1
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
2
|
Álvarez-Rodríguez M, Martinez-Serrano CA, Gardela J, Nieto H, de Mercado E, Rodríguez-Martínez H. MicroRNA expression in specific segments of the pig periovulatory internal genital tract is differentially regulated by semen or by seminal plasma. Res Vet Sci 2024; 168:105134. [PMID: 38194892 DOI: 10.1016/j.rvsc.2023.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
microRNAs play pivotal roles during mammalian reproduction, including the cross-talk between gametes, embryos and the maternal genital tract. Mating induces changes in the expression of mRNA transcripts in the female, but whether miRNAs are involved remains to be elucidated. In the current study, we mapped 181 miRNAs in the porcine peri-ovulatory female reproductive tract: Cervix (Cvx), distal and proximal uterus (Dist-Ut, Prox-Ut), Utero-tubal-junction (UTJ), isthmus (Isth), ampulla (Amp), and infundibulum (Inf) when exposed to semen (natural mating (NM) or artificial insemination (AI-P1)) or to infusions of sperm-free seminal plasma (SP): the first 10 mL of the sperm rich fraction (SP-P1) or the entire ejaculate (SP-E). Among the most interesting findings, NM decreased mir-671, implicated in uterine development and pregnancy loss prior to embryo implantation, in Cvx, Dist-UT, Prox-UT, Isth, and Inf, while it increased in Amp. NM and SP-E induced the downregulation of miR-let7A-1 (Dist-UT, Prox-UT), a regulator of immunity during pregnancy. miR-34C-1, a regulator of endometrial receptivity gene expression, was increased in Dist-UT, UTJ and Amp (NM), in Prox-UT (AI-P1), and in Amp (SP-P1). miR-296, a modulator of the inflammatory response and apoptosis, was upregulated in the UTJ (all treatments). NM elicited the highest miRNA activity in the sperm reservoir (UTJ), suggesting that key-regulators such as miR-34c or miR-296 may modulate the metabolic processes linked to the adequate preparation for gamete encounter in the oviduct. Our results suggest that SP should be maintained in AI to warrant miRNA regulation within the female genital tract for reproductive success.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Cristina A Martinez-Serrano
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Jaume Gardela
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Helena Nieto
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Eduardo de Mercado
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
3
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Samadishadlou M, Rahbarghazi R, Piryaei Z, Esmaeili M, Avcı ÇB, Bani F, Kavousi K. Unlocking the potential of microRNAs: machine learning identifies key biomarkers for myocardial infarction diagnosis. Cardiovasc Diabetol 2023; 22:247. [PMID: 37697288 PMCID: PMC10496209 DOI: 10.1186/s12933-023-01957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a crucial role in regulating adaptive and maladaptive responses in cardiovascular diseases, making them attractive targets for potential biomarkers. However, their potential as novel biomarkers for diagnosing cardiovascular diseases requires systematic evaluation. METHODS In this study, we aimed to identify a key set of miRNA biomarkers using integrated bioinformatics and machine learning analysis. We combined and analyzed three gene expression datasets from the Gene Expression Omnibus (GEO) database, which contains peripheral blood mononuclear cell (PBMC) samples from individuals with myocardial infarction (MI), stable coronary artery disease (CAD), and healthy individuals. Additionally, we selected a set of miRNAs based on their area under the receiver operating characteristic curve (AUC-ROC) for separating the CAD and MI samples. We designed a two-layer architecture for sample classification, in which the first layer isolates healthy samples from unhealthy samples, and the second layer classifies stable CAD and MI samples. We trained different machine learning models using both biomarker sets and evaluated their performance on a test set. RESULTS We identified hsa-miR-21-3p, hsa-miR-186-5p, and hsa-miR-32-3p as the differentially expressed miRNAs, and a set including hsa-miR-186-5p, hsa-miR-21-3p, hsa-miR-197-5p, hsa-miR-29a-5p, and hsa-miR-296-5p as the optimum set of miRNAs selected by their AUC-ROC. Both biomarker sets could distinguish healthy from not-healthy samples with complete accuracy. The best performance for the classification of CAD and MI was achieved with an SVM model trained using the biomarker set selected by AUC-ROC, with an AUC-ROC of 0.96 and an accuracy of 0.94 on the test data. CONCLUSIONS Our study demonstrated that miRNA signatures derived from PBMCs could serve as valuable novel biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Mehrdad Samadishadlou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Piryaei
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahdad Esmaeili
- Medical Bioengineering Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avcı
- Medical Biology Department, School of Medicine, Ege University, İzmir, Türkiye
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Dinh P, Peng J, Tran T, Wu D, Tran C, Dinh T, Pan S. Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Front Cardiovasc Med 2023; 10:1104223. [PMID: 36998978 PMCID: PMC10043405 DOI: 10.3389/fcvm.2023.1104223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectsTo evaluate the hsa_circ_0001445 level in peripheral blood leukocytes of patients with coronary heart disease (CHD) and its related clinical factors, and predict its circRNA-miRNA-mRNA regulatory network in CHD pathogenesis via bioinformatics analysis.MethodsPeripheral blood leukocytes were isolated from the whole blood samples of 94 CHD patients (aged 65.96 ± 9.78 years old) and 126 healthy controls (aged 60.75 ± 8.81 years old). qRT-PCR was used to quantify the expression level of circRNA and subsequently analyze its association with CHD clinical parameters. Via bioinformatics algorithm and GEO datasets, differential miRNA expression was evaluated using the Limma package. A miRNA-mRNA regulatory network was predicted by cyTargetLinker. ClusterProfiler was employed to perform functional enrichment analysis of the circRNA network to investigate its role in CHD pathogenesis.ResultsThe expression of hsa_circ_0001445 in peripheral blood leukocytes of CHD patients was downregulated compared with that of healthy controls. Positive correlations were evident between hsa_circ_0001445 expression level and the levels of hemoglobin, triglycerides, high- and low-density lipoprotein cholesterol. A significant negative correlation was also found between hsa_circ_0001445 expression level and age and the neutrophil level. Low expression of hsa_circ_0001445 exhibited a discriminatory ability between CHD patients and healthy controls with a sensitivity of 67.5% and a specificity of 76.6% (p < 0.05). By bioinformatics analysis, 405 gene ontology terms were identified. The Kyoto Encyclopedia of Genes and Genomes terms focused principally on the PI3K-Akt signaling pathway. hsa_circ_0001445 was associated with the expression of three miRNAs that may regulate 18 genes involved in KEGG processes: hsa-miR-507, hsa-miR-375–3p, and hsa-miR-942–5p.ConclusionThe hsa_circ_0001445 level in peripheral blood leukocytes may serve as a biomarker for CHD diagnosis. Our work on circRNA-miRNA-mRNA networks suggests a potential role for hsa_circ_0001445 in CHD development.
Collapse
Affiliation(s)
- PhongSon Dinh
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - JunHua Peng
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - ThanhLoan Tran
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - DongFeng Wu
- Department of the Geriatric Cardiology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
- Correspondence: ShangLing Pan
| |
Collapse
|
6
|
Xu L, Fu T, Wang Y, Ji N. Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:520-529. [PMID: 36852944 DOI: 10.1002/jcu.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a disorder resulting from organic and functional coronary artery stenosis (CAS), thus causing reduced oxygenated blood in the heart. miRNAs are useful biomarkers in the diagnosis of atherosclerosis, CHD, and acute coronary syndrome. Vascular endothelial growth factor (VEGF) is closely related to CHD. This study explored the correlation of miR-296 and VEGF-B expression levels in peripheral blood with CAS degree in CHD patients. METHODS Totally 220 CHD patients were enrolled and classified into mild-(71 cases)/moderate-(81 cases)/severe-CAS (68 cases) groups, with another 80 healthy cases as controls. The serum miR-296 and VEGF-B expression levels were detected using reverse transcription quantitative polymerase chain reaction. The correlation between miR-296 and CAS-related indexes was assessed via Pearson analysis. The binding relationship of miR-296 and VEGF-B was first predicted and their correlation was further analyzed via the Pearson method. The clinical diagnostic efficacy of miR-296 or VEGF-B on CAS degree was evaluated by the receiver operating characteristic curve. RESULTS Serum miR-296 was downregulated in CHD patients and was the lowest in patients with severe-CAS. miR-296 was negatively-correlated with high-sensitivity C-reactive protein, brain natriuretic peptide, and cardiac troponin I. miR-296 targeted VEGF-B. VEGF-B was upregulated in CHD patients and inversely-related to miR-296. Low expression of miR-296 and high expression of VEGF-B both had high clinical diagnostic values on CAS degree in CHD patients. miR-296 combined with VEGF-B increased the diagnostic value on CAS. CONCLUSION Low expression of miR-296 combined with high expression of its target VEGF-B predicts CAS degree in CHD patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
7
|
Pedraza-Vázquez G, Mena-Montes B, Hernández-Álvarez D, Gómez-Verjan JC, Toledo-Pérez R, López-Teros MT, Königsberg M, Gómez-Quiroz LE, Luna-López A. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation. Arch Gerontol Geriatr 2023; 105:104856. [PMID: 36399890 DOI: 10.1016/j.archger.2022.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Osteosarcopenic obesity (OSO) has been associated with increase immobility, falls, fractures, and other dysfunctions, which could increase mortality risk during aging. However, its etiology remains unknown. Recent studies revealed that sedentarism, fat gain, and epigenetic regulators are critical in its development. One effective intervention to prevent and treat OSO is exercise. Therefore, in the present study, by keeping rats in conditions of sedentarism and others under a low-intensity exercise routine, we established an experimental model of OSO. We determined the degree of sarcopenia, obesity, and osteopenia at different ages and analyzed the miRNA expression during the lifespan using miRNA microarrays from gastrocnemius muscle. Interestingly microarrays results showed that there is a set of miRNAs that changed their expression with exercise. The pathway enrichment analysis showed that these miRNAs are strongly associated with immune regulation. Further inflammatory profiles with IL-6/IL-10 and TNF-α/IL-10 ratios showed that exercised rats presented a lower pro-inflammatory profile than sedentary rats. Also, the body fat gain in the sedentary group increased the inflammatory profile, ultimately leading to muscle dysfunction. Exercise prevented strength loss over time and maintained skeletal muscle functionality over time. Differential expression of miRNAs suggests that they might participate in this process by regulating the inflammatory response associated with aging, thus preventing the development of OSO.
Collapse
Affiliation(s)
- Gibrán Pedraza-Vázquez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - Beatriz Mena-Montes
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico; Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | - David Hernández-Álvarez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Rafael Toledo-Pérez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Luis E Gómez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Armando Luna-López
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, Mexico.
| |
Collapse
|
8
|
Du N, Li M, Yang D. Hsa_circRNA_102541 regulates the development of atherosclerosis by targeting miR-296-5p/PLK1 pathway. Ir J Med Sci 2022; 191:1153-1159. [PMID: 34251586 DOI: 10.1007/s11845-021-02708-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cardiovascular disorders pose great threat to public health. As a common type of cardiovascular disease, atherosclerosis is characterized by high morbidity and mortality/recurrence rate. However, the pathogenesis of atherosclerosis is complex and not fully understood. The aim of this study was to investigate the influences of hsa_circRNA_102541 (circ_102541) on proliferation and apoptosis of HUVEC cells and to identify the underlying mechanisms. METHODS RT-PCR was used to determine the expression levels of circ_102541, miR-296-5p, and PLK1 in atherosclerosis and healthy blood samples. Following the transfection with sh-circ_102541, LV-circ_102541, miR-296-5p mimics, miR-296-5p inhibitors, and si-PLK1, cell proliferation was evaluated using CCK8 assay; cell apoptosis was determined by flow cytometry; dual luciferase assay was performed to examine the interaction between abovementioned molecules. The levels of associated markers including PCNA and caspase-3 were assessed by western blotting and RT-qPCR. RESULTS The expression of circRNA_102541 and PLK1 were significantly elevated in atherosclerosis specimens, where the level of miR-296-5p was reduced. Furthermore, circRNA_102541 could bind miR-296-5p and subsequently target PLK1. Following treatment with sh-circRNA_102541 or miR-296-5p mimics, proliferative ability and levels of PCNA were remarkably reduced in HUVEC cells, while apoptosis was significantly enhanced. Co-transfection with miR-296-5p mimics abrogated the effects induced by the overexpressed circ_102541. Additionally, treatment with si-PLK1 attenuated the biological behavior changes caused by miR-296-5p inhibitors in HUVEC cells. Moreover, transfection with LV-PLK1 reversed the effects triggered by miR-296-5p mimics. CONCLUSION Taken together, circRNA_102541 was upregulated in atherosclerosis, and knockdown of circRNA_102541 suppressed cell proliferation while promoted apoptosis of HUVEC cells via miR-296-5p/PLK1. This novel pathway may serve essential roles on the development of atherosclerosis, and circRNA_102541 could be a promising therapeutic candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Na Du
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Mingjin Li
- Liaoning Jinqiu Hospital, Shenyang, Liaoning, 110015, People's Republic of China
| | - Dan Yang
- Department of Dermatology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
9
|
Jiang Q, Li Y, Wu Q, Huang L, Xu J, Zeng Q. Pathogenic role of microRNAs in atherosclerotic ischemic stroke: Implications for diagnosis and therapy. Genes Dis 2022; 9:682-696. [PMID: 35782982 PMCID: PMC9243347 DOI: 10.1016/j.gendis.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke resulting from atherosclerosis (particularly in the carotid artery) is one of the major subtypes of stroke and has a high incidence of death. Disordered lipid homeostasis, lipid deposition, local macrophage infiltration, smooth muscle cell proliferation, and plaque rupture are the main pathological processes of atherosclerotic ischemic stroke. Hepatocytes, macrophages, endothelial cells and vascular smooth muscle cells are the main cell types participating in these processes. By inhibiting the expression of the target genes in these cells, microRNAs play a key role in regulating lipid disorders and atherosclerotic ischemic stroke. In this article, we listed the microRNAs implicated in the pathology of atherosclerotic ischemic stroke and aimed to explain their pro- or antiatherosclerotic roles. Our article provides an update on the potential diagnostic use of miRNAs for detecting growing plaques and impending clinical events. Finally, we provide a perspective on the therapeutic use of local microRNA delivery and discuss the challenges for this potential therapy.
Collapse
|
10
|
Tan W, Wang G, Liu G, You D, Wei M, Jin X, Zhao W, Zheng M. The elevation of miR-185-5p alleviates high-fat diet-induced atherosclerosis and lipid accumulation in vivo and in vitro via SREBP2 activation. Aging (Albany NY) 2022; 14:1729-1742. [PMID: 35172278 PMCID: PMC8908921 DOI: 10.18632/aging.203896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE SREBP2, a member of the SREBP family, is a primary regulator of lipid metabolism. In recent years, an increasing number of studies have suggested that miRNAs regulate lipid metabolism-related genes. It was speculated in this study that miRNAs may be implicated in the regulation of lipid accumulation in macrophages by SREBP2 protein. METHODS AND RESULTS GSE34812, GSE132651 and GSE28829 datasets comprised of atherosclerosis samples were downloaded to explore the gene expression profiles related to the miRNAs and SREBP2, and miR-185-5p was predicted to be a target of SREBP2. The GO annotations and KEGG pathway analysis were adopted for functional classification of differentially expressed genes, and lipid metabolic process was an enriched pathway in atherosclerosis. Besides, the effects of SREBP2 on increasing lipid accumulation were investigated in vivo using miR-185-5p mimic/apoE-/- mice and miR-185-5p NC/apoE-/- mice. All mice fed with a HFD suffered from atherosclerosis. Moreover, the effects of miR-185-5p on atherosclerotic plaque formation in mice were analyzed. An in vitro assay was also performed to determine the effect of miR-185-5p on ox-LDL-stimulated RAW 264.7 macrophages. Finally, miR-185-5p mimic was transfected into cultured macrophages. The results showed that the miR-185-5p elevation might regulate lipid accumulation in mice by targeting SREBP2. Furthermore, miR-185-5p mimic repressed the activation of SREBP1, SREBP2, LDLR, SCD-1, HMGCR as well as NLRP3, IL-1β, TNF-α in HFD fed mice or ox-LDL-stimulated macrophages. CONCLUSIONS our study demonstrated that miR-185-5p effectively alleviates atherosclerosis and lipid accumulation by regulating the miR-185-5p/SREBP2 axis.
Collapse
Affiliation(s)
- Wenyun Tan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Wang
- Department of Cardiology, 980 Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Daofeng You
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaojing Jin
- Department of Emergency, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Zhao
- Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
11
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
12
|
Peng YY, Zhang HB, Wang X, Xiao Q, Guo SL. The biomarkers of key miRNAs and gene targets associated with extranodal NK/T-cell lymphoma. Open Med (Wars) 2022; 17:124-134. [PMID: 35071774 PMCID: PMC8729226 DOI: 10.1515/med-2021-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022] Open
Abstract
Gene expression profiling studies have shown the pathogenetic role of oncogenic pathways in extranodal natural killer/T-cell lymphoma (ENKL). In this study, we aimed to identify the microRNAs (miRNAs) playing potential roles in ENKL, and to evaluate the genes and biological pathways associated to them. Gene expression profiles of ENKL patients were acquired from the gene expression omnibus (GEO) database. Most differentially expressed (DE)-miRNAs were identified in ENKL patients using limma package. Gene targets of the DE-miRNAs were collected from online databases (miRDB, miRWalk, miRDIP, and TargetScan), and used in Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses on Database for annotation, visualization, and integrated discovery database, and then used in protein–protein interaction (PPI) analysis on STRING database. Hub genes of the PPI network were identified in cytoHubba, and were evaluated in Biological networks gene ontology. According to the series GSE31377 and GSE43958 from GEO database, four DE-miRNAs were screened out: hsa-miR-363-3p, hsa-miR-296-5p, hsa-miR-155-5p, and hsa-miR-221-3p. Totally 164 gene targets were collected from the online databases, and used in the GO and KEGG pathway analyses and PPI network analysis. Ten hub genes of the PPI network were identified: AURKA, TP53, CDK1, CDK2, CCNB1, PLK1, CUL1, ESR1, CDC20, and PIK3CA. Those hub genes, as well as their correlative pathways, may be of diagnostic or therapeutic potential for ENKL, but further clinical evidence is still expected.
Collapse
Affiliation(s)
- Yin-yin Peng
- Department of Hematology Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing , 400016 , China
| | - Hong-bin Zhang
- Department of Hematology Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing , 400016 , China
| | - Xin Wang
- Department of Hematology Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing , 400016 , China
| | - Qing Xiao
- Department of Hematology Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing , 400016 , China
| | - Shu-liang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| |
Collapse
|
13
|
Xing X, Tan Z, Zhi X, Sun H, Yang J, Li L, Liu Y, Wang L, Dong Z, Guo H. Integrating analysis of circular RNA and mRNA expression profiles in doxorubicin induced cardiotoxicity mice. J Appl Toxicol 2021; 42:793-805. [PMID: 34693535 DOI: 10.1002/jat.4257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity impedes its clinical application, but the mechanisms have not been thoroughly elucidated. Based on circRNA and mRNA expression profiles, we illustrated RNA expression signature changes during DOX-induced cardiotoxicity; mechanism exploration and biomarkers screening were also conducted. Twelve mice were randomly divided into two groups, induction group was treated with doxorubicin, and the control group was given an equal quantity of saline. After the confirmation of myocardial injury in induction group, the heart tissues from both groups were isolated for RNA high-throughput sequencing. The expression profiles were compared between the two groups; a total of 295 mRNAs and 11 circRNAs were shown as biased expression in DOX-induced cardiotoxicity mouse hearts. The dysregulation of three circRNAs were validated by quantitative real-time PCR: mmu_circ_0015773, mmu_circ_0002106, and mmu_circ_001606. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed RNAs were performed; the results implied that DOX might cause cardiotoxicity by interfering hemoglobin-based oxygen delivery and DNA-associated signal pathways. We integrated the differential expressed mRNA and validated circRNAs by constructing a competing endogenous RNA (ceRNA) network, which indicated that the alteration of the three circRNAs could activate apoptosis process of myocardial cells. This study provided novel insight into the mechanisms of DOX induced cardiotoxicity, and potential biomarkers or therapeutic targets were also proposed.
Collapse
Affiliation(s)
- Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhenzhen Tan
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xuran Zhi
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Heming Sun
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Longfei Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, China
| |
Collapse
|
14
|
Yan Z, Li P, Xue Y, Tian H, Zhou T, Zhang G. Glutamate receptor, ionotropic, N‑methyl D‑aspartate‑associated protein 1 promotes colorectal cancer cell proliferation and metastasis, and is negatively regulated by miR‑296‑3p. Mol Med Rep 2021; 24:700. [PMID: 34368871 PMCID: PMC8365413 DOI: 10.3892/mmr.2021.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/12/2021] [Indexed: 01/15/2023] Open
Abstract
N‑methyl D‑aspartate receptors (NMDARs) are closely associated with the development, growth and metastasis of cancer. Glutamate receptor, ionotropic, N‑methyl D‑aspartate‑associated protein 1 (GRINA) is a member of the of the NMDAR family, and its aberrant expression is associated with gastric cancer. However, the role of GRINA in colorectal cancer (CRC) is not completely understood. In the present study, expression profiles of GRINA in several CRC databases were obtained and further verified using clinical CRC samples. The effects of GRINA overexpression on CRC progression both in vivo and in vitro were assessed. Briefly, cell proliferation was detected using MTT assay, and cell migration and invasion ability were evaluated by wound healing and Transwell assay. In addition, the molecular mechanism underlying the upregulated expression of GRINA in CRC was investigated. The regulatory association between GRINA and miR‑296‑3p was detected by luciferase assay, reverse transcription‑quantitative PCR and western blotting. The results demonstrated that GRINA expression levels were significantly increased in tumor samples compared with those in healthy samples, and upregulated expression of GRINA was associated with a less favorable prognostic outcome in patients with CRC. GRINA overexpression significantly increased CRC cell proliferation, invasion and migration. Additionally, it was determined that GRINA was post‑transcriptionally regulated by microRNA (miR)‑296‑3p. Together, the results of the present study suggested the potential importance of the miR‑296‑3p/GRINA axis and highlighted potential novel targets for the management of CRC.
Collapse
Affiliation(s)
- Zaihua Yan
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Peidong Li
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Xue
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hongpeng Tian
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Tong Zhou
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guangjun Zhang
- Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
15
|
Kumar Dev P, Gray AJ, Scott-Hamilton J, Hagstrom AD, Murphy A, Denham J. Co-expression analysis identifies networks of miRNAs implicated in biological ageing and modulated by short-term interval training. Mech Ageing Dev 2021; 199:111552. [PMID: 34363832 DOI: 10.1016/j.mad.2021.111552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
Exercise training seems to promote healthy biological ageing partly by inducing telomere maintenance, yet the molecular mechanisms are not fully understood. Recent studies have emphasised the importance of microRNAs (miRNAs) in ageing and their ability to mirror pathophysiological alterations associated with age-related diseases. We examined the association between aerobic fitness and leukocyte telomere length before determining the influence of vigorous exercise training on the regulation of leukocyte miRNA networks. Telomere length was positively correlated to aerobic fitness (r = 0.32, p = 0.02). 104 miRNAs were differentially expressed after six weeks of thrice-weekly sprint interval training (SIT) in healthy men (q < 0.05). Gene co-expression analysis (WGCNA) detected biologically meaningful miRNA networks, five of which were significantly correlated with pre-SIT and post-SIT expression profiles (p < 0.001) and telomere length. Enrichment analysis revealed that the immune response, T cell differentiation and lipid metabolism associated miRNAs clusters were significantly down-regulated after SIT. Using data acquired from the Gene Expression Omnibus (GEO), we also identified two co-expressed miRNAs families that were modulated by exercise training in previous investigations. Collectively, our findings highlight the miRNA networks implicated in exercise adaptations and telomere regulation, and suggest that SIT may attenuate biological ageing through the control of the let-7 and miR-320 miRNA families.
Collapse
Affiliation(s)
- Prasun Kumar Dev
- Department of Bioinformatics, Central University of South Bihar, India
| | - Adrian J Gray
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | | | - Amanda D Hagstrom
- School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Armidale, NSW, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Qin YS, Li H, Wang SZ, Wang ZB, Tang CK. Microtubule affinity regulating kinase 4: A promising target in the pathogenesis of atherosclerosis. J Cell Physiol 2021; 237:86-97. [PMID: 34289095 DOI: 10.1002/jcp.30530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), an important member of the serine/threonine kinase family, regulates the phosphorylation of microtubule-associated proteins and thus modulates microtubule dynamics. In human atherosclerotic lesions, the expression of MARK4 is significantly increased. Recently, accumulating evidence suggests that MARK4 exerts a proatherogenic effect via regulation of lipid metabolism (cholesterol, fatty acid, and triglyceride), inflammation, cell cycle progression and proliferation, insulin signaling, and glucose homeostasis, white adipocyte browning, and oxidative stress. In this review, we summarize the latest findings regarding the role of MARK4 in the pathogenesis of atherosclerosis to provide a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Tyagi G, Kapoor N, Chandra G, Gambhir L. Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer. 3 Biotech 2021; 11:263. [PMID: 33996375 DOI: 10.1007/s13205-021-02803-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Success of targeted cancer treatment modalities has generated an ambience of plausible cure for cancer. However, cancer remains to be the major cause of mortality across the globe. The emergence of chemoresistance, relapse after treatment and associated adverse effects has posed challenges to the present therapeutic regimes. Thus, investigating new therapeutic agents of natural origin and delineating the underlying mechanism of action is necessary. Since ages and still in continuum, the phytochemicals have been the prime source of identifying bioactive agents against cancer. They have been exploited for isolating targeted specific compounds to modulate the key regulating signaling pathways of cancer pathogenesis and progression. Capsaicin (alkaloid compound in chilli), catechin, epicatechin, epigallocatechin and epigallocatechin-3-gallate (phytochemicals in green tea), lutein (carotenoid found in yellow fruits), Garcinol (phenolic compound present in kokum tree) and many other naturally available compounds are also very valuable to develop the drugs to treat the cancer. An alternate repository of similar chemical diversity exists in the form of endophytic fungi inhabiting the medicinal plants. There is a high diversity of plant associated endophytic fungi in nature which are potent producers of anti-cancer compounds and offers even stronger hope for the discovery of an efficient anti-cancer drug. These fungi provide various bioactive molecules, such as terpenoids, flavonoids, alkaloids, phenolic compounds, quinines, steroids etc. exhibiting anti-cancerous property. The review discusses the relevance of phytochemicals in chemoprevention and as modulators of miRNA. The perspective advocates the imperative role of anti-cancerous secondary metabolites containing repository of endophytic fungi, as an alternative route of drug discovery.
Collapse
Affiliation(s)
- Garima Tyagi
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| | - Girish Chandra
- Department of Seed Science and Technology, School of Agricultural Sciences, Shri Guru Ram Rai University, Dehradun, Uttrakhand 248001 India
| | - Lokesh Gambhir
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017 India
| |
Collapse
|
18
|
Wang T, Guo Y, Liu S, Zhang C, Cui T, Ding K, Wang P, Wang X, Wang Z. KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-β Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Front Genet 2021; 12:628192. [PMID: 33936161 PMCID: PMC8082500 DOI: 10.3389/fgene.2021.628192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tibetan pigs are native mammalian species on the Tibetan Plateau that have evolved distinct physiological traits that allow them to tolerate high-altitude hypoxic environments. However, the genetic mechanism underlying this adaptation remains elusive. Here, based on multitissue transcriptional data from high-altitude Tibetan pigs and low-altitude Rongchang pigs, we performed a weighted correlation network analysis (WGCNA) and identified key modules related to these tissues. Complex network analysis and bioinformatics analysis were integrated to identify key genes and three-node network motifs. We found that among the six tissues (muscle, liver, heart, spleen, kidneys, and lungs), lung tissue may be the key organs for Tibetan pigs to adapt to hypoxic environment. In the lung tissue of Tibetan pigs, we identified KLF4, BCL6B, EGR1, EPAS1, SMAD6, SMAD7, KDR, ATOH8, and CCN1 genes as potential regulators of hypoxia adaption. We found that KLF4 and EGR1 genes might simultaneously regulate the BCL6B gene, forming a KLF4-EGR1-BCL6B complex. This complex, dominated by KLF4, may enhance the hypoxia tolerance of Tibetan pigs by mediating the TGF-β signaling pathway. The complex may also affect the PI3K-Akt signaling pathway, which plays an important role in angiogenesis caused by hypoxia. Therefore, we postulate that the KLF4-EGR1-BCL6B complex may be beneficial for Tibetan pigs to survive better in the hypoxia environments. Although further molecular experiments and independent large-scale studies are needed to verify our findings, these findings may provide new details of the regulatory architecture of hypoxia-adaptive genes and are valuable for understanding the genetic mechanism of hypoxic adaptation in mammals.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Kun Ding
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Peng Wang
- HeiLongJiang Provincial Husbandry Department, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
MicroRNA files in the prevention of intestinal ischemia/reperfusion injury by hydrogen rich saline. Biosci Rep 2021; 40:221376. [PMID: 31789347 PMCID: PMC6981100 DOI: 10.1042/bsr20191043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Hydrogen-rich saline (HRS) has been proven effective against ischemia/reperfusion (I/R) injury. However, knowledge on the underlying signaling events remain poor. Having recent highlight of microRNAs (miRNAs) in mediating intestinal I/R injury, we hypothesized that HRS may protect intestine against I/R injury by regulating miRNAs. Method: Mice were given intraperitoneal injection of saline or HRS once daily for five consecutive days before undergoing intestinal I/R that was induced by 60-min ischemia followed by 180-min reperfusion of superior mesenteric artery. The intestine was collected for histopathological assay, miRNA microarray profiling, Real-Time PCR, and Western blotting. Next, miR-199a-3p mimics or inhibitors were transfected into IEC-6 cells to explore the relationship between HRS treatment and miR-199a-3p. Results: I/R-induced mucosal injury and epithelial cells apoptosis were attenuated by HRS pretreatment. A total of 64 intestinal I/R-responsive miRNAs were altered significantly by HRS pretreatment, in which we validated four novel miRNAs with top significance by Real-Time PCR, namely miR-199a-3p, miR-296-5p, miR-5126, and miR-6538. Particularly, miR-199a-3p was drastically increased by I/R but reduced by HRS. Computational analysis predicts insulin-like growth factor (IGF)-1, mammalian target of rapamycin (mTOR), and phosphoinositide-3-kinase (PI3K) regulatory subunit 1 as targets of miR-199a-3p, suggesting involvement of the pro-survival pathway, IGF- 1/PI3K/Akt/mTOR. In in vitro experiment, HRS treatment reduced miR-199a-3p level, increase IGF-1, PI3K and mTOR mRNA expression, restore IEC-6 cells viability, and this protective effects were reversed under miR-199a-3p mimics treatment. Conclusion: Collectively, miR-199a-3p may serve a key role in the anti-apoptotic mechanism of HRS that contributes to its protection of the intestine against I/R injury.
Collapse
|
20
|
Luo Y, Li Y, Peng H, Zhao Y. miR-140-5p regulates vascular smooth muscle cell viability, migration and apoptosis by targeting ROBO4 gene expression in atherosclerosis. Mol Med Rep 2021; 23:213. [PMID: 33495827 PMCID: PMC7845623 DOI: 10.3892/mmr.2021.11852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 09/24/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are essential regulators of atherosclerosis (AS) development; however, the pathogenic roles of miR-140-5p during AS development are not completely understood. The present study investigated the effects of miR‑140-5p on human vascular smooth muscle cells (VSMCs) and its target gene. miR-140-5p and roundabout guidance receptor 4 (ROBO4) mRNA expression levels were determined by performing reverse transcription-quantitative PCR. ROBO4 protein expression levels were analyzed via western blotting. Cell viability, migration, invasion and apoptosis were evaluated by conducting Cell Counting Kit-8, Transwell and flow cytometry assays, respectively. The binding of miR-140-5p to ROBO4 mRNA was verified using the dual-luciferase reporter assay. miR-140-5p was highly expressed in the plaque-containing artery tissues of patients with AS compared with healthy control tissues. Oxidized-low density lipoprotein (ox-LDL) treatment increased miR-140-5p expression and decreased ROBO4 expression in human VSMCs, which promoted VSMC viability, migration and invasion, but suppressed apoptosis compared with the control group. The effects of ox-LDL treatment on VSMCs were attenuated by miR-140-5p inhibitor. miR-140-5p directly bound to the 3'-untranslated region of ROBO4 mRNA. ROBO4 overexpression mitigated the effects of ox-LDL treatment on VSMC viability, migration, invasion and apoptosis. Therefore, the present study suggested that high level miR-140-5p expression promoted VSMC viability, migration, and invasion, and suppressed VSMC apoptosis by reducing ROBO4 gene expression. The present study provided novel insights into AS pathogenesis that may aid the development of new strategies for the treatment and prevention of AS.
Collapse
Affiliation(s)
- Yi Luo
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yangmin Li
- Department of Gynecology, Jialing Branch of Nanchong Central Hospital, Nanchong, Sichuan 637919, P.R. China
| | - Hong Peng
- Department of Anorectal, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
21
|
Zhang Y, Xiang X, Lu Y, Li H, Wahaab A, Sharma M, Liu K, Wei J, Li Z, Shao D, Li B, Ma Z, Qiu Y. Downregulation of miR-296-3p by highly pathogenic porcine reproductive and respiratory syndrome virus activates the IRF1/TNF-α signaling axis in porcine alveolar macrophages. Arch Virol 2021; 166:511-519. [PMID: 33394172 DOI: 10.1007/s00705-020-04921-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV, species Betaarterivirus suid 1 or 2) is a major pathogen affecting pigs on farms throughout the world. miR-296-3p is a multifunctional microRNA involved in the regulation of the inflammatory response in mice and humans. However, little is known about the biological functions of miR-296-3p in pigs. In this study, we used a highly pathogenic PRRSV-2 (species Betaarterivirus suid 2) strain to show that PRRSV infection robustly downregulates the expression of miR-296-3p in porcine alveolar macrophages (PAMs). Furthermore, we demonstrated that overexpression of miR-296-3p increases the replication of highly pathogenic (HP)-PRRSV in PAMs. Notably, the overexpression of miR-296-3p inhibited the induction of TNF-α, even with increased viral replication, compared with that in the HP-PRRSV-infected control group. We also demonstrated that miR-296-3p targets IRF1-facilitated viral infection and modulates the expression of TNF-α in PAMs during HP-PRRSV infection and that IRF1 regulates the expression of TNF-α by activating the TNF promoter via IRF1 response elements. In summary, these findings show that HP-PRRSV infection activates the IRF1/TNF-α signaling axis in PAMs by downregulating host miR-296-3p. This extends our understanding of the inflammatory response induced by HP-PRRSV infection.
Collapse
Affiliation(s)
- Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Hui Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Mona Sharma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
22
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Roh S, Gotoh T. Maternal Nutrition During Gestation Alters Histochemical Properties, and mRNA and microRNA Expression in Adipose Tissue of Wagyu Fetuses. Front Endocrinol (Lausanne) 2021; 12:797680. [PMID: 35178028 PMCID: PMC8844027 DOI: 10.3389/fendo.2021.797680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that maternal low or high nutrition would give unique effects to morphological and molecular dynamics in adipose tissue of fetus of fatty breed Wagyu (Japanese Black) cattle which produce highly marbled beef. This study aimed to determine the effects of maternal energy intake in Wagyu cows, during gestation on fetal adipose tissue development, histochemical properties, and gene and microRNA (miRNA) expression. Cows were allocated to one of two nutritional energy groups: 120% (HIGH) or 60% nutritional requirements of (LOW). Fetuses (n = 6 per treatment) were removed from pregnant cows by cesarean section at fetal age 260 ± 8 days and euthanized. Subcutaneous adipose tissue (SAT), thoracic cavity visceral adipose tissue (TVAT), and perirenal adipose tissue (PAT) were collected for analysis. In histochemical analysis, in SAT and PAT, HIGH fetuses had greater diameter of adipocytes than LOW fetuses (P<0.05). Only in SAT, LOW fetuses had more Leptin (LEP) mRNA and tended to have more Peroxisome Proliferator-Activated Receptor gamma (PPARG) CCAAT-enhancer-binding proteins alpha (CEBPA) and Glucose transporter (GLUT) 4 mRNA(P<0.10). In all SAT, TVAT, and PAT, LOW fetuses had higher levels of the brown adipose tissue (BAT) biomarkers Uncoupling Protein (UCP) 1 and PPARG coactivator (PGC) 1α mRNA than HIGH fetuses (P<0.08). Meanwhile, in the other adipose tissue, LOW fetuses had lower PPARG, CEBPA, and Zinc Finger Protein (ZFP) 423 (in TVAT and PAT), FASN (in TVAT), LEP and GLUT4 mRNA (in PAT; P<0.10). In particular, in TVAT and PAT, LOW fetuses exhibited lower expression of WAT biomarkers (PPARG and ZFP423). Differential expression of various miRNAs related to adipogenesis between the LOW and HIGH fetuses was detected in an adipose tissue-specific manner (P<0.10). Based on adipose tissue-specific effects of maternal nutrition, these findings suggested that poor maternal nutrition in Wagyu cattle increased BAT development in SAT, TVAT and PAT, while elevated maternal nutrition stimulated fetal SAT development compared with that of TVAT and PAT.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
- *Correspondence: Takafumi Gotoh,
| |
Collapse
|
23
|
A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Sci Rep 2019; 9:18314. [PMID: 31797949 PMCID: PMC6892882 DOI: 10.1038/s41598-019-54603-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Circular RNAs (circRNAs) are involved in many physiological functions. Whether circulating circRNAs serve as markers for coronary artery disease (CAD) is unknown. Seven CAD-related microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database and were analyzed using clustering and functional enrichment to identify hub mRNAs and miRNAs. StarBase V3.0 and circinteractome databases were used to predict interactions between circRNAs and miRNAs whereas miRwalk and DIANA TOOLS were used to predict interactions between miRNAs and mRNAs. Altogether, this helped establish a circRNA-miRNA-mRNA triple network for diagnosis of CAD. Five non-coding RNAs (ncRNAs) were identified in our study population with the use of quantitative real-time PCR (RT-PCR). The prognostic values of circYOD1, hsa-miR-21-3p and hsa-miR-296-3p were evaluated using a receiver operating characteristic (ROC) curve. A CAD circRNA-miRNA-mRNA network was established from our analyses containing one circRNA, four miRNAs and thirteen mRNAs. After performing RT-PCR validation between CAD and non-CAD samples, only three ncRNAs of five ncRNAs showed significance for further analysis. The area under ROC curve (AUC) of circ-YOD1 was 0.824, the AUC of hsa-miR-21-3p was 0.731 and hsa-miR-296-3p was 0.776. The pairwise comparison results showed that circ-YOD1 had statistical significance (PYOD1-21 < 0.01 and PYOD1-296 < 0.05). The results of functional enrichment analysis of interacting genes and microRNAs showed that the shared circ-YOD1 may act as a new biomarker for CAD. Our investigation of the triple regulatory networks of circRNA-miRNA-mRNA in CAD revealed circ-YOD1 as a potential biomarker for CAD.
Collapse
|
24
|
Wang L, Chen R, Zhang Y. miR-296-3p targets APEX1 to suppress cell migration and invasion of non-small-cell lung cancer. Oncol Lett 2019; 18:2612-2618. [PMID: 31402954 DOI: 10.3892/ol.2019.10572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. MicroRNAs (miRs) are a class of small non-coding RNAs that are commonly dysregulated in human cancer. The aim of the current study was to evaluate the effect of miR-296-3p on the cell migration and invasion of NSCLC. Pairs of tumor tissues and para-cancerous tissues (n=50) were collected from patients with NSCLC, and the expression of miR-296-3p was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, tumor cell viability, migration and invasion were examined in vitro using Cell Counting Kit-8, wound healing and Matrigel assays, respectively. Furthermore, potential targets of miR-296-3p were screened for using TargetScan and validated using a dual-luciferase reporter assay. The expression levels of phosphoinositide-3-kinase (PI3K), AKT serine/threonine kinase (AKT), mammalian target of rapamycin (mTOR), matrix metallopeptidase 2 (MMP2) and SRY-box 4 (SOX4) were detected by RT-qPCR and western blot analysis. The data indicated that miR-296-3p was downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-296-3p inhibited NSCLC cell viability, migration and invasion in vitro. Furthermore, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was identified as a direct target of miR-296-3p. APEX1 expression was upregulated in tumor tissues compared with para-cancerous tissues, and the mRNA and protein expression levels of APEX1 were decreased following transfection of NSCLC cells with miR-296-3p mimics compared with control cells. Additional investigations revealed that miR-296-3p was involved in regulating the PI3K/AKT/mTOR signaling pathway, and miR-296-3p mimics decreased the mRNA and protein expression levels of MMP2 and SOX4. In summary, the findings demonstrated that miR-296-3p may function as a tumor suppressor, and inhibits the migration and invasion of NSCLC cells by targeting APEX1. miR-296-3p is therefore a potential therapeutic molecular modulator of NSCLC.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Respiration, Xi'an High-tech Hospital, Xi'an, Shaanxi 710075, P.R. China
| | - Ruilin Chen
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yongqing Zhang
- Department of Respiration, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
25
|
Zamani P, Oskuee RK, Atkin SL, Navashenaq JG, Sahebkar A. MicroRNAs as important regulators of the NLRP3 inflammasome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:50-61. [PMID: 31100298 DOI: 10.1016/j.pbiomolbio.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Inflammasomes are a group of cytosolic multi-protein signaling complexes that regulate maturation of the interleukin (IL)-1 family cytokines IL-1β and IL-18 through activation of inflammatory caspase-1. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the best characterized and consists of several key components that are assembled and activated in response to different endogenous and exogenous signals. The NLRP3 inflammasome is common to a number of human inflammatory diseases and its targeting may lead to novel anti-inflammatory therapy. NLRP3 inflammasome activation is tightly regulated by different mechanisms especially post-transcriptional modulation via microRNAs (miRNA). MicroRNAs are small endogenous noncoding RNAs that are 21-23 nucleotides in length and control the expression of various genes through binding to the 3'-untranslated regions of the respective mRNA and subsequent post-transcriptional regulation. MicroRNAs have recently been recognized as crucial regulators of the NLRP3 inflammasome. In this review, we summarize the current understanding of the role of miRNAs in the regulation of NLRP3 inflammasome complexes and their impact on the pathogenesis of inflammatory disease processes.
Collapse
Affiliation(s)
- Parvin Zamani
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Hueso M, Cruzado JM, Torras J, Navarro E. An Exonic Switch Regulates Differential Accession of microRNAs to the Cd34 Transcript in Atherosclerosis Progression. Genes (Basel) 2019; 10:genes10010070. [PMID: 30669689 PMCID: PMC6356495 DOI: 10.3390/genes10010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD34⁺ Endothelial Progenitor Cells (EPCs) play an important role in the recovery of injured endothelium and contribute to atherosclerosis (ATH) pathogenesis. Previously we described a potential atherogenic role for miR-125 that we aimed to confirm in this work. METHODS Microarray hybridization, TaqMan Low Density Array (TLDA) cards, qPCR, and immunohistochemistry (IHC) were used to analyze expression of the miRNAs, proteins and transcripts here studied. RESULTS Here we have demonstrated an increase of resident CD34-positive cells in the aortic tissue of human and mice during ATH progression, as well as the presence of clusters of CD34-positive cells in the intima and adventitia of human ATH aortas. We introduce miR-351, which share the seed sequence with miR-125, as a potential effector of CD34. We show a splicing event at an internal/cryptic splice site at exon 8 of the murine Cd34 gene (exonic-switch) that would regulate the differential accession of miRNAs (including miR-125) to the coding region or to the 3'UTR of Cd34. CONCLUSIONS We introduce new potential mediators of ATH progression (CD34 cell-clusters, miR-351), and propose a new mechanism of miRNA action, linked to a cryptic splicing site in the target-host gene, that would regulate the differential accession of miRNAs to their cognate binding sites.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Estanis Navarro
- Independent Researcher, Esplugues de Llobregat, 08950 Barcelona, Spain.
| |
Collapse
|
27
|
The promising role of miR-296 in human cancer. Pathol Res Pract 2018; 214:1915-1922. [DOI: 10.1016/j.prp.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/08/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
|