserved non-coding sequences and thus can detect regulatory mutations. Results TargetEC covers 1,078,129 regions spanning 146.8 Mb of the genome. We applied TargetEC to four inbred rat strains (WTC/Kyo, WTC-swh/Kyo, PVG/Seac, and KFRS4/Kyo) maintained by the National BioResource Project for the Rat in Japan, and successfully identified mutations associated with these phenotypes, including one mutation detected in a conserved non-coding sequence. Conclusions The method developed in this study can be used to efficiently identify regulatory mutations, which cannot be detected using conventional exome sequencing, and will help to deepen our understanding of the relationships between regulatory mutations and associated phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2975-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minako Yoshihara
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Daisuke Saito
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, 292-0818, Chiba, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan.
| |
Collapse
|
36
|
Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina PM, Chang B. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci 2016; 57:877-88. [PMID: 26978024 PMCID: PMC4794085 DOI: 10.1167/iovs.15-17495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.
Collapse
|
37
|
Burnicka-Turek O, Steimle JD, Huang W, Felker L, Kamp A, Kweon J, Peterson M, Reeves RH, Maslen CL, Gruber PJ, Yang XH, Shendure J, Moskowitz IP. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum Mol Genet 2016; 25:3011-3028. [PMID: 27340223 DOI: 10.1093/hmg/ddw155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/13/2023] Open
Abstract
Atrioventricular septal defects (AVSDs) are a common severe form of congenital heart disease (CHD). In this study we identified deleterious non-synonymous mutations in two cilia genes, Dnah11 and Mks1, in independent N-ethyl-N-nitrosourea-induced mouse mutant lines with heritable recessive AVSDs by whole-exome sequencing. Cilia are required for left/right body axis determination and second heart field (SHF) Hedgehog (Hh) signaling, and we find that cilia mutations affect these requirements differentially. Dnah11avc4 did not disrupt SHF Hh signaling and caused AVSDs only concurrently with heterotaxy, a left/right axis abnormality. In contrast, Mks1avc6 disrupted SHF Hh signaling and caused AVSDs without heterotaxy. We performed unbiased whole-genome SHF transcriptional profiling and found that cilia motility genes were not expressed in the SHF whereas cilia structural and signaling genes were highly expressed. SHF cilia gene expression predicted the phenotypic concordance between AVSDs and heterotaxy in mice and humans with cilia gene mutations. A two-step model of cilia action accurately predicted the AVSD/heterotaxyu phenotypic expression pattern caused by cilia gene mutations. We speculate that cilia gene mutations contribute to both syndromic and non-syndromic AVSDs in humans and provide a model that predicts the phenotypic consequences of specific cilia gene mutations.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Wenhui Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Felker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anna Kamp
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Peterson
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Roger H Reeves
- Department of Physiology and Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheryl L Maslen
- Knight Cardiovascular Institute and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA and
| | - Peter J Gruber
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, IA 52245, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| |
Collapse
|
38
|
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome. Genetics 2016; 203:1841-57. [PMID: 27317678 DOI: 10.1534/genetics.116.186825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution-divergence in protein sequence, gene expression, and DNA methylation-across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation.
Collapse
|
39
|
Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 2016; 44:4504-18. [PMID: 27105841 PMCID: PMC4889952 DOI: 10.1093/nar/gkw309] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022] Open
Abstract
The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied genomes. Among these strategies, hybridization capture has proven to be an innovative and efficient tool for targeting and enriching specific biomarkers in complex DNA mixtures. It has been successfully applied in numerous areas of biology, such as exome resequencing for the identification of mutations underlying Mendelian or complex diseases and cancers, and its usefulness has been demonstrated in the agronomic field through the linking of genetic variants to agricultural phenotypic traits of interest. Moreover, hybridization capture has provided access to underexplored, but relevant fractions of genomes through its ability to enrich defined targets and their flanking regions. Finally, on the basis of restricted genomic information, this method has also allowed the expansion of knowledge of nonreference species and ancient genomes and provided a better understanding of metagenomic samples. In this review, we present the major advances and discoveries permitted by hybridization capture and highlight the potency of this approach in all areas of biology.
Collapse
Affiliation(s)
- Cyrielle Gasc
- EA 4678 CIDAM, Université d'Auvergne, Clermont-Ferrand, 63001, France
| | | | - Pierre Peyret
- EA 4678 CIDAM, Université d'Auvergne, Clermont-Ferrand, 63001, France
| |
Collapse
|
40
|
Cherry C, Thompson B, Saptarshi N, Wu J, Hoh J. 2016: A 'Mitochondria' Odyssey. Trends Mol Med 2016; 22:391-403. [PMID: 27151392 DOI: 10.1016/j.molmed.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/16/2022]
Abstract
The integration of the many roles of mitochondria in cellular function and the contribution of mitochondrial dysfunction to disease are major areas of research. Within this realm, the roles of mitochondria in immune defense, epigenetics, and stem cell (SC) development have recently come into the spotlight. With new understanding, mitochondria may bring together these seemingly unrelated fields, a crucial process in treatment and prevention for various diseases. In this review we describe novel findings in these three arenas, discussing the significance of the interplay between mitochondria and the cell nucleus in response to environmental cues. While we optimistically anticipate that further research in these areas can have a profound impact on disease management, we also bring forth some of the key questions and challenges that remain.
Collapse
Affiliation(s)
- Catherine Cherry
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Brian Thompson
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Neil Saptarshi
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Jianyu Wu
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA
| | - Josephine Hoh
- School of Medicine, Departments of Environmental Health Science and Ophthalmology, Yale University, New Haven, CT, USA.
| |
Collapse
|
41
|
Broeckx BJG, Coopman F, Verhoeven GEC, De Keulenaer S, De Meester E, Bavegems V, Smets P, Van Ryssen B, Van Nieuwerburgh F, Deforce D. Toward the most ideal case-control design with related and unrelated dogs in whole-exome sequencing studies. Anim Genet 2015; 47:200-7. [PMID: 26689130 DOI: 10.1111/age.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Abstract
With the recent development of whole-exome sequencing enrichment designs for the dog, a novel tool for disease-association studies became available. The aim of disease-association studies is to identify one or a very limited number of putative causal variants or genes from the large pool of genetic variation. To maximize the efficiency of these studies and to provide some directions of what to expect, we evaluated the effect on variant reduction for various combinations of cases and controls for both dominant and recessive types of inheritance assuming variable degrees of penetrance and detectance. In this study, variant data of 14 dogs (13 Labrador Retrievers and one Dogue de Bordeaux), obtained by whole-exome sequencing, were analyzed. In the filtering process, we found that unrelated dogs from the same breed share up to 70% of their variants, which is likely a consequence of the breeding history of the dog. For the designs tested with unrelated dogs, combining two cases and two controls gave the best result. These results were improved further by adding closely related dogs. Reduced penetrance and/or detectance has a drastic effect on the efficiency and is likely to have a profound effect on the sample size needed to elucidate the causal variant. Overall, we demonstrated that sequencing a small number of dogs results in a marked reduction of variants that are likely sufficient to pinpoint causal variants or genes.
Collapse
Affiliation(s)
- B J G Broeckx
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - F Coopman
- Department of Applied Biosciences, University College Ghent, 9000, Ghent, Belgium
| | - G E C Verhoeven
- Department of Medical Imaging and Small Animal Orthopaedics, Ghent University, 9820, Merelbeke, Belgium
| | - S De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - E De Meester
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - V Bavegems
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, 9820, Merelbeke, Belgium
| | - P Smets
- Department of Medicine and Clinical Biology of Small Animals, Ghent University, 9820, Merelbeke, Belgium
| | - B Van Ryssen
- Department of Medical Imaging and Small Animal Orthopaedics, Ghent University, 9820, Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - D Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
42
|
Broeckx BJG, Coopman F, Verhoeven G, Bosmans T, Gielen I, Dingemanse W, Saunders JH, Deforce D, Van Nieuwerburgh F. An heuristic filtering tool to identify phenotype-associated genetic variants applied to human intellectual disability and canine coat colors. BMC Bioinformatics 2015; 16:391. [PMID: 26597515 PMCID: PMC4656174 DOI: 10.1186/s12859-015-0822-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Identification of one or several disease causing variant(s) from the large collection of variants present in an individual is often achieved by the sequential use of heuristic filters. The recent development of whole exome sequencing enrichment designs for several non-model species created the need for a species-independent, fast and versatile analysis tool, capable of tackling a wide variety of standard and more complex inheritance models. With this aim, we developed “Mendelian”, an R-package that can be used for heuristic variant filtering. Results The R-package Mendelian offers fast and convenient filters to analyze putative variants for both recessive and dominant models of inheritance, with variable degrees of penetrance and detectance. Analysis of trios is supported. Filtering against variant databases and annotation of variants is also included. This package is not species specific and supports parallel computation. We validated this package by reanalyzing data from a whole exome sequencing experiment on intellectual disability in humans. In a second example, we identified the mutations responsible for coat color in the dog. This is the first example of whole exome sequencing without prior mapping in the dog. Conclusion We developed an R-package that enables the identification of disease-causing variants from the long list of variants called in sequencing experiments. The software and a detailed manual are available at https://github.com/BartBroeckx/Mendelian. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0822-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart J G Broeckx
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium.
| | - Frank Coopman
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
| | - Geert Verhoeven
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Tim Bosmans
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Ingrid Gielen
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Walter Dingemanse
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Jimmy H Saunders
- Department of Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium.
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
43
|
Gallego-Llamas J, Timms AE, Geister KA, Lindsay A, Beier DR. Variant mapping and mutation discovery in inbred mice using next-generation sequencing. BMC Genomics 2015; 16:913. [PMID: 26552429 PMCID: PMC4640199 DOI: 10.1186/s12864-015-2173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/31/2015] [Indexed: 12/04/2022] Open
Abstract
Background The development of powerful new methods for DNA sequencing enable the discovery of sequence variants, their utilization for the mapping of mutant loci, and the identification of causal variants in a single step. We have applied this approach for the analysis of ENU-mutagenized mice maintained on an inbred background. Results We ascertained ENU-induced variants in four different phenotypically mutant lines. These were then used as informative markers for positional cloning of the mutated genes. We tested both whole genome (WGS) and whole exome (WES) datasets. Conclusion Both approaches were successful as a means to localize a region of homozygosity, as well as identifying mutations of candidate genes, which could be individually assessed. As expected, the WGS strategy was more reliable, since many more ENU-induced variants were ascertained. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jabier Gallego-Llamas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Krista A Geister
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - Anna Lindsay
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| | - David R Beier
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA. .,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Ave., Seattle, WA, 98101, USA.
| |
Collapse
|
44
|
Reddy B, Kelawala DN, Shah T, Patel AB, Patil DB, Parikh PV, Patel N, Parmar N, Mohapatra AB, Singh KM, Menon R, Pandya D, Jakhesara SJ, Koringa PG, Rao MV, Joshi CG. Identification of putative SNPs in progressive retinal atrophy affected Canis lupus familiaris using exome sequencing. Mamm Genome 2015; 26:638-49. [PMID: 26515695 DOI: 10.1007/s00335-015-9607-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
Abstract
Progressive retinal atrophy (PRA) is one of the major causes of retinal photoreceptor cell degeneration in canines. The inheritance pattern of PRA is autosomal recessive and genetically heterogeneous. Here, using targeted sequencing technology, we have performed exome sequencing of 10 PRA-affected (Spitz=7, Cocker Spaniel=1, Lhasa Aphso=1 and Spitz-Labrador cross breed=1) and 6 normal (Spitz=5, Cocker Spaniel=1) dogs. The high-throughput sequencing using 454-Roche Titanium sequencer generated about 2.16 Giga bases of raw data. Initially, we have successfully identified 25,619 single nucleotide polymorphisms (SNPs) that passed the stringent SNP calling parameters. Further, we performed association study on the cohort, and the highly significant (0.001) associations were short-listed and investigated in-depth. Out of the 171 significant SNPs, 113 were previously unreported. Interestingly, six among them were non-synonymous coding (NSC) SNPs, which includes CPPED1 A>G (p.M307V), PITRM1 T>G (p.S715A), APP G>A (p.T266M), RNF213 A>G (p.V1482A), C>A (p.V1456L), and SLC46A3 G>A (p.R168Q). On the other hand, 35 out of 113 unreported SNPs were falling in regulatory regions such as 3'-UTR, 5'-UTR, etc. In-depth bioinformatics analysis revealed that majority of NSC SNPs have damaging effect and alter protein stability. This study highlighted the genetic markers associated with PRA, which will help to develop genetic assay-based screening in effective breeding.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India.,Department of Zoology, Genetic Diagnostic Centre, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Divyesh N Kelawala
- Department of Veterinary Surgery & Radiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Tejas Shah
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Anand B Patel
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Deepak B Patil
- Department of Veterinary Surgery & Radiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Pinesh V Parikh
- Department of Veterinary Surgery & Radiology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Namrata Patel
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Nidhi Parmar
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Amit B Mohapatra
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Krishna M Singh
- Datar Genetics Ltd, F-8, D Road, Ambad, Nasik, Maharashtra, 422010, India
| | - Ramesh Menon
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Dipal Pandya
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Subhash J Jakhesara
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Prakash G Koringa
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Mandava V Rao
- Department of Zoology, Genetic Diagnostic Centre, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Chaitanya G Joshi
- Ome Research Facility, Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat, 388001, India.
| |
Collapse
|
45
|
McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A, Evans G, Falk-Sörqvist E, Forster M, Fredriksson S, Freeman P, Freitag C, Fritzsche J, Gibson S, Gullberg M, Gut M, Heath S, Heath-Brun I, Heron AJ, Hohlbein J, Ke R, Lancaster O, Le Reste L, Maglia G, Marie R, Mauger F, Mertes F, Mignardi M, Moens L, Oostmeijer J, Out R, Pedersen JN, Persson F, Picaud V, Rotem D, Schracke N, Sengenes J, Stähler PF, Stade B, Stoddart D, Teng X, Veal CD, Zahra N, Bayley H, Beier M, Brown T, Dekker C, Ekström B, Flyvbjerg H, Franke A, Guenther S, Kapanidis AN, Kaye J, Kristensen A, Lehrach H, Mangion J, Sauer S, Schyns E, Tost J, van Helvoort JMLM, van der Zaag PJ, Tegenfeldt JO, Brookes AJ, Mir K, Nilsson M, Willcocks JP, Gut IG. New technologies for DNA analysis--a review of the READNA Project. N Biotechnol 2015; 33:311-30. [PMID: 26514324 DOI: 10.1016/j.nbt.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/17/2015] [Indexed: 01/09/2023]
Abstract
The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
Collapse
Affiliation(s)
- Steven McGinn
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - David Bauer
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas Brefort
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Liqin Dong
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Afaf El-Sagheer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Abdou Elsharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany; Faculty of Sciences, Division of Biochemistry, Chemistry Department, Damietta University, New Damietta City, Egypt
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | | | - Peter Freeman
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Camilla Freitag
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department of Applied Physics, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Spencer Gibson
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mats Gullberg
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Heath-Brun
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrew J Heron
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Johannes Hohlbein
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Rongqin Ke
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Owen Lancaster
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ludovic Le Reste
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Giovanni Maglia
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Rodolphe Marie
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Florence Mauger
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Florian Mertes
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Ruud Out
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | | | - Fredrik Persson
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Vincent Picaud
- CEA-Saclay, Bât DIGITEO 565 - Pt Courrier 192, 91191 Gif-sur-Yvette Cedex, France
| | - Dvir Rotem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Nadine Schracke
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Jennifer Sengenes
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Peer F Stähler
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - David Stoddart
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Xia Teng
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Colin D Veal
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Nathalie Zahra
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Markus Beier
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Tom Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Björn Ekström
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Henrik Flyvbjerg
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - Simone Guenther
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Jane Kaye
- HeLEX - Centre for Health, Law and Emerging Technologies, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Anders Kristensen
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Jonathan Mangion
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Emile Schyns
- PHOTONIS France S.A.S. Avenue Roger Roncier, 19100 Brive B.P. 520, 19106 BRIVE Cedex, France
| | - Jörg Tost
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | | | - Pieter J van der Zaag
- Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Jonas O Tegenfeldt
- Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Kalim Mir
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - James P Willcocks
- Oxford Nanopore Technologies, Edmund Cartwright House, 4 Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
46
|
Simon MM, Moresco EMY, Bull KR, Kumar S, Mallon AM, Beutler B, Potter PK. Current strategies for mutation detection in phenotype-driven screens utilising next generation sequencing. Mamm Genome 2015; 26:486-500. [PMID: 26449678 PMCID: PMC4602060 DOI: 10.1007/s00335-015-9603-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Mutagenesis-based screens in mice are a powerful discovery platform to identify novel genes or gene functions associated with disease phenotypes. An N-ethyl-N-nitrosourea (ENU) mutagenesis screen induces single nucleotide variants randomly in the mouse genome. Subsequent phenotyping of mutant and wildtype mice enables the identification of mutated pathways resulting in phenotypes associated with a particular ENU lesion. This unbiased approach to gene discovery conducts the phenotyping with no prior knowledge of the functional mutations. Before the advent of affordable next generation sequencing (NGS), ENU variant identification was a limiting step in gene characterization, akin to ‘finding a needle in a haystack’. The emergence of a reliable reference genome alongside advances in NGS has propelled ENU mutation discovery from an arduous, time-consuming exercise to an effective and rapid form of mutation discovery. This has permitted large mouse facilities worldwide to use ENU for novel mutation discovery in a high-throughput manner, helping to accelerate basic science at the mechanistic level. Here, we describe three different strategies used to identify ENU variants from NGS data and some of the subsequent steps for mutation characterisation.
Collapse
Affiliation(s)
- Michelle M Simon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Katherine R Bull
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Saumya Kumar
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Paul K Potter
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell Campus, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
47
|
Kong S, Dong H, Song J, Thiruppathi M, Prabhakar BS, Qiu Q, Lin Z, Chini E, Zhang B, Fang D. Deleted in Breast Cancer 1 Suppresses B Cell Activation through RelB and Is Regulated by IKKα Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:3685-93. [PMID: 26378077 DOI: 10.4049/jimmunol.1500713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 01/08/2023]
Abstract
Alternative NF-κB signaling is crucial for B cell activation and Ig production, and it is mainly regulated by the inhibitor of κ B kinase (IKK) regulatory complex. Dysregulation of alternative NF-κB signaling in B cells could therefore lead to hyperactive B cells and Ig overproduction. In our previous, study we found that deleted in breast cancer 1 (DBC1) is a suppressor of the alternative NF-κB pathway to attenuate B cell activation. In this study, we report that loss of DBC1 results in spontaneous overproduction of Ig in mice after 10 mo of age. Using a double mutant genetic model, we confirm that DBC1 suppresses B cell activation through RelB inhibition. At the molecular level, we show that DBC1 interacts with alternative NF-κB members RelB and p52 through its leucine zipper domain. In addition, phosphorylation of DBC1 at its C terminus by IKKα facilitates its interaction with RelB and IKKα, indicating that DBC1-mediated suppression of alternative NF-κB is regulated by IKKα. Our results define the molecular mechanism of DBC1 inhibition of alternative NF-κB activation in suppressing B cell activation.
Collapse
Affiliation(s)
- Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine Chicago, Chicago, IL 60612
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Zhenghong Lin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611
| | - Eduardo Chini
- Laboratory of Signal Transduction, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago IL 60611;
| |
Collapse
|
48
|
Baker CL, Petkova P, Walker M, Flachs P, Mihola O, Trachtulec Z, Petkov PM, Paigen K. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots. PLoS Genet 2015; 11:e1005512. [PMID: 26368021 PMCID: PMC4569383 DOI: 10.1371/journal.pgen.1005512] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/17/2015] [Indexed: 02/04/2023] Open
Abstract
Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. During formation of sperm and eggs chromosomes exchange DNA in a process known as recombination, creating new combinations responsible for much of the enormous diversity in populations. In some mammals, including humans, the locations of recombination are chosen by a DNA-binding protein named PRDM9. Importantly, there are tens to hundreds of different variations of the Prdm9 gene (termed alleles), many of which are predicted to bind a unique DNA sequence. This high frequency of variation results in many individuals having two different copies of Prdm9, and several lines of evidence indicate that alleles compete to initiate recombination. In seeking to understand the mechanism of this competition we found that Prdm9 activity is sensitive to the number of gene copies present, suggesting that availability of this protein is a limiting factor during recombination. Moreover, we found that variant forms of PRDM9 protein can physically interact suggesting that when this happens one variant can influence which hotspots will become activated. Genetic crosses in mice support these observations; the presence of a dominant Prdm9 allele can completely suppress recombination at some locations. We conclude that allele-dominance of PRDM9 is a consequence of protein-protein interaction and competition for DNA binding in a limited pool of molecules, thus shaping the recombination landscape in natural populations.
Collapse
Affiliation(s)
- Christopher L. Baker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Pavlina Petkova
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Michael Walker
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic
| | - Petko M. Petkov
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kenneth Paigen
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
49
|
Palmer K, Fairfield H, Borgeia S, Curtain M, Hassan MG, Dionne L, Yong Karst S, Coombs H, Bronson RT, Reinholdt LG, Bergstrom DE, Donahue LR, Cox TC, Murray SA. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Dev Biol 2015; 415:216-227. [PMID: 26234751 DOI: 10.1016/j.ydbio.2015.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
Craniofacial abnormalities are among the most common features of human genetic syndromes and disorders. The etiology of these conditions is often complex, influenced by both genetic context and the environment. Frequently, craniofacial abnormalities present as part of a syndrome with clear comorbid phenotypes, providing additional insight into mechanisms of the causative gene or pathway. The mouse has been a key tool in our understanding of the genetic mechanisms of craniofacial development and disease, and can provide excellent models for human craniofacial abnormalities. While powerful genetic engineering tools in the mouse have contributed significantly our understanding of craniofacial development and dysmorphology, forward genetic approaches provide an unbiased means to identify new genes and pathways. Moreover, spontaneous mutations can occur on any number of genetic backgrounds, potentially revealing critical genes that require a specific genetic context. Here we report discovery and phenotyping of 43 craniofacial mouse models, derived primarily from a screen for spontaneous mutations in production colonies at the Jackson Laboratory. We identify the causative gene for 33 lines, including novel genes in pathways not previously connected to craniofacial development, and novel alleles of known genes that present with unique phenotypes. Together with our detailed characterization, this work provides a valuable gene discovery resource for the craniofacial community, and a rich source of mouse models for further investigation.
Collapse
Affiliation(s)
- Kristina Palmer
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | - Suhaib Borgeia
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | - Mohamed G Hassan
- Seattle Children's Research Institute, Seattle, WA 98101, USA; Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt
| | - Louise Dionne
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - Son Yong Karst
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | - Harold Coombs
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
| | | | | | | | | | - Timothy C Cox
- Seattle Children's Research Institute, Seattle, WA 98101, USA; University of Washington, Department of Pediatrics (Craniofacial Medicine), Seattle, WA 98195, USA
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA.
| |
Collapse
|
50
|
Candela H, Casanova-Sáez R, Micol JL. Getting started in mapping-by-sequencing. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:606-12. [PMID: 25359627 DOI: 10.1111/jipb.12305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/28/2014] [Indexed: 05/06/2023]
Abstract
Next-generation sequencing (NGS) technologies allow the cost-effective sequencing of whole genomes and have expanded the scope of genomics to novel applications, such as the genome-wide characterization of intraspecific polymorphisms and the rapid mapping and identification of point mutations. Next-generation sequencing platforms, such as the Illumina HiSeq2000 platform, are now commercially available at affordable prices and routinely produce an enormous amount of sequence data, but their wide use is often hindered by a lack of knowledge on how to manipulate and process the information produced. In this review, we focus on the strategies that are available to geneticists who wish to incorporate these novel approaches into their research but who are not familiar with the necessary bioinformatic concepts and computational tools. In particular, we comprehensively summarize case studies where the use of NGS technologies has led to the identification of point mutations, a strategy that has been dubbed "mapping-by-sequencing", and review examples from plants and other model species such as Caenorhabditis elegans, Saccharomyces cerevisiae, and Drosophila melanogaster. As these technologies are becoming cheaper and more powerful, their use is also expanding to allow mutation identification in species with larger genomes, such as many crop plants.
Collapse
Affiliation(s)
- Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|