1
|
Ehweiner A, Duch C, Brembs B. Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila. F1000Res 2024; 13:116. [PMID: 38779314 PMCID: PMC11109550 DOI: 10.12688/f1000research.146347.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 05/25/2024] Open
Abstract
Background Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.
Collapse
Affiliation(s)
- Andreas Ehweiner
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg Universitat Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| |
Collapse
|
2
|
Ahmetov II, Valeeva EV, Yerdenova MB, Datkhabayeva GK, Bouzid A, Bhamidimarri PM, Sharafetdinova LM, Egorova ES, Semenova EA, Gabdrakhmanova LJ, Yusupov RA, Larin AK, Kulemin NA, Generozov EV, Hamoudi R, Kustubayeva AM, Rees T. KIBRA Gene Variant Is Associated with Ability in Chess and Science. Genes (Basel) 2023; 14:genes14010204. [PMID: 36672945 PMCID: PMC9859436 DOI: 10.3390/genes14010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The kidney and brain expressed protein (KIBRA) plays an important role in synaptic plasticity. Carriers of the T allele of the KIBRA (WWC1) gene rs17070145 C/T polymorphism have been reported to have enhanced spatial ability and to outperform individuals with the CC genotype in working memory tasks. Since ability in chess and science is directly related to spatial ability and working memory, we hypothesized that the KIBRA T allele would be positively associated with chess player status and PhD status in science. We tested this hypothesis in a study involving 2479 individuals (194 chess players, 119 PhD degree holders in STEM fields, and 2166 controls; 1417 males and 1062 females) from three ethnicities (236 Kazakhs, 1583 Russians, 660 Tatars). We found that frequencies of the T allele were significantly higher in Kazakh (66.9 vs. 55.1%; p = 0.024), Russian (44.8 vs. 32.0%; p = 0.0027), and Tatar (51.5 vs. 41.8%; p = 0.035) chess players compared with ethnically matched controls (meta-analysis for CT/TT vs. CC: OR = 2.05, p = 0.0001). In addition, none of the international chess grandmasters (ranked among the 80 best chess players in the world) were carriers of the CC genotype (0 vs. 46.3%; OR = 16.4, p = 0.005). Furthermore, Russian and Tatar PhD holders had a significantly higher frequency of CT/TT genotypes compared with controls (meta-analysis: OR = 1.71, p = 0.009). Overall, this is the first study to provide comprehensive evidence that the rs17070145 C/T polymorphism of the KIBRA gene may be associated with ability in chess and science, with the T allele exerting a beneficial effect.
Collapse
Affiliation(s)
- Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Correspondence:
| | - Elena V. Valeeva
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Meruert B. Yerdenova
- Department of Psychology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gaukhar K. Datkhabayeva
- Department of Biophysics, Biomedicine and Neuroscience, Center for Cognitive Neuroscience, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Amal Bouzid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Liliya M. Sharafetdinova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Emiliya S. Egorova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Leysan J. Gabdrakhmanova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Almira M. Kustubayeva
- Department of Biophysics, Biomedicine and Neuroscience, Center for Cognitive Neuroscience, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Tim Rees
- Department of Rehabilitation and Sport Science, Faculty of Health and Social Sciences, Bournemouth University, Bournemouth BH12 5BB, UK
| |
Collapse
|
3
|
Recognition memory, primacy vs. recency effects, and time perception in the online version of the fear of scream paradigm. Sci Rep 2022; 12:14258. [PMID: 35995804 PMCID: PMC9395394 DOI: 10.1038/s41598-022-18124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Anxiety disorders are characterized by cognitive dysfunctions which contribute to the patient’s profound disabilities. The threat of shock paradigm represents a validated psychopathological model of anxiety to measure the impact of anxiety on cognitive processes. We have developed an online version of the threat of scream paradigm (ToSP) to investigate the impact of experimental anxiety on recognition memory. Two animated passive walkthrough videos (either under threat of scream or safety conditions) were shown to healthy participants. Recognition memory, primacy vs. recency effects, and subjective estimations of the length of encoding sessions were assessed. Subjective anxiety, stress, and emotional arousal ratings indicated that experimental anxiety could successfully be induced (Safe-Threat) or reversed (Threat-Safe) between the two passive walkthrough sessions. Participants exposed to distress screams showed impaired retrieval of complex information that has been presented in an animated environment. In the threat condition, participants failed to recognize details related to the persons encountered, their spatial locations, as well as information about the temporal order and sequence of encounters. Participant groups, which received a threat announcement prior to the first walkthrough session (Threat-Threat vs. Safety-Safety and Threat-Safety vs. Safety-Threat) showed poorer recognition memory as compared to the groups that received a safety announcement (P = 0.0468 and P = 0.0426, respectively; Mann–Whitney U test, Cohen’s d = 0.5071; effect size r = 0.2458). In conclusion, experimental anxiety induced by the online version of the ToSP leads to compromised recognition memory for complex multi-dimensional information. Our results indicate that cognitive functions of vulnerable populations (with limited mobility) can be evaluated online by means of the ToSP.
Collapse
|
4
|
Zlomuzica A, Dere E. Towards an animal model of consciousness based on the platform theory. Behav Brain Res 2022; 419:113695. [PMID: 34856300 DOI: 10.1016/j.bbr.2021.113695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/02/2022]
Abstract
The evolution of intellectual capacities has brought forth a continuum of consciousness levels subserved by neuronal networks of varying complexity. Brain pathologies, neurodegenerative, and mental diseases affect conscious cognition and behavior. Although impairments in consciousness are among the most devastating consequences of neurological and mental diseases, valid and reliable animal models of consciousness, that could be used for preclinical research are missing. The platform theory holds that the brain enters a conscious operation mode, whenever mental representations of stimuli, associations, concepts, memories, and experiences are effortfully maintained (in working memory) and actively manipulated. We used the platform theory as a framework and evaluation standard to categorize behavioral paradigms with respect to the level of consciousness involved in task performance. According to the platform theory, a behavioral paradigm involves conscious cognitive operations, when the problem posed is unexpected, novel or requires the maintenance and manipulation of a large amount of information to perform cognitive operations on them. Conscious cognitive operations are associated with a relocation of processing resources and the redirection of attentional focus. A consciousness behavioral test battery is proposed that is composed of tests which are assumed to require higher levels of consciousness as compared to other tasks and paradigms. The consciousness test battery for rodents includes the following tests: Working memory in the radial arm maze, episodic-like memory, prospective memory, detour test, and operant conditioning with concurrent variable-interval variable-ratio schedules. Performance in this test battery can be contrasted with the performance in paradigms and tests that require lower levels of consciousness. Additionally, a second more comprehensive behavioral test battery is proposed to control for behavioral phenotypes not related to consciousness. Our theory could serve as a guidance for the decryption of the neurobiological basis of consciousness.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
6
|
Stepan J, Anderzhanova E, Gassen NC. Hippo Signaling: Emerging Pathway in Stress-Related Psychiatric Disorders? Front Psychiatry 2018; 9:715. [PMID: 30627107 PMCID: PMC6309125 DOI: 10.3389/fpsyt.2018.00715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022] Open
Abstract
Discovery of the Hippo pathway and its core components has made a significant impact on our progress in the understanding of organ development, tissue homeostasis, and regeneration. Upon diverse extracellular and intracellular stimuli, Hippo signaling regulates stemness, cell proliferation and apoptosis by a well-conserved signaling cascade, and disruption of these systems has been implicated in cancer as well as metabolic and neurodegenerative diseases. The central role of Hippo signaling in cell biology also results in prominent links to stress-regulated pathways. Genetic variations, epigenetically provoked upregulation of Hippo pathway members and dysregulation of cellular processes implicated in learning and memory, are linked to an increased risk of stress-related psychiatric disorders (SRPDs). In this review, we summarize recent findings, supporting the role of Hippo signaling in SRPDs by canonical and non-canonical Hippo pathway interactions.
Collapse
Affiliation(s)
- Jens Stepan
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elmira Anderzhanova
- Clinic and Polyclinic of Psychiatry and Psychotherapy, Bonn University Clinic, Bonn, Germany
| | - Nils C Gassen
- Clinic and Polyclinic of Psychiatry and Psychotherapy, Bonn University Clinic, Bonn, Germany
| |
Collapse
|