1
|
Fan LL, Fang H, Zheng JY, Qiu YH, Wu GL, Cai YF, Chen YB, Zhang SJ. Taohong Siwu decoction alleviates cognitive impairment by suppressing endoplasmic reticulum stress and apoptosis signaling pathway in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118407. [PMID: 38824979 DOI: 10.1016/j.jep.2024.118407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ling-Ling Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| |
Collapse
|
2
|
Mosharaf MP, Alam K, Gow J, Mahumud RA, Mollah MNH. Common molecular and pathophysiological underpinnings of delirium and Alzheimer's disease: molecular signatures and therapeutic indications. BMC Geriatr 2024; 24:716. [PMID: 39210294 PMCID: PMC11363673 DOI: 10.1186/s12877-024-05289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Delirium and Alzheimer's disease (AD) are common causes of cognitive dysfunction among older adults. These neurodegenerative diseases share a common and complex relationship, and can occur individually or concurrently, increasing the chance of permanent mental dysfunction. However, the common molecular pathophysiology, key proteomic biomarkers, and functional pathways are largely unknown, whereby delirium is superimposed on AD and dementia. METHODS We employed an integrated bioinformatics and system biology analysis approach to decipher such common key proteomic signatures, pathophysiological links between delirium and AD by analyzing the gene expression data of AD-affected human brain samples and comparing them with delirium-associated proteins. The present study identified the common drug target hub-proteins examining the protein-protein interaction (PPI) and gene regulatory network analysis. The functional enrichment and pathway analysis was conducted to reveal the common pathophysiological relationship. Finally, the molecular docking and dynamic simulation was used to computationally identify and validate the potential drug target and repurposable drugs for delirium and AD. RESULTS We detected 99 shared differentially expressed genes (sDEGs) associated with AD and delirium. The sDEGs-set enrichment analysis detected the transmission across chemical synapses, neurodegeneration pathways, neuroinflammation and glutamatergic signaling pathway, oxidative stress, and BDNF signaling pathway as the most significant signaling pathways shared by delirium and AD. The disease-sDEGs interaction analysis highlighted the other disease risk factors with delirium and AD development and progression. Among the sDEGs of delirium and AD, the top 10 hub-proteins including ALB, APP, BDNF, CREB1, DLG4, GAD1, GAD2, GFAP, GRIN2B and GRIN2A were found by the PPI network analysis. Based on the maximum molecular docking binding affinities and molecular dynamic simulation (100 ns) results, the ALB and GAD2 were found as prominent drug target proteins when tacrine and donepezil were identified as potential drug candidates for delirium and AD. CONCLUSION The study outlined the common key biomolecules and biological pathways shared by delirium and AD. The computationally reported potential drug molecules need a deeper investigation including clinical trials to validate their effectiveness. The outcomes from this study will help to understand the typical pathophysiological relationship between delirium and AD and flag future therapeutic development research for delirium.
Collapse
Affiliation(s)
- Md Parvez Mosharaf
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia.
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Khorshed Alam
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Jeff Gow
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rashidul Alam Mahumud
- School of Business, Faculty of Business, Education, Law and Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Health Economics and Health Technology Assessment Unit, NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
3
|
Yan B, Liao P, Cheng F, Wang C, Zhang J, Han Z, Liu Y, Zhang L, Zhang W, Li M, Li D, Chen F, Lei P. Identification of toll-like receptor 2 as a key regulator of neuronal apoptosis in vascular dementia by bioinformatics analysis and experimental validation. Exp Gerontol 2024; 193:112464. [PMID: 38797288 DOI: 10.1016/j.exger.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Jieying Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Center for Cardiovascular Diseases, Tianjin Medical University, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China..
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
4
|
Kim S, Park J, Choi Y, Jeon H, Lim N. Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. Int J Mol Sci 2024; 25:4838. [PMID: 38732058 PMCID: PMC11084265 DOI: 10.3390/ijms25094838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-β) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-β/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
| | - Jion Park
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
| | - Younghoon Choi
- Institute of Medical Science, Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea;
| | - Hongbae Jeon
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| | - Namkyu Lim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
5
|
Yao Y, Liu Q, Ding S, Chen Y, Song T, Shang Y. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis. Heliyon 2024; 10:e27161. [PMID: 38533079 PMCID: PMC10963208 DOI: 10.1016/j.heliyon.2024.e27161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The aim of this study was to investigate the possible molecular mechanism of Scutellaria baicalensis Georgi stems and leaves flavonoids (SSF) in Alzheimer's disease (AD). The active ingredients of SSF and their targets were identified via network pharmacology and bioinformatics analysis. To test the successful establishment of a rat model of AD by Aβ25-35 combined with RHTGF-β1 and AlCl3, the Morris water maze test was used. To intervene, three different doses of SSF were administered. The model group and the control group were included among the parallel groups. A shuttle box test, immunohistochemistry, an enzyme-linked immunosorbent assay, qPCR and Western blot were performed to verify the results. Based on the intersection of genes among AD disease targets, SSF component targets, and differentially expressed genes in the single cell dataset GSE138852 and bulk-seq dataset GSE5281, nine genes related to the action of SSF on AD were identified. SSF have an important anti-AD pathway in the cAMP signaling pathway. SSF can ameliorate the conditioned memory impairment, augment Brdu protein expression and cAMP content; and differentially regulate the mRNA and protein expressions of GPCR, Gαs, AC1, PKA, and VEGF. The cAMP-PKA-CREB pathway in the SSF may mediate the ability of the SSF to ameliorate the composite-induced memory loss and nerve regeneration in rats induced by composite Aβ.
Collapse
Affiliation(s)
- Yinhui Yao
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qianqian Liu
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Shengkai Ding
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Yan Chen
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Tangtang Song
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
6
|
Li S, Xiao J, Huang C, Sun J. Identification and validation of oxidative stress and immune-related hub genes in Alzheimer's disease through bioinformatics analysis. Sci Rep 2023; 13:657. [PMID: 36635346 PMCID: PMC9837191 DOI: 10.1038/s41598-023-27977-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in aged population. Oxidative stress and neuroinflammation play important roles in the pathogenesis of AD. Investigation of hub genes for the development of potential therapeutic targets and candidate biomarkers is warranted. The differentially expressed genes (DEGs) in AD were screened in GSE48350 dataset. The differentially expressed oxidative stress genes (DEOSGs) were analyzed by intersection of DEGs and oxidative stress-related genes. The immune-related DEOSGs and hub genes were identified by weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis, respectively. Enrichment analysis was performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The diagnostic value of hub genes was assessed by receiver operating characteristic analysis and validated in GSE1297. The mRNA expression of diagnostic genes was determined by qRT-PCR analysis. Finally, we constructed the drug, transcription factors (TFs), and microRNA network of the diagnostic genes. A total of 1160 DEGs (259 up-regulated and 901 down-regulated) were screened in GSE48350. Among them 111 DEOSGs were identified in AD. Thereafter, we identified significant difference of infiltrated immune cells (effector memory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, and neutrophil) between AD and control samples. 27 gene modules were obtained through WGCNA and turquoise module was the most relevant module. We obtained 66 immune-related DEOSGs by intersecting turquoise module with the DEOSGs and identified 15 hub genes through PPI analysis. Among them, 9 hub genes (CCK, CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1) were identified with good diagnostic values and verified in GSE1297. qRT-PCR analysis revealed the downregulation of SST, NPY, GAP43, CCK, and PENK and upregulation of NEFL in AD. Finally, we identified 76 therapeutic agents, 152 miRNAs targets, and 91 TFs regulatory networks. Our study identified 9 key genes associated with oxidative stress and immune reaction in AD pathogenesis. The findings may help to provide promising candidate biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China. .,Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China. .,Nanchang University, Nanchang, 330000, China.
| | - Jinting Xiao
- grid.452422.70000 0004 0604 7301Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| | - Chuanjiang Huang
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China ,grid.415002.20000 0004 1757 8108Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000 China ,grid.260463.50000 0001 2182 8825Nanchang University, Nanchang, 330000 China
| | - Jikui Sun
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| |
Collapse
|
7
|
Alharbi M, Alshammari A, Kaur G, Kalra S, Mehan S, Suri M, Chhabra S, Kumar N, Alanazi WA, Alshanwani AR, AL-Ghamdi AH, Narula AS, Kalfin R. Effect of Natural Adenylcyclase/cAMP/CREB Signalling Activator Forskolin against Intra-Striatal 6-OHDA-Lesioned Parkinson's Rats: Preventing Mitochondrial, Motor and Histopathological Defects. Molecules 2022; 27:7951. [PMID: 36432051 PMCID: PMC9695774 DOI: 10.3390/molecules27227951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.
Collapse
Affiliation(s)
- Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Gurpreet Kaur
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
| | - Sanjeev Kalra
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
| | - Sidharth Mehan
- Department of Pharmacology, Rajendra Institute of Technology and Sciences, Hisar Road, 4th Mile Stone, Sirsa, Haryana 125055, India
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nitish Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Aliah R. Alshanwani
- Physiology Department, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdullah Hamed AL-Ghamdi
- Pharmaceutical Care Department, Namerah General Hospital, Ministry of Health, Namerah 65439, Saudi Arabia
| | | | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
8
|
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington's Disease. Biomedicines 2022; 10:2866. [PMID: 36359390 PMCID: PMC9687177 DOI: 10.3390/biomedicines10112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 10/01/2023] Open
Abstract
Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. β-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals β-BA in preventing neurological illnesses such as HD.
Collapse
Affiliation(s)
- Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arzoo Kamra
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
9
|
Kapoor T, Mehan S, Suri M, Sharma N, Kumar N, Narula AS, Alshammari A, Alasmari AF, Alharbi M, Assiri MA, Kalfin R. Forskolin, an Adenylcyclase/cAMP/CREB Signaling Activator Restoring Myelin-Associated Oligodendrocyte Destruction in Experimental Ethidium Bromide Model of Multiple Sclerosis. Cells 2022; 11:cells11182771. [PMID: 36139346 PMCID: PMC9497421 DOI: 10.3390/cells11182771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease marked by oligodendrocyte loss, which results in central neuronal demyelination. AC/cAMP/CREB signaling dysregulation is involved in the progression of MS, including mitochondrial dysfunctions, reduction in nerve growth factors, neuronal inflammation, apoptosis, and white matter degeneration. Our previous research has shown that Forskolin (FSK), a naturally occurring direct adenylyl cyclase (AC)/cAMP/CREB activator, has neuroprotective potential to alleviate pathogenic factors linked with numerous neurological abnormalities. The current study intends to explore the neuroprotective potential of FSK at doses of 40 mg/kg and 60 mg/kg alone, as well as in combination with conventional medicines, such as Fingolimod (FNG), Donepezil (DON), Memantine (MEM), and Simvastatin (SIM) in EB-induced demyelinated experimental MS rats. Adult Wistar rats were divided into nine groups, and EB was infused stereotaxically in the rat brain’s intracerebropeduncle (ICP) area. Chronic gliotoxin EB treatment results in demyelination as well as motor and cognitive dysfunctions. FSK, combined with standard medications, improves behavioral dysfunctions, such as neuromuscular and motor deficits and memory and cognitive abnormalities. Following pharmacological treatments improved remyelination by enhancing myelin basic protein and increasing AC, cAMP, and CREB levels in brain homogenates. Furthermore, FSK therapy restored brain mitochondrial-ETC complex enzymes and neurotransmitter levels while decreasing inflammatory cytokines and oxidative stress markers. The Luxol fast blue (LFB) stain results further indicate FSK’s neuroprotective potential in preventing oligodendrocyte death. Therefore, the results of these studies contribute to a better understanding of the possible role that natural phytochemicals FSK could have in preventing motor neuron diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Tarun Kapoor
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
- Correspondence: or ; Tel.: +1-91-8059889909
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nidhi Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Nitish Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | | | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
10
|
Shu J, Wei W, Zhang L. Identification of Molecular Signatures and Candidate Drugs in Vascular Dementia by Bioinformatics Analyses. Front Mol Neurosci 2022; 15:751044. [PMID: 35221911 PMCID: PMC8873373 DOI: 10.3389/fnmol.2022.751044] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 01/30/2023] Open
Abstract
Vascular dementia (VaD) is considered to be the second most common form of dementia after Alzheimer’s disease, and no specific drugs have been approved for VaD treatment. We aimed to identify shared transcriptomic signatures between the frontal cortex and temporal cortex in VaD by bioinformatics analyses. Gene ontology and pathway enrichment analyses, protein–protein interaction (PPI) and hub gene identification, hub gene–transcription factor interaction, hub gene–microRNA interaction, and hub gene–drug interaction analyses were performed. We identified 159 overlapping differentially expressed genes (DEGs) between the frontal cortex and temporal cortex that were enriched mainly in inflammation and innate immunity, synapse pruning, regeneration, positive regulation of angiogenesis, response to nutrient levels, and positive regulation of the digestive system process. We identified 10 hub genes in the PPI network (GNG13, CD163, C1QA, TLR2, SST, C1QB, ITGB2, CCR5, CRH, and TAC1), four central regulatory transcription factors (FOXC1, CREB1, GATA2, and HINFP), and four microRNAs (miR-27a-3p, miR-146a-5p, miR-335-5p, and miR-129-2-3p). Hub gene–drug interaction analysis found four drugs (maraviroc, cenicriviroc, PF-04634817, and efalizumab) that could be potential drugs for VaD treatment. Together, our results may contribute to understanding the underlying mechanisms in VaD and provide potential targets and drugs for therapeutic intervention.
Collapse
|
11
|
Hu G, Shi Z, Shao W, Xu B. MicroRNA-214-5p involves in the protection effect of Dexmedetomidine against neurological injury in Alzheimer's disease via targeting the suppressor of zest 12. Brain Res Bull 2021; 178:164-172. [PMID: 34715270 DOI: 10.1016/j.brainresbull.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a neurological disease. Dexmedetomidine (Dex) has been evidenced to exert neuroprotective effects on multiple neurological diseases, while the function of microRNA(miR)- 214-5p on Dex-mediated AD progression via targeting the suppressor of zest 12 (SUZ12) remains unclear. This study obligates to investigate the regulatory functions of Dex, miR-214-5p and SUZ12 on AD. METHODS The expression of miR-214-5p and SUZ12 in APPswe/PS1dE9 mice (hereinafter referred to as AD mice) was examined. Thereafter, the AD mice were treated with Dex or increased miR-214-5p or reduced SUZ12 to determine the spatial memory ability, apoptosis of hippocampal neurons and the contents of serum inflammatory and oxidative stress factors of AD mice. Finally, the target relationship between miR-214-5p and SUZ12 was detected. RESULTS MiR-214-5p was reduced and SUZ12 was elevated in AD mice. Dex administration reduced the apoptosis of hippocampal neurons, the contents of serum inflammatory factor and oxidative stress, and attenuated the cognitive impairment of AD mice accompanied by up-regulated miR-214-5p and down-regulated SUZ12, and the overexpression of miR-214-5p or reduction of SUZ12 could effectively enhance the Dex-treated effects on AD mice. MiR-214-5p targeted SUZ12. CONCLUSION Dex may have a potential neuroprotective effect on AD via the miR-214-5p/SUZ12 axis. This study provides novel therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Guangjun Hu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, Wuhan third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Zhen Shi
- Department of pain treatment, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, China; Hubei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei Province, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China
| | - Bo Xu
- The first clinical college of Southern Medical University, Guangzhou 430060, Guangdong Province, China; Department of Anesthesiology, General Hospital of the Southern Theater Command of the Chinese PLA, Guangzhou 510010, Guangdong Province, China.
| |
Collapse
|
12
|
Wu X, Liu Y, Zhu L, Wang Y, Ren Y, Cheng B, Ren L, Ge K, Li H. Cerebroprotein Hydrolysate-I Inhibits Hippocampal Neuronal Apoptosis by Activating PI3K/Akt Signaling Pathway in Vascular Dementia Mice. Neuropsychiatr Dis Treat 2021; 17:2359-2368. [PMID: 34305399 PMCID: PMC8297406 DOI: 10.2147/ndt.s311760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Vascular dementia (VaD), one of the brain injuries, is difficult to be cured, so it is important to take active neuroprotective treatment after its occurrence. Many studies have shown that apoptosis serves an important role in VaD occurrence; therefore, inhibition of apoptosis may contribute to the recovery of neurological function after VaD occurrence. Cerebroprotein hydrolysate-I (CH-I), a neuropeptide preparation which consists of several amino acids and small molecular peptides as the main active constituent, is extracted using a method similar to cerebrolysin (CBL) which has neuroprotective and neurotrophic effects. METHODS In the present study, a VaD model which was constructed using bilateral common carotid artery occlusion (BCCAO) in Kunming mice was applied to examine the neuroprotective effects of CH-I. RESULTS The results show that CH-I treatment could attenuate the decrease of learning and memory ability, cell apoptosis in the hippocampal CA1 region and inhibit the activation of caspase-3 and caspase-9 in VaD mice. Furthermore, CH-I treatment could also upregulate Bcl-2 protein levels and activate PI3K and Akt. DISCUSSION We speculate that CH-I may induce a neuroprotective effect activating PI3K/Akt signaling pathway in VaD mice.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Yingjuan Liu
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Lin Zhu
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Yue Wang
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Yuqian Ren
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Baohe Cheng
- Shandong Haoyun Guoji Stem Cells Hospital, Jinan, Shandong, 250001, People’s Republic of China
| | - Leiming Ren
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Keli Ge
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266021, People’s Republic of China
| | - Hongyun Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| |
Collapse
|
13
|
Parent MB, Ferreira-Neto HC, Kruemmel AR, Althammer F, Patel AA, Keo S, Whitley KE, Cox DN, Stern JE. Heart failure impairs mood and memory in male rats and down-regulates the expression of numerous genes important for synaptic plasticity in related brain regions. Behav Brain Res 2021; 414:113452. [PMID: 34274373 DOI: 10.1016/j.bbr.2021.113452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Chronic heart failure (HF) is a serious disorder that afflicts more than 26 million patients worldwide. HF is comorbid with depression, anxiety and memory deficits that have serious implications for quality of life and self-care in patients who have HF. Still, there are few studies that have assessed the effects of severely reduced ejection fraction (≤40 %) on cognition in non-human animal models. Moreover, limited information is available regarding the effects of HF on genetic markers of synaptic plasticity in brain areas critical for memory and mood regulation. We induced HF in male rats and tested mood and anxiety (sucrose preference and elevated plus maze) and memory (spontaneous alternation and inhibitory avoidance) and measured the simultaneous expression of 84 synaptic plasticity-associated genes in dorsal (DH) and ventral hippocampus (VH), basolateral (BLA) and central amygdala (CeA) and prefrontal cortex (PFC). We also included the hypothalamic paraventricular nucleus (PVN), which is implicated in neurohumoral activation in HF. Our results show that rats with severely reduced ejection fraction recapitulate behavioral symptoms seen in patients with chronic HF including, increased anxiety and impaired memory in both tasks. HF also downregulated several synaptic-plasticity genes in PFC and PVN, moderate decreases in DH and CeA and minimal effects in BLA and VH. Collectively, these findings identify candidate brain areas and molecular mechanisms underlying HF-induced disturbances in mood and memory.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Sreinick Keo
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
15
|
IGF2-AS knockdown inhibits glycolysis and accelerates apoptosis of gastric cancer cells through targeting miR-195/CREB1 axis. Biomed Pharmacother 2020; 130:110600. [PMID: 34321174 DOI: 10.1016/j.biopha.2020.110600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Dysregulation of long non-coding RNA (lncRNA) insulin growth factor 2 antisense (IGF2-AS) is being found to have relevance to tumorigenesis, including gastric cancer (GC). The purpose of this study was to further explore the detailed role and molecular mechanism of IGF2-AS in GC progression. The expression levels of IGF2-AS, miR-195 and cAMP responsive element binding protein 1 (CREB1) mRNA were assessed by qRT-PCR. Glucose consumption and lactate production were determined using a corresponding Commercial Assay Kit. Hexokinase 2 (HK2) and CREB1 protein levels were detected using western blot. Cell apoptosis was determined by flow cytometry. The targeted interaction between miR-195 and IGF2-AS or CREB1 was validated using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data revealed that IGF2-AS was upregulated in GC tissues and predicted poor prognosis. IGF2-AS knockdown hampered glycolysis and accelerated apoptosis of GC cells. Moreover, IGF2-AS acted as a sponge of miR-195 and CREB1 was a direct target of miR-195. MiR-195 mediated the regulatory effect of IGF2-AS knockdown on GC cell glycolysis and apoptosis. MiR-195 exerted its regulatory effect on GC cell glycolysis and apoptosis by CREB1. Furthermore, IGF2-AS regulated CREB1 expression via sponging miR-195. In conclusion, our study suggested that IGF2-AS knockdown suppressed glycolysis and facilitated apoptosis in GC cells at least partly through sponging miR-195 and modulating CREB1 expression, highlighting a novel therapeutic strategy for GC treatment.
Collapse
|
16
|
Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Lipotoxic Injury Differentially Regulates Brain Microvascular Gene Expression in Male Mice. Nutrients 2020; 12:E1771. [PMID: 32545722 PMCID: PMC7353447 DOI: 10.3390/nu12061771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
The Western diet (WD) and hyperlipidemia are risk factors for vascular disease, dementia, and cognitive impairment. However, the molecular mechanisms are poorly understood. This pilot study investigated the genomic pathways by which the WD and hyperlipidemia regulate gene expression in brain microvessels. Five-week-old C57BL/6J wild type (WT) control and low-density lipoprotein receptor deficient (LDL-R-/-) male mice were fed the WD for eight weeks. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by a genome-wide microarray and bioinformatics analysis of laser-captured hippocampal microvessels. The WD resulted in the differential expression of 1972 genes. Much of the differentially expressed gene (DEG) was attributable to the differential regulation of cell signaling proteins and their transcription factors, approximately 4% was attributable to the differential expression of miRNAs, and 10% was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD. Lipotoxic injury resulted in complex and multilevel molecular regulation of the hippocampal microvasculature involving transcriptional and post-transcriptional regulation and may provide a molecular basis for a better understanding of hyperlipidemia-associated dementia risk.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Dragan Milenkovic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
- INRA, UNH, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave., The Grove, Rm 1159, Davis, CA 95616, USA; (S.N.); (D.M.); (J.C.R.)
| |
Collapse
|
17
|
Dynamic Changes of Beclin-1 in the Hippocampus of Male Mice with Vascular Dementia at Different Time Points. J Mol Neurosci 2020; 70:1611-1618. [DOI: 10.1007/s12031-020-01591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
|
18
|
Tuina Massage Improves Cognitive Functions of Hypoxic-Ischemic Neonatal Rats by Regulating Genome-Wide DNA Hydroxymethylation Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1282085. [PMID: 31772590 PMCID: PMC6854251 DOI: 10.1155/2019/1282085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
In addition to abnormalities of motor and posture, children with cerebral palsy (CP) often have intellectual disability. As a complementary and alternative traditional Chinese medicine (TCM) therapy, Chinese Tuina massage, also called Tuina in China, has been widely applied in clinical treatment for CP in China for a long time. However, the molecular basis for this still remains largely unknown. Recently, DNA hydroxymethylation has been shown to be sensitive to environment and plays critical roles in some neurological disorders, whereas the research focusing on the relationship between 5 hmC and Tuina therapy for cerebral palsy is deficient. In our study, we first observed that Tuina improved learning and memory functions of hypoxic-ischemic (HI) rat pups. Meanwhile, 5 hmC level of the temporal lobe cortex in the HI neonatal rat model is decreased significantly compared to that of the rats in control and Tuina groups. Then, we used the hMeDIP-Seq method to explore whether and how DNA hydroxymethylation is involved in Tuina therapy for cerebral palsy. Genomic annotation of DhMRs of HI group's hypo-hydroxymethylation to genes revealed enrichment in multiple neurodevelopmental signaling pathways. Moreover, we found the depletion of 5 hmC modifications in genes associated with neuronal development was accompanied by reduced mRNA levels of these genes. Taken together, our results indicate that Tuina may regulate the expression of neurodevelopment-related genes by changing the status of DNA hydroxymethylation, thereby improving learning and memory functions of cerebral palsy.
Collapse
|
19
|
Yang Y, Ma S, Wei F, Liang G, Yang X, Huang Y, Wang J, Zou Y. Pivotal role of cAMP-PKA-CREB signaling pathway in manganese-induced neurotoxicity in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1052-1062. [PMID: 31161640 DOI: 10.1002/tox.22776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Manganese (Mn) plays a critical role in individual growth and development, yet excessive exposure can result in neurotoxicity, especially cognitive impairment. Neuronal apoptosis is considered as one of the mechanisms of Mn-induced neurotoxicity. Recent evidence suggests that cAMP-PKA-CREB signaling regulates apoptosis and is associated with cognitive function. However, whether this pathway participates in Mn-induced neurotoxicity is not completely understood. To fill this gap, in vitro cultures of PC12 cells were exposed to 0, 400, 500, and 600 μmol/L Mn for 24 hours, respectively. Another group of cells were pretreated with 10.0 μmol/L rolipram (a phosphodiesterase-4 [PDE4] inhibitor) for 1 hour followed by 500 μmol/L Mn exposure for 24 hours. Flow cytometry, immunofluorescence staining, enzyme-linked immunosorbent assay, and Western blot analysis were used to detect the apoptosis rate, protein levels of PDE4, cAMP signaling, and apoptosis-associated proteins, respectively. We found that Mn exposure significantly inhibited cAMP signaling and protein expression of Bcl-2, while increasing apoptosis rate, protein levels of PDE4, Bax, activated caspase-3, and activated caspase-8 in PC12 cells. Pretreatment of rolipram ameliorated Mn-induced deficits in cAMP signaling and apoptosis. These findings demonstrate that cAMP-PKA-CREB signaling pathway-induced apoptosis is involved in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shuyan Ma
- Department of Toxicology, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Fu Wei
- Center for Reproductive Medicine and Genetics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuman Huang
- Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Jian Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Electroacupuncture Mitigates Hippocampal Cognitive Impairments by Reducing BACE1 Deposition and Activating PKA in APP/PS1 Double Transgenic Mice. Neural Plast 2019; 2019:2823679. [PMID: 31223308 PMCID: PMC6541940 DOI: 10.1155/2019/2823679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Increased amyloid-β (Aβ) plaque deposition is thought to be the main cause of Alzheimer's disease (AD). β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is the key protein involved in Aβ peptide generation. Excessive expression of BACE1 might cause overproduction of neurotoxins in the central nervous system. Previous studies indicated that BACE1 initially cleaves the amyloid precursor protein (APP) and may subsequently interfere with physiological functions of proteins such as PKA, which is recognized to be closely associated with long-term potentiation (LTP) level and can effectively ameliorate cognitive impairments. Therefore, revealing the underlying mechanism of BACE1 in the pathogenesis of AD might have a significant impact on the future development of therapeutic agents targeting dementia. This study examined the effects of electroacupuncture (EA) stimulation on BACE1, APP, and p-PKA protein levels in hippocampal tissue samples. Memory and learning abilities were assessed using the Morris water maze test after EA intervention. Immunofluorescence, immunohistochemistry, and western blot were employed to assess the distribution patterns and expression levels of BACE1, APP, and p-PKA, respectively. The results showed the downregulation of BACE1 and APP and the activation of PKA by EA. In summary, EA treatment might reduce BACE1 deposition in APP/PS1 transgenic mice and regulate PKA and its associated substrates, such as LTP to change memory and learning abilities.
Collapse
|