1
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2025; 166:282-310. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Li H, Lu Y, Xie W, Ye J, Wang Q, Zhang Z, Jiang Y, Li Z. Altered structure and functional connection of subcortical gray matter in female patients with classical trigeminal neuralgia. Brain Imaging Behav 2024; 18:1457-1466. [PMID: 39340625 DOI: 10.1007/s11682-024-00943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The etiology of classical trigeminal neuralgia (CTN) is still unclear. A better understanding of the cerebral structural and functional changes in female patients with CTN may provide important novel insights into the pathophysiologic mechanisms of female CTN. A total 37 female CTN patients were included and referred to MRI scans, comprising with 19 left CTN and 18 right CTN patients. We analyzed the volume and shape of subcortical gray matter (GM), and the functional connectivity (FC) between the accumbens nucleus (NAc) and whole brain in right and left CTN patients respectively. We found left CTN patients had a reduced right NAc volume compared to controls, similarly, the right CTN had the decreased volume in the left NAc. Vertex-wise shapes of right NAc in left CTN patients showed significant regional shape deformation on the anterior, medial and ventroposterior aspects, in contrast, left NAc of right CTN patients showed significant regional shape deformation on the anterior and posterior aspect. Furthermore, patients with left CTN showed significantly lower FC between the right NAc and right orbitofrontal cortex than control subjects. The volume of NAc in all CTN was significantly related to the perception of present pain intensity. The CTN might be majorly caused by volume reduction in NAc. A greater understanding of the neurobiological basis of pain-related changes in NAc will provide the knowledge for the development of novel NAc based therapeutic targets for pain management or even prevention in CTN patients.
Collapse
Affiliation(s)
- Huiru Li
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei Xie
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junjie Ye
- Yunnan Population and Family Planning Institute, Kunming, Yunnan, China
| | - Qing Wang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhenguang Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanming Jiang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zongfang Li
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Xiang G, Sui M, Jiang N, Luo R, Xia J, Wei X, Lin Y, Li X, Cai Z, Lin J, Li S, Chen W, Zhao Y, Yang L. The progress in epidemiological, diagnosis and treatment of primary hemifacial spasm. Heliyon 2024; 10:e38600. [PMID: 39430510 PMCID: PMC11490810 DOI: 10.1016/j.heliyon.2024.e38600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Hemifacial Spasm is a neurological disorder characterized by persistent and rhythmic spasms of the facial muscles, significantly affecting the patient's quality of life. This condition can be classified into primary and secondary types; this article focuses on the characteristics of primary hemifacial spasm. Epidemiological studies indicate that the condition is more common in women, older adults, and individuals with posterior fossa stenosis or uneven blood flow dynamics, and is associated with gene expression related to demyelinating lesions. In terms of diagnosis, magnetic resonance imaging can show the location of arterial or venous compression on the facial nerve on a macroscopic level and reveal white matter lesions on a microscopic level. Additionally, optimized electrophysiological techniques can determine the type of neural excitation disorder from both central and peripheral perspectives, thereby improving detection rates. There are numerous treatment options available. Although early oral medications may have limited effectiveness, botulinum toxin injections can provide temporary relief. Future considerations include balancing injection costs with long-term efficacy. Microvascular decompression remains the preferred treatment approach and can be further optimized with endoscopic techniques. For refractory cases, alternative therapies such as facial nerve massage, radiofrequency techniques, rhizotomy, or acupuncture may be considered.
Collapse
Affiliation(s)
- Guangfa Xiang
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Minghong Sui
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Naifu Jiang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Rui Luo
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jianwei Xia
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, China
| | - Xinling Wei
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yifeng Lin
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
| | - Xingyu Li
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zixiang Cai
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Junxia Lin
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shipei Li
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wanyi Chen
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
- Standard Robots Co.,Ltd, Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, Guangdong, China
| | - Lin Yang
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Pandey S, Jain N, Singh A, Paliwal VK, Kumar S. MRI Evaluation of Microstructural and Perfusion Changes in Patients with Hemsensory Neurological Syndromes. Neurol India 2024; 72:553-560. [PMID: 39041972 DOI: 10.4103/neuroindia.ni_1050_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/28/2021] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hemisensory syndrome is characterized by a nondermatomal sensory deficit involving one half of the body. With the conventional imaging techniques, researches find low diagnostic yield in this condition; however, with the advancements in MRI imaging, there is hope to find the pathophysiological basis of hemisensory symptoms. OBJECTIVE To evaluate microstructural and perfusion changes in brain parenchyma in patients with hemisensory syndrome on MRI with diffusion tensor imaging (DTI) and arterial spin labeling (ASL). MATERIAL AND METHODS A total of 20 patients with hemisensory symptoms and 10 age-matched controls were enrolled and divided in two study groups - a) case vs. control and b) affected vs. nonaffected cerebral hemisphere in cases. Quantification of absolute cerebral blood flow (aCBF), fractional anisotropy (FA), and mean diffusivity (MD) was done in both groups. RESULTS On ASL, there was significantly increased aCBF in thalamus on the contralateral-affected side. DTI revealed significantly decreased FA in the thalamus and increased FA in corona radiata of the affected side. There was a significant difference for MD of corona radiata between affected and nonaffected hemisphere. The mean value of MD in corona radiata is decreased on the affected side. CONCLUSION Changes in advanced neuroimaging techniques like ASL and DTI along the pain processing pathway suggest an alteration in neuronal density and activity at the microstructural level. These findings may provide an insight into the etiopathogenesis of pain syndromes.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Neeraj Jain
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Anuradha Singh
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| | | | - Sunil Kumar
- Department of Radiodiagnosis, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Su X, Wang Z, Wang Z, Cheng M, Du C, Tian Y. A novel indicator to predict the outcome of percutaneous stereotactic radiofrequency rhizotomy for trigeminal neuralgia patients: diffusivity metrics of MR-DTI. Sci Rep 2024; 14:9235. [PMID: 38649718 PMCID: PMC11035693 DOI: 10.1038/s41598-024-59828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Magnetic resonance-diffusion tensor imaging (MR-DTI) has been used in the microvascular decompression and gamma knife radiosurgery in trigeminal neuralgia (TN) patients; however, use of percutaneous stereotactic radiofrequency rhizotomy (PSR) to target an abnormal trigeminal ganglion (ab-TG) is unreported. Fractional anisotropy (FA), mean and radial diffusivity (MD and RD, respectively), and axial diffusivity (AD) of the trigeminal nerve (CNV) were measured in 20 TN patients and 40 healthy control participants immediately post PSR, at 6-months, and at 1 year. Longitudinal alteration of the diffusivity metrics and any correlation with treatment effects, or prognoses, were analyzed. In the TN group, either low FA (value < 0.30) or a decreased range compared to the adjacent FA (dFA) > 17% defined an ab-TG. Two-to-three days post PSR, all 15 patients reported decreased pain scores with increased FA at the ab-TG (P < 0.001), but decreased MD and RD (P < 0.01 each). Treatment remained effective in 10 of 14 patients (71.4%) and 8 of 12 patients (66.7%) at the 6-month and 1-year follow-ups, respectively. In patients with ab-TGs, there was a significant difference in treatment outcomes between patients with low FA values (9 of 10; 90%) and patients with dFA (2 of 5; 40%) (P < 0.05). MR-DTI with diffusivity metrics correlated microstructural CNV abnormalities with PSR outcomes. Of all the diffusivity metrics, FA could be considered a novel objective quantitative indicator of treatment effects and a potential indicator of PSR effectiveness in TN patients.
Collapse
Affiliation(s)
- Xu Su
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
- Departments of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhengming Wang
- Departments of Trauma Center, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Zhijia Wang
- Departments of Radiation, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Min Cheng
- Departments of Radiation, The Third Hospital of Jilin University and China‑Japan Union Hospital, Changchun, 130033, Jilin, People's Republic of China
| | - Chao Du
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| | - Yu Tian
- Departments of Neurosurgery, The Third Hospital of Jilin University and China-Japan Union Hospital, 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| |
Collapse
|
6
|
Sun B, Zhang C, Huang K, Bhetuwal A, Yang X, Jing C, Li H, Lu H, Zhang Q, Yang H. The white matter characteristic of the genu of corpus callosum coupled with pain intensity and negative emotion scores in patients with trigeminal neuralgia: a multivariate analysis. Front Neurosci 2024; 18:1381085. [PMID: 38576866 PMCID: PMC10991788 DOI: 10.3389/fnins.2024.1381085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Background Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder that not only causes intense pain but also affects the psychological health of patients. Since TN pain intensity and negative emotion may be grounded in our own pain experiences, they exhibit huge inter-individual differences. This study investigates the effect of inter-individual differences in pain intensity and negative emotion on brain structure in patients with TN and the possible pathophysiology mechanism underlying this disease. Methods T1 weighted magnetic resonance imaging and diffusion tensor imaging scans were obtained in 46 patients with TN and 35 healthy controls. All patients with TN underwent pain-related and emotion-related questionnaires. Voxel-based morphometry and regional white matter diffusion property analysis were used to investigate whole brain grey and white matter quantitatively. Innovatively employing partial least squares correlation analysis to explore the relationship among pain intensity, negative emotion and brain microstructure in patients with TN. Results Significant difference in white matter integrity were identified in patients with TN compared to the healthy controls group; The most correlation brain region in the partial least squares correlation analysis was the genus of the corpus callosum, which was negatively associated with both pain intensity and negative emotion. Conclusion The genu of corpus callosum plays an important role in the cognition of pain perception, the generation and conduction of negative emotions in patients with TN. These findings may deepen our understanding of the pathophysiology of TN.
Collapse
Affiliation(s)
- Baijintao Sun
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chuan Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kai Huang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Anup Bhetuwal
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuezhao Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chuan Jing
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongjian Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyu Lu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qingwei Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hanfeng Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Yan J, Wang L, Pan L, Ye H, Zhu X, Feng Q, Wang H, Ding Z, Ge X. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain. BMC Med Imaging 2024; 24:66. [PMID: 38500069 PMCID: PMC10949736 DOI: 10.1186/s12880-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. METHODS All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. RESULTS In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. CONCLUSIONS The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haibin Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China.
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China.
| |
Collapse
|
8
|
Liu Y, Jiang Y, Du W, Gao B, Gao J, Hu S, Song Q, Wang W, Miao Y. White matter microstructure alterations in type 2 diabetes mellitus and its correlation with cerebral small vessel disease and cognitive performance. Sci Rep 2024; 14:270. [PMID: 38167604 PMCID: PMC10762026 DOI: 10.1038/s41598-023-50768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
Microstructural abnormalities of white matter fiber tracts are considered as one of the etiology of diabetes-induced neurological disorders. We explored the cerebral white matter microstructure alteration accurately, and to analyze its correlation between cerebral small vessel disease (CSVD) burden and cognitive performance in type 2 diabetes mellitus (T2DM). The clinical-laboratory data, cognitive scores [including mini-mental state examination (MMSE), Montreal cognitive assessment (MoCA), California verbal learning test (CVLT), and symbol digit modalities test (SDMT)], CSVD burden scores of the T2DM group (n = 34) and healthy control (HC) group (n = 21) were collected prospectively. Automatic fiber quantification (AFQ) was applied to generate bundle profiles along primary white matter fiber tracts. Diffusion tensor images (DTI) metrics and 100 nodes of white matter fiber tracts between groups were compared. Multiple regression analysis was used to analyze the relationship between DTI metrics and cognitive scores and CSVD burden scores. For fiber-wise and node-wise, DTI metrics in some commissural and association fibers were increased in T2DM. Some white matter fiber tracts DTI metrics were independent predictors of cognitive scores and CSVD burden scores. White matter fiber tracts damage in patients with T2DM may be characterized in specific location, especially commissural and association fibers. Aberrational specific white matter fiber tracts are associated with visuospatial function and CSVD burden.
Collapse
Affiliation(s)
- Yangyingqiu Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
- Department of Radiology, Zibo Central Hospital, 54 Gongqingtuan Road, Zhangdian, Zibo, China
| | - Yuhan Jiang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Wei Du
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Bingbing Gao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Jie Gao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Shuai Hu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China
| | - Weiwei Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China.
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang, Dalian, China.
| |
Collapse
|
9
|
Filimonova E, Pashkov A, Moysak G, Martirosyan A, Zaitsev B, Rzaev J. Diffusion tensor imaging reveals distributed white matter abnormalities in primary trigeminal neuralgia: Tract-based spatial statistics study. Clin Neurol Neurosurg 2024; 236:108080. [PMID: 38113657 DOI: 10.1016/j.clineuro.2023.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Primary trigeminal neuralgia (PTN) is a prevalent chronic pain disorder whose pathogenesis is not limited to the trigeminal system. Despite the significant advances in uncovering underlying mechanisms, there is a paucity of comprehensive and consistent data regarding the role of white matter throughout the entire brain in PTN. METHODS We performed a prospective case-control study. Sixty patients with PTN and 28 age- and sex-matched healthy controls were evaluated using diffusion tensor imaging (DTI). A tract-based spatial statistical approach was performed to investigate white matter impairment in patients with PTN with several metrics, including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Additionally, ROI-based analysis was performed for each white matter tract to compare FA values between groups with correction for patient age and sex. Correlations between DTI data and nerve root compression severity, as well as pain severity, were also evaluated in patients with PTN. RESULTS Our analysis demonstrated a widespread and symmetrical reduction in FA values among TN patients when compared to the control group (p < 0.05). Specifically, this FA decrease was predominantly observed in regions such as the corona radiata, internal capsule, optic radiation, and thalami, as well as structures within the posterior fossa, notably the cerebellar peduncles. No statistically significant differences were found between patients and the control group during the MD, AD and RD map analyses. ROI-based analysis did not reveal statistically significant changes in FA values in white matter tracts (p > 0.05 in all comparisons, FDR-corrected); however, there were trends towards FA value decreases in the internal capsule (p = 0.08, FDR-corrected) and inferior fronto-occipital fasciculus (p = 0.09, FDR-corrected). CONCLUSIONS Our findings indicate the presence of microstructural abnormalities in white matter among individuals with primary trigeminal neuralgia, which may potentially play a role in the development and progression of the condition.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia.
| | - Anton Pashkov
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Galina Moysak
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | | | - Boris Zaitsev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI "Federal Center of Neurosurgery", Novosibirsk, Russia; Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia; Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
10
|
Zhang Q, Yan X, Du J, Chen Z, Chang C. Diffusion Tensor Imaging as a Tool to Evaluate the Cognitive Function of Patients With Vascular Dementia: A Meta-Analysis. Neurologist 2023; 28:143-149. [PMID: 35986673 PMCID: PMC10158599 DOI: 10.1097/nrl.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Vascular dementia (VaD) is the most common type of dementia secondary to Alzheimer's disease. The pathologic mechanism of VaD is complex, and VaD still lacks a more objective diagnosis and evaluation method. Diffusion tensor imaging (DTI) can better detect the organizational structure and functional characteristics compared with any other diagnosis methods. Therefore, DTI has broad application in evaluating the severity and prognosis of VaD. This study aimed to assess the value of DTI in evaluating the cognitive function of patients with VaD. METHODS Authors searched Pubmed, Embase, and Cochrane Library, using the search terms, such as "diffusion tensor imaging," "DTI," "Vascular Dementia," "Arteriosclerotic Dementia," "Cognition," and "Cognitive." A voxel-based meta-analysis combined with quality statistics was performed, using the anisotropic effect-size version of the signed differential mapping method. RESULTS A total of 8 case-control studies were included in this meta-analysis. The sample size of patients ranged from 35 to 60, including 166 patients in the VaD group and 177 healthy individuals. The DTI imaging of the brain tissue of VaD patients was significantly different from that of healthy individuals. CONCLUSIONS DTI imaging of the brain tissue of VaD patients was clearly different from that of healthy controls. Therefore it may be feasible to use DTI imaging as a diagnostic method for VaD.
Collapse
Affiliation(s)
- Qiuchi Zhang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Xiwu Yan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Jun Du
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| | - Zhaoyao Chen
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
| | - Cheng Chang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
11
|
Xie Y, Cai K, Dai J, Wei G. Enhanced Integrity of White Matter Microstructure in Mind-Body Practitioners: A Whole-Brain Diffusion Tensor Imaging Study. Brain Sci 2023; 13:brainsci13040691. [PMID: 37190656 DOI: 10.3390/brainsci13040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Tai Chi Chuan (TCC) is an increasingly popular multimodal mind-body practice with potential cognitive benefits, yet the neurobiological mechanisms underlying these effects, particularly in relation to brain white matter (WM) microstructure, remain largely unknown. In this study, we used diffusion tensor imaging (DTI) and the attention network test (ANT) to compare 22 TCC practitioners and 18 healthy controls. We found extensive differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between the two groups. Specifically, TCC practitioners had significantly different diffusion metrics in the corticospinal tract (CST), fornix (FX)/stria terminalis (ST), and cerebral peduncle (CP). We also observed a significant correlation between increased FA values in the right CP and ANT performance in TCC practitioners. Our findings suggest that optimized regional WM microstructure may contribute to the complex information processing associated with TCC practice, providing insights for preventing cognitive decline and treating neurological disorders with cognitive impairment in clinical rehabilitation.
Collapse
Affiliation(s)
- Yingrong Xie
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Jingang Dai
- Experimental Research Center, China Academy of Chinese Medical Sciences, National Chinese Medicine Experts Inheritance Office of Song Jun, Beijing 100700, China
| | - Gaoxia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Liu H, Zheng R, Zhang Y, Zhang B, Hou H, Cheng J, Han S. Alterations of degree centrality and functional connectivity in classic trigeminal neuralgia. Front Neurosci 2023; 16:1090462. [PMID: 36699513 PMCID: PMC9870176 DOI: 10.3389/fnins.2022.1090462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives Recent neuroimaging studies have indicated a wide range of structural and regional functional alterations in patients with classic trigeminal neuralgia (CTN). However, few studies have focused on the intrinsic functional characteristics of network organization in the whole brain. Therefore, the present study aimed to characterize the potential intrinsic dysconnectivity pattern of the whole brain functional networks at the voxel level using the degree centrality (DC) analysis in CTN patients. Methods Thirty-four patients with CTN and twenty-nine well-matched healthy controls (HCs) participated in this study. All subjects underwent resting-state functional magnetic resonance imaging (rs-MRI) examination and clinical and neuropsychologic assessments. DC is a graph theory-based measurement that represents the overall functional connectivity (FC) numbers between one voxel and other brain voxels. We first investigated brain regions exhibiting abnormal DC, and further identified their perturbation on FC with other brain regions using a seed-based FC analysis in patients with CTN. In addition, correlation analyses were performed to evaluate the relationship between the abnormal DC value and clinical variables in CTN patients. Results Compared with the HCs, the patients with CTN exhibited significantly greater DC values in the right pallidum and right putamen, and lower DC values in the right lingual gyrus, right calcarine sulcus, left paracentral lobule, and left midcingulate cortex. A further seed-based FC analysis revealed that the right lingual gyrus showed decreased FC within the visual network and with other core brain networks, including the sensorimotor network, default mode network, and salience network, relative to HCs. Additionally, the left midcingulate cortex exhibited decreased FC within the middle cingulate cortex and the visual network in CTN patients. Moreover, the DC value in the left midcingulate cortex was negatively correlated with the illness duration. Conclusion The present study shows that CTN patients exhibited specific functional connectivity network alterations in the basal ganglia, visual network, and salience network, which may reflect the aberrant neural network communication in pain processing and modulation. These findings may provide novel insight for understanding the mechanisms of pain chronicity in CTN patients.
Collapse
Affiliation(s)
- Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Haiman Hou,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China,Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China,Shaoqiang Han,
| |
Collapse
|
13
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Rath TJ, Policeni B, Juliano AF, Agarwal M, Block AM, Burns J, Conley DB, Crowley RW, Dubey P, Friedman ER, Gule-Monroe MK, Hagiwara M, Hunt CH, Jain V, Powers WJ, Rosenow JM, Taheri MR, DuChene Thoma K, Zander D, Corey AS. ACR Appropriateness Criteria® Cranial Neuropathy: 2022 Update. J Am Coll Radiol 2022; 19:S266-S303. [PMID: 36436957 DOI: 10.1016/j.jacr.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Cranial neuropathy can result from pathology affecting the nerve fibers at any point and requires imaging of the entire course of the nerve from its nucleus to the end organ in order to identify a cause. MRI with and without intravenous contrast is often the modality of choice with CT playing a complementary role. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer-reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances in which peer-reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Tanya J Rath
- Division Chair of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona.
| | - Bruno Policeni
- Panel Chair; Department of Radiology Vice-Chair, University of Iowa Hospitals and Clinics, Iowa City, Iowa; President Iowa Radiological Society and ACR Councilor
| | - Amy F Juliano
- Panel Vice-Chair, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts; NI-RADS committee chair
| | - Mohit Agarwal
- Froedtert Memorial Lutheran Hospital Medical College of Wisconsin, Milwaukee, Wisconsin; Fellowship Program Director
| | - Alec M Block
- Stritch School of Medicine Loyola University Chicago, Maywood, Illinois
| | - Judah Burns
- Montefiore Medical Center, Bronx, New York; Vice-Chair for Education & Residency Program Director, Montefiore Medical Center; Vice-Chair, Subcommittee on Methodology
| | - David B Conley
- Practice Director, Northwestern ENT and Rhinology Fellowship Director, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and Member, American Academy of Otolaryngology-Head and Neck Surgery
| | - R Webster Crowley
- Rush University Medical Center, Chicago, Illinois; Neurosurgery expert; Chief, Cerebrovascular and Endovascular Neurosurgery; Medical Director, Department of Neurosurgery; Surgical Director, Rush Comprehensive Stroke Center; Program Director, Endovascular Neurosurgery
| | | | - Elliott R Friedman
- University of Texas Health Science Center, Houston, Texas; Diagnostic Radiology Residency Program Director
| | - Maria K Gule-Monroe
- The University of Texas MD Anderson Cancer Center, Houston, Texas; Medical Director of Diagnostic Imaging at Houston Area Location Woodlands
| | - Mari Hagiwara
- Neuroradiology Fellowship Program Director and Head and Neck Imaging Director, New York University Langone Medical Center, New York, New York
| | | | - Vikas Jain
- MetroHealth Medical Center, Cleveland, Ohio; Medical Director, Lumina Imaging
| | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology
| | - Joshua M Rosenow
- Neuroradiology Fellowship Program Director and Head and Neck Imaging Director, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - M Reza Taheri
- George Washington University Hospital, Washington, District of Columbia; Director of Neuroradiology
| | - Kate DuChene Thoma
- Director of Faculty Development Fellowship, University of Iowa Hospital, Iowa City, Iowa; Primary care physician
| | - David Zander
- Chief of Head and Neck Radiology, University of Colorado Denver, Denver, Colorado
| | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
15
|
Zhang P, Wan X, Ai K, Zheng W, Liu G, Wang J, Huang W, Fan F, Yao Z, Zhang J. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients. Neuroimage Clin 2022; 36:103160. [PMID: 36037660 PMCID: PMC9434131 DOI: 10.1016/j.nicl.2022.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in white matter microstructure and functional activity have been demonstrated to be involved in the central nervous system mechanism of classic trigeminal neuralgia (CTN). However, the rich-club organization and related topological alterations in the CTN brain networks remain unclear. METHODS We simultaneously collected diffusion-tensor imaging (DTI) and resting state functional magnetic resonance imaging (rs-fMRI) data from 29 patients with CTN (9 males, mean age = 54.59 years) and 34 matched healthy controls (HCs) (12 males, mean age = 54.97 years) to construct structural networks (SNs) and functional networks (FNs). Rich-club organization was determined separately based on each group's SN and different kinds of connections. For both network types, we calculated the basic connectivity properties (network density and strength) and topological properties (global/local/nodal efficiency and small worldness). Moreover, SN-FN coupling was obtained. The relationships between all those properties and clinical measures were evaluated. RESULTS Compared to their FN, the SN of CTN patients was disrupted more severely, including its topological properties (reduced network efficiency and small-worldness), and a decrease in network density and strength was observed. Patients showed reorganization of the rich-club architecture, wherein the nodes with decreased nodal efficiency in the SN were mainly non-hub regions, and the local connections were closely related to altered global efficiency and whole brain coupling. While the cortical-subcortical connections of feeder were found to be strengthened in the SN of patients, the coupling between networks increased in all types of connections. Finally, disease severity (duration, pain intensity, and affective alterations) was negatively correlated with coupling (rich-club, feeder, and whole brain) and network strength (the rich-club of the SN and local connections of the FN). A positive correlation was only found between pain intensity and the coupling of local connections. CONCLUSIONS The SN of patients with CTN may be more vulnerable. Accompanied by the reorganization of the rich-club, the less efficient network communication and the impaired functional dynamics were largely attributable to the dysfunction of non-hub regions. As compensation, the pain transmission pathway of feeder connections involving in pain processing and emotional regulation may strengthen. The local and feeder sub-networks may serve as potential biomarkers for diagnosis or prognosis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kai Ai
- Philips, Healthcare, Xi’an 710000, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guangyao Liu
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Wenjing Huang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fengxian Fan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| |
Collapse
|
16
|
Deng X, Liu L, Luo J, Liu L, Hui X, Feng H. Research on the Mechanism of Cognitive Decline in Patients With Acoustic Neuroma. Front Neurosci 2022; 16:933825. [PMID: 35860298 PMCID: PMC9289464 DOI: 10.3389/fnins.2022.933825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Little is known about neuropsychological research on patients with acoustic neuroma (AN), especially cognitive neuropsychology. We aim to compare the cognitive function of patients with AN and healthy controls (HCs) and explore possible underlying mechanisms. Various neuropsychological assessments were performed on all participants. Tract-based spatial statistics (TBSS) was used to compare DTI metrics such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Correlation analysis was analyzed between DTI metrics and cognitive scales. Compared with the HC group, the AN group performed worse in the neuropsychological evaluations, and TBSS analysis showed widespread alteration of the FA, AD, RD, and MD, which correlated with the cognitive function. These white matter tracts include minor forceps, major forceps, anterior thalamic radiation, superior longitudinal fasciculus, corticospinal tract, and right inferior fronto-occipital fasciculus. Meanwhile, we found for the first time that cognitive decline was related to the decrease of FA in minor forceps, which can be used as a neurobiological marker of cognitive impairment in patients with AN. The occurrence of cognition impairment is common in patients with AN. Including neuropsychological evaluation in the routine clinical assessment and appropriate treatment may strengthen clinical management and improve the quality of life of patients.
Collapse
Affiliation(s)
- Xueyun Deng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Lizhen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Jun Luo
- Department of Radiology, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Lihua Liu
- Department of Geriatrics, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Xuhui Hui
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- *Correspondence: Hua Feng
| |
Collapse
|
17
|
Budd AS, Huynh TKT, Seres P, Beaulieu C, Armijo-Olivo S, Cummine J. White Matter Diffusion Properties in Chronic Temporomandibular Disorders: An Exploratory Analysis. FRONTIERS IN PAIN RESEARCH 2022; 3:880831. [PMID: 35800990 PMCID: PMC9254396 DOI: 10.3389/fpain.2022.880831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To determine differences in diffusion metrics in key white matter (WM) tracts between women with chronic temporomandibular disorders (TMDs) and age- and sex-matched healthy controls. Design Cross sectional study compared diffusion metrics between groups and explored their associations with clinical variables in subjects with TMDs. Methods In a total of 33 subjects with TMDs and 33 healthy controls, we performed tractography to obtain diffusion metrics (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) from the cingulum near the cingulate gyrus (CGC), the cingulum near the hippocampus (CGH), the fornix, the anterior limb of the internal capsule (ALIC), the posterior limb of the internal capsule (PLIC), and the uncinate fasciculus (UF). We compared diffusion metrics across groups and explored the relationships between diffusion metrics and clinical measures (pain chronicity and intensity, central sensitization, somatization, depression, orofacial behavior severity, jaw function limitations, disability, and interference due to pain) in subjects with TMDs. Results We observed differences in diffusion metrics between groups, primarily in the right side of the brain, with the right CGC having lower FA and the right UF having lower FA and higher MD and RD in subjects with TMDs compared to healthy controls. No clinical measures were consistently associated with diffusion metrics in subjects with TMDs. Conclusion The UF showed potential microstructural damage in subjects with TMDs, but further studies are needed to confirm any associations between diffusion changes and clinical measures.
Collapse
Affiliation(s)
- Alexandra S. Budd
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thi K. T. Huynh
- Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Susan Armijo-Olivo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Faculty of Business and Social Sciences, University of Applied Sciences Osnabrück, Osnabrück, Germany
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Susan Armijo-Olivo
| | - Jacqueline Cummine
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Cheng S, Dong X, Zhou J, Tang C, He W, Chen Y, Zhang X, Ma P, Yin T, Hu Y, Zeng F, Li Z, Liang F. Alterations of the White Matter in Patients With Knee Osteoarthritis: A Diffusion Tensor Imaging Study With Tract-Based Spatial Statistics. Front Neurol 2022; 13:835050. [PMID: 35370891 PMCID: PMC8968011 DOI: 10.3389/fneur.2022.835050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background Functional and structural alterations in the gray matter have been observed in patients with knee osteoarthritis (KOA). However, little is known about white matter changes in KOA. Here, we evaluated fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) to investigate potential alterations in the white matter of patients with KOA. Methods A total of 166 patients with KOA, along with 88 age- and sex-matched healthy controls were recruited and underwent brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) data were collected and analyzed using tract-based spatial statistics (TBSS). Statistical significances were determined at p < 0.05 and were corrected by the threshold-free cluster enhancement (TFCE) method. Then, we evaluated potential correlations between FA, MD, AD, RD values and disease duration, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, and visual analog scale (VAS) scores. Results FA values for the body of corpus callosum, splenium of corpus callosum, bilateral superior longitudinal fasciculus, cingulum, bilateral superior corona radiata, and right posterior corona radiata were significantly higher in patients with KOA than in healthy controls (p < 0.05, TFCE corrected). Compared with healthy controls, patients with KOA also had significantly lower MD, AD, and RD values of the genu of corpus callosum, body of corpus callosum, splenium of corpus callosum, corona radiata, right posterior thalamic radiation, superior longitudinal fasciculus, and middle cerebellar peduncle (p < 0.05, TFCE corrected). Negative correlations were detected between WOMAC scores and AD values for the body of the corpus callosum and the splenium of the corpus callosum (p < 0.05, FDR corrected). Conclusion Patients with KOA exhibited extensive white matter alterations in sensorimotor and pain-related regions. Longitudinal observation studies on the causation between abnormalities in the white matter tracts and KOA is needed in the future.
Collapse
Affiliation(s)
- Shirui Cheng
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Zhou
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenjian Tang
- The First Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhua He
- The Second Affiliated Hospital of Shanxi, University of Traditional Chinese Medicine, Taiyuan, China
| | - Yang Chen
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyue Zhang
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peihong Ma
- Acupuncture and Moxibustion Department, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Yin
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengjie Li
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhengjie Li
| | - Fanrong Liang
- The Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Fanrong Liang
| |
Collapse
|
19
|
Zhang J, Yu Q, Gu P, Sun H, Yuan F, Zhang Q. Brain Structure Alterations in Hemifacial Spasm: A Diffusion Tensor Imaging Study. Clin EEG Neurosci 2022; 53:165-172. [PMID: 33289577 DOI: 10.1177/1550059420979250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examined white matter integrity in patients with left-sided hemifacial spasm (HFS) using diffusion tensor imaging (DTI). Thirty-six patients with left-sided HFS (mean age 53.24 ± 8.16 years) and 36 healthy volunteers (mean age 53.92 ± 7.73 years) were recruited. Tract-based spatial statistics (TBSS) analysis revealed significantly increased fractional anisotropy (FA) of bilateral superior longitudinal fasciculus in HFS patients (P < 0.05, family-wise error corrected), with trends for radial diffusivity to decrease. We inferred that the results may be associated with poor sleep quality, impairment in visuospatial construction, and activity-dependent increases in myelination in HFS patients. Furthermore, the FA value of left superior longitudinal fasciculus showed a positive correlation with HFS duration (r = 0.352, P = .041) and spasm severity (r = 0.416, P = .014). However, the alteration of medial diffusivity and axial diffusivity were not found in bilateral superior longitudinal fasciculus between groups. These findings suggest FA changes of superior longitudinal fasciculus reflected by TBSS analysis may provide valuable insights into the diagnosis of HFS.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China.,Logistics University of People's Armed Police Force, Tianjin, China
| | - Qingyang Yu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China.,Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China
| | - Peng Gu
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China
| | - Hongtao Sun
- Logistics University of People's Armed Police Force, Tianjin, China
| | - Fei Yuan
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Forces, Dongli District, Tianjin, China
| |
Collapse
|
20
|
Wang L, Cai XT, Zu MD, Zhang J, Deng ZR, Wang Y. Decreased Resting-State Functional Connectivity of Periaqueductal Gray in Temporal Lobe Epilepsy Comorbid With Migraine. Front Neurol 2021; 12:636202. [PMID: 34122295 PMCID: PMC8189422 DOI: 10.3389/fneur.2021.636202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Patients with temporal lobe epilepsy (TLE) are at high risk for having a comorbid condition of migraine, and these two common diseases are proposed to have some shared pathophysiological mechanisms. Our recent study indicated the dysfunction of periaqueductal gray (PAG), a key pain-modulating structure, contributes to the development of pain hypersensitivity and epileptogenesis in epilepsy. This study is to investigate the functional connectivity of PAG network in epilepsy comorbid with migraine. Methods: Thirty-two patients with TLE, including 16 epilepsy patients without migraine (EwoM) and 16 epilepsy patients with comorbid migraine (EwM), and 14 matched healthy controls (HCs) were recruited and underwent resting functional magnetic resonance imaging (fMRI) scans to measure the resting-state functional connectivity (RsFC) of PAG network. The frequency and severity of migraine attacks were assessed using the Migraine Disability Assessment Questionnaire (MIDAS) and Visual Analog Scale/Score (VAS). In animal experiments, FluoroGold (FG), a retrograde tracing agent, was injected into PPN and its fluorescence detected in vlPAG to trace the neuronal projection from vlPAG to PPN. FG traced neuron number was used to evaluate the neural transmission activity of vlPAG-PPN pathway. The data were processed and analyzed using DPARSF and SPSS17.0 software. Based on the RsFC finding, the excitatory transmission of PAG and the associated brain structure was studied via retrograde tracing in combination with immunohistochemical labeling of excitatory neurons. Results: Compared to HCs group, the RsFC between PAG and the left pedunculopontine nucleus (PPN), between PAG and the corpus callosum (CC), was decreased both in EwoM and EwM group, while the RsFC between PAG and the right PPN was increased only in EwoM group but not in EwM group. Compared to EwoM group, the RsFC between PAG and the right PPN was decreased in EwM group. Furthermore, the RsFC between PAG and PPN was negatively correlated with the frequency and severity of migraine attacks. In animal study, a seizure stimulation induced excitatory transmission from PAG to PPN was decreased in rats with chronic epilepsy as compared to that in normal control rats. Conclusion: The comorbidity of epilepsy and migraine is associated with the decreased RsFC between PAG and PPN.
Collapse
Affiliation(s)
- Long Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, The Second People Hospital of Hefei, Hefei, China
| | - Xin-Ting Cai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei-Dan Zu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Ru Deng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Zhang F, Li F, Yang H, Jin Y, Lai W, Roberts N, Jia Z, Gong Q. Effect of experimental orthodontic pain on gray and white matter functional connectivity. CNS Neurosci Ther 2021; 27:439-448. [PMID: 33369178 PMCID: PMC7941220 DOI: 10.1111/cns.13557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
AIM Over 90% of patients receiving orthodontic treatment experience clinically significant pain. However, little is known about the neural correlates of orthodontic pain and which has therefore been investigated in the present study of healthy subjects using an experimental paradigm. METHODS Resting-state functional magnetic resonance imaging (rsfMRI) was performed in 44 healthy subjects 24 hours after an elastic separator had been introduced between the first and the second molar on the right side of the lower jaw and in 49 age- and sex-matched healthy control (HC) subjects. A K-means clustering algorithm was used to identify functional gray matter (GM) and white matter (WM) resting-state networks, and differences in functional connectivity (FC) of GM and WM between the group of subjects with experimental orthodontic pain and HC were analyzed. RESULTS Twelve GM networks and 14 WM networks with high stability were identified. Compared with HC, subjects with orthodontic pain showed significantly increased FC between WM12, which includes posterior thalamic radiation and posterior cingulum bundle, and most GM networks. Besides, the WM12 network showed significant differences in FC with three GM-WM loops involving the default mode network, dorsal attention network, and salience network, respectively. CONCLUSIONS Orthodontic pain is shown to produce an alteration of FC in networks relevant to pain processing, which may be mediated by a WM network relevant to emotion perception and cognitive processing.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Fei Li
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Hong Yang
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Yu Jin
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Wenli Lai
- State Key Laboratory of Oral DiseaseDepartment of OrthodonticsWest China School of Stomatology, Sichuan UniversityChengdu
| | - Neil Roberts
- School of Clinical SciencesUniversity of EdinburghEdinburghUK
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Department of Nuclear MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC)Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
22
|
The Integrity of the Substructure of the Corpus Callosum in Patients With Right Classic Trigeminal Neuralgia. J Craniofac Surg 2021; 32:632-636. [PMID: 33704998 DOI: 10.1097/scs.0000000000007082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Patients with classic trigeminal neuralgia (CTN) have abnormalities in white matter integrity of the corpus callosum (CC). However, in CTN patients, it is unclear whether the CC substructure region is affected to varying degrees. MATERIAL AND METHODS A total of 22 patients with CTN and 22 healthy controls (HC) with matching age, gender, and education were selected. All subjects underwent 3.0 T magnetic resonance diffusion tensor imaging and high resolution T1-weighted imaging. The CC was reconstructed by DTI technology, which was divided into three substructure regions: genu, body, and splenium. Group differences in multiple diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), were compared between CTN patients and HC, and correlations between the white matter change and disease duration and VAS in CTN patients were assessed. RESULTS Compared with HC group, CTN patients had extensive damage to the CC white matter. The FA of the genu (P = 0.04) and body (P = 001) parts decreased, while RD (P = 0.003; P = 0.02) and MD (P = 0.002; P = 0.04) increased. In addition, the authors observed that the disease duration and VAS of CTN patients were negatively correlated with FA. CONCLUSION The corpus callosum substructure region has extensive damage in chronic pain, and the selective microstructural integrity damage was particularly manifested by changes in axons and myelin sheath in the genu and body of corpus callosum.
Collapse
|
23
|
Wu M, Jiang X, Qiu J, Fu X, Niu C. Gray and white matter abnormalities in primary trigeminal neuralgia with and without neurovascular compression. J Headache Pain 2020; 21:136. [PMID: 33238886 DOI: 10.1186/s10194-020-01205-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Previous researches have reported gray and white matter microalterations in primary trigeminal neuralgia (TN) with neurovascular compression (NVC). The central mechanism underlying TN without NVC are unknown but may include changes in specific brain regions or circuitries. This study aimed to investigate abnormalities in the gray matter (GM) and white matter (WM) of the whole brain and the possible pathogenetic mechanism underlying this disease. METHODS We analyzed brain morphologic images of TN patients, 23 with NVC (TN wNVC) and 22 without NVC (TN wNVC) compared with 45 healthy controls (HC). All subjects underwent 3T-magnetic resonance imaging and pain scale evaluation. Voxel-based morphometry (VBM) and surface-based morphometry (SBM) were used to investigate whole brain grey matter quantitatively; graph theory was applied to obtain network measures based on extracted DTI data based on DTI data of the whole brains. Sensory and affective pain rating indices were assessed using the visual analog scale (VAS) and short-form McGill Pain Questionnaire (SF-MPQ). RESULTS The VBM and SBM analyses revealed widespread decreases in GM volume and cortical thickness in TN wNVC compared to TN woNVC, and diffusion metrics measures and topology organization changes revealed DTI showed extensive WM integrity alterations. However, above structural changes differed between TN wNVC and TN woNVC, and were related to specific chronic pain modulation mechanism. CONCLUSION Abnormalities in characteristic regions of GM and WM structural network were found in TN woNVC compared with TN wNVC group, suggesting differences in pathophysiology of two types of TN.
Collapse
Affiliation(s)
- Min Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China. .,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China.
| | - Xiaofeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| | - Jun Qiu
- Department of Diagnostic Radiology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Xianming Fu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
24
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Coppola G, Di Renzo A, Tinelli E, Petolicchio B, Di Lorenzo C, Parisi V, Serrao M, Calistri V, Tardioli S, Cartocci G, Caramia F, Di Piero V, Pierelli F. Patients with chronic migraine without history of medication overuse are characterized by a peculiar white matter fiber bundle profile. J Headache Pain 2020; 21:92. [PMID: 32682393 PMCID: PMC7368770 DOI: 10.1186/s10194-020-01159-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background We investigated intracerebral fiber bundles using a tract-based spatial statistics (TBSS) analysis of diffusion tensor imaging (DTI) data to verify microstructural integrity in patients with episodic (MO) and chronic migraine (CM). Methods We performed DTI in 19 patients with MO within interictal periods, 18 patients with CM without any history of drug abuse, and 18 healthy controls (HCs) using a 3 T magnetic resonance imaging scanner. We calculated diffusion metrics, including fractional anisotropy (FA), axial diffusion (AD), radial diffusion (RD), and mean diffusion (MD). Results TBSS revealed no significant differences in the FA, MD, RD, and AD maps between the MO and HC groups. In comparison to the HC group, the CM group exhibited widespread increased RD (bilateral superior [SCR] and posterior corona radiata [PCR], bilateral genu of the corpus callosum [CC], bilateral posterior limb of internal capsule [IC], bilateral superior longitudinal fasciculus [LF]) and MD values (tracts of the right SCR and PCR, right superior LF, and right splenium of the CC). In comparison to the MO group, the CM group showed decreased FA (bilateral SCR and PCR, bilateral body of CC, right superior LF, right forceps minor) and increased MD values (bilateral SCR and right PCR, right body of CC, right superior LF, right splenium of CC, and right posterior limb of IC). Conclusion Our results suggest that chronic migraine can be associated with the widespread disruption of normal white matter integrity in the brain.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Antonio Di Renzo
- IRCCS - Fondazione Bietti, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Via Livenza 3, 00198, Rome, Italy
| | - Emanuele Tinelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Vincenzo Parisi
- IRCCS - Fondazione Bietti, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Via Livenza 3, 00198, Rome, Italy.
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Valentina Calistri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Tardioli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gaia Cartocci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS - Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
26
|
Moayedi M, Hodaie M. Trigeminal nerve and white matter brain abnormalities in chronic orofacial pain disorders. Pain Rep 2019; 4:e755. [PMID: 31579849 PMCID: PMC6728001 DOI: 10.1097/pr9.0000000000000755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 02/02/2023] Open
Abstract
Medial temporal lobe activity is investigated in meta-analyses of experimental and chronic pain. Abnormal hippocampal connectivity is found in patients with chronic low back pain. The orofacial region is psychologically important, given that it serves fundamental and important biological purposes. Chronic orofacial pain disorders affect the head and neck region. Although some have clear peripheral etiologies, eg, classic trigeminal neuralgia, others do not have a clear etiology (eg, muscular temporomandibular disorders). However, these disorders provide a unique opportunity in terms of elucidating the neural mechanisms of these chronic pain conditions: both the peripheral and central nervous systems can be simultaneously imaged. Diffusion-weighted imaging and diffusion tensor imaging have provided a method to essentially perform in vivo white matter dissections in humans, and to elucidate abnormal structure related to clinical correlates in disorders, such as chronic orofacial pains. Notably, the trigeminal nerve anatomy and architecture can be captured using diffusion imaging. Here, we review the trigeminal somatosensory pathways, diffusion-weighted imaging methods, and how these have contributed to our understanding of the neural mechanisms of chronic pain disorders affecting the trigeminal system. We also discuss novel findings indicating the potential for trigeminal nerve diffusion imaging to develop diagnostic and precision medicine biomarkers for trigeminal neuralgia. In sum, diffusion imaging serves both an important basic science purpose in identifying pain mechanisms, but is also a clinically powerful tool that can be used to improve treatment outcomes.
Collapse
Affiliation(s)
- Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mojgan Hodaie
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery and Krembil Research Institute, Toronto Western Hospital, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|