1
|
Xin W, Xue T, Cheng Y, Dong F, Wang J, Ma Y, Zhang S, Zhang F, Ding J, Song D, Wang J, Zhu Y, Ju H, Yuan K, Sheng X, Yu D. Reconfigurations of dynamic functional network connectivity after 1HZ repetitive transcranial magnetic stimulation in insomnia disorder. Sleep Med 2024; 126:239-247. [PMID: 39721360 DOI: 10.1016/j.sleep.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
AIMS The objective of the current study was to investigate the dynamic functional connectivity among large-scale brain networks in patients with insomnia, and to assess the efficacy of repetitive transcranial magnetic stimulation (rTMS) treatment in these individuals. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data from 62 insomnia patients and 69 healthy controls were used to compare differences in dynamic functional connectivity between the two groups. A total of 26 insomnia patients underwent rTMS for four weeks. Changes in dynamic functional network connectivity was observed in insomnia patients following treatment. Additionally, the relationship between clinical symptoms and insomnia was analyzed using topological and correlation analyses. RESULTS Our findings demonstrated that insomnia patients exhibited a significantly lower fraction rate of negative connectivity between the dorsal default mode network (dDMN) and the visual network (VN) compared to healthy controls, while showing strong positive connectivity within the VN and the auditory network (AUN). It may be attributed to the restoration of normal dynamic functional connectivity between the dDMN and VN in insomnia patients following rTMS. Furthermore, the dynamic functional connectivity between the dDMN and VN was found to predict sleep quality and treatment outcome in insomnia patients. CONCLUSION Abnormal dynamic functional network connectivity between the dDMN and VN is a hallmark of insomnia, and may serve as a biomarker to assess the effects of rTMS treatment in insomnia patients.
Collapse
Affiliation(s)
- Wuyuan Xin
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Ting Xue
- School of Science College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Yongxin Cheng
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Fang Dong
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Juan Wang
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Yuxin Ma
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Shan Zhang
- Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Fan Zhang
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Jingjing Ding
- School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Daining Song
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Junxuan Wang
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050061, China
| | - Haitao Ju
- The Affiliated Hospital of Inner Mongolia Medical University, Huhehaote, Inner Mongolia, 010030, China
| | - Kai Yuan
- School of Digital and Intelligent Industry (School of Cyber Science and Technology), Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China; Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China; School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China; Hainan Free Trade Port Health Medical Research Institute, Baoting, Hainan, 572300, China.
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050061, China.
| | - Dahua Yu
- School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China.
| |
Collapse
|
2
|
Wang Z, Li Z, Zhou G, Liu J, Zhao Z, Gao J, Li Y. Graph theory-driven structural and functional connectivity analyses revealing regulatory mechanisms of brain network in patients with classic trigeminal neuralgia. Brain Imaging Behav 2024:10.1007/s11682-024-00915-5. [PMID: 39388007 DOI: 10.1007/s11682-024-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
A specific regulatory mechanism underlying classical trigeminal neuralgia (cTN) remains unknown. The present study posits that the initiation and advancement of cTN may be attributed to a self-regulatory and compensatory mechanism within the brain's limbic system. A sample size of thirty-three patients diagnosed with cTN and twenty-one normal controls were recruited for this investigation. Functional magnetic resonance imaging data were collected from all participants. Graph-theoretic analysis was employed to identify abnormal nodes induced by cTN in the brain atlas, followed by determining the brain network function in conjunction with the outcomes of regional homogeneity (ReHo) and functional connectivity (FC). During data processing, relatively strict thresholds were set for all corrections. The findings indicated that the discrepancy in small-worldness characteristics between the two cohorts primarily stemmed from the characteristic path length. Additionally, there was an overlap between brain regions exhibiting markedly reduced node efficiency in cTN patients and those exhibiting markedly reduced ReHo signal. The FC analysis of the whole brain revealed nine brain regions with reduced connectivity in the cTN group, corresponding to brain regions with diminished node efficiency. Notably, most of these abnormal brain regions were located in the limbic system, providing evidence of the compensatory mechanism of the limbic system.
Collapse
Affiliation(s)
- Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Jie Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurosurgery, The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| |
Collapse
|
3
|
Xin H, Yang B, Jia Y, Qi Q, Wang Y, Wang L, Chen X, Li F, Lu J, Chen N. Graph Metrics Reveal Brain Network Topological Property in Neuropathic Pain Patients: A Systematic Review. J Pain Res 2024; 17:3277-3286. [PMID: 39411193 PMCID: PMC11474538 DOI: 10.2147/jpr.s483466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Neuropathic pain (NP) is a common and persistent disease that leads to immense suffering and serious social burden. Incomplete understanding of the underlying neural basis makes it difficult to achieve significant breakthroughs in the treatment of NP. We aimed to review the functional and structural brain topological properties in patients with NP and consider how graph measures reveal potential mechanisms and are applied to clinical practice. Related studies were searched in PubMed and Web of Science databases. Topological property changes in patients with NP, including small-worldness, functional separation, integration, and centrality metrics, were reviewed. The findings suggest that NP was characterized by retained but declined small-worldness, indicating an insidious imbalance between network integration and segregation. The global-level measures revealed decreased global and local efficiency in the NP, implying decreased information transfer efficiency for both long- and short-range connections. Altered nodal centrality measures involve various brain regions, mostly those associated with pain, cognition, and emotion. Graph theory is a powerful tool for identifying topological properties of patients with NP. These specific brain changes in patients with NP are very helpful in revealing the potential mechanisms of NP, developing new treatment strategies, and evaluating the efficacy and prognosis of NP.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yulong Jia
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Qunya Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yu Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Fang Li
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| |
Collapse
|
4
|
Xie B, Ni H, Wang Y, Yao J, Xu Z, Zhu K, Bian S, Song P, Wu Y, Yu Y, Dong F. Dynamic Functional Network Connectivity in Acute Incomplete Cervical Cord Injury Patients and Its Associations With Sensorimotor Dysfunction Measures. World Neurosurg 2024:S1878-8750(24)01529-8. [PMID: 39243971 DOI: 10.1016/j.wneu.2024.08.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Dynamic functional network connectivity (dFNC) captures temporal variations in functional connectivity during magnetic resonance imaging acquisition. However, the neural mechanisms driving dFNC alterations in the brain networks of patients with acute incomplete cervical cord injury (AICCI) remain unclear. METHODS This study included 16 AICCI patients and 16 healthy controls. Initially, independent component analysis was employed to extract whole-brain independent components from resting-state functional magnetic resonance imaging data. Subsequently, a sliding time window approach, combined with k-means clustering, was used to estimate dFNC states for each participant. Finally, a correlation analysis was conducted to examine the association between sensorimotor dysfunction scores in AICCI patients and the temporal characteristics of dFNC. RESULTS Independent component analysis was employed to extract 26 whole-brain independent components. Subsequent dynamic analysis identified 4 distinct connectivity states across the entire cohort. Notably, AICCI patients demonstrated a significant preference for State 3 compared to healthy controls, as evidenced by a higher frequency and longer duration spent in this state. Conversely, State 4 exhibited a reduced frequency and shorter dwell time in AICCI patients. Moreover, correlation analysis revealed a positive association between sensorimotor dysfunction and both the mean dwell time and the fraction of time spent in State 3. CONCLUSIONS Patients with AICCI demonstrate abnormal connectivity within dFNC states, and the temporal characteristics of dFNC are associated with sensorimotor dysfunction scores. These findings highlight the potential of dFNC as a sensitive biomarker for detecting network functional changes in AICCI patients, providing valuable insights into the dynamic alterations in brain connectivity related to sensorimotor dysfunction in this population.
Collapse
Affiliation(s)
- Bingyong Xie
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Ni
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiyuan Yao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhibin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sicheng Bian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Cui W, Chen B, He J, Fan G, Wang S. Dynamic functional network connectivity in children with profound bilateral congenital sensorineural hearing loss. Pediatr Radiol 2024; 54:1738-1747. [PMID: 39134864 DOI: 10.1007/s00247-024-06022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) studies have revealed extensive functional reorganization in patients with sensorineural hearing loss (SNHL). However, almost no study focuses on the dynamic functional connectivity after hearing loss. OBJECTIVE This study aimed to investigate dynamic functional connectivity changes in children with profound bilateral congenital SNHL under the age of 3 years. MATERIALS AND METHODS Thirty-two children with profound bilateral congenital SNHL and 24 children with normal hearing were recruited for the present study. Independent component analysis identified 18 independent components composing five resting-state networks. A sliding window approach was used to acquire dynamic functional matrices. Three states were identified using the k-means algorithm. Then, the differences in temporal properties and the variance of network efficiency between groups were compared. RESULTS The children with SNHL showed longer mean dwell time and decreased functional connectivity between the auditory network and sensorimotor network in state 3 (P < 0.05), which was characterized by relatively stronger functional connectivity between high-order resting-state networks and motion and perception networks. There was no difference in the variance of network efficiency. CONCLUSIONS These results indicated the functional reorganization due to hearing loss. This study also provided new perspectives for understanding the state-dependent connectivity patterns in children with SNHL.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
6
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2024:00006396-990000000-00680. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Zhang P, Wan X, Jiang J, Liu Y, Wang D, Ai K, Liu G, Zhang X, Zhang J. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients. Cereb Cortex 2024; 34:bhae337. [PMID: 39123310 DOI: 10.1093/cercor/bhae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Structural covariance networks and causal effects within can provide critical information on gray matter reorganization and disease-related hierarchical changes. Based on the T1WI data of 43 classical trigeminal neuralgia patients and 45 controls, we constructed morphological similarity networks of cortical thickness, sulcal depth, fractal dimension, and gyrification index. Moreover, causal structural covariance network analyses were conducted in regions with morphological abnormalities or altered nodal properties, respectively. We found that patients showed reduced sulcal depth, gyrification index, and fractal dimension, especially in the salience network and the default mode network. Additionally, the integration of the fractal dimension and sulcal depth networks was significantly reduced, accompanied by decreased nodal efficiency of the bilateral temporal poles, and right pericalcarine cortex within the sulcal depth network. Negative causal effects existed from the left insula to the right caudal anterior cingulate cortex in the gyrification index map, also from bilateral temporal poles to right pericalcarine cortex within the sulcal depth network. Collectively, patients exhibited impaired integrity of the covariance networks in addition to the abnormal gray matter morphology in the salience network and default mode network. Furthermore, the patients may experience progressive impairment in the salience network and from the limbic system to the sensory system in network topology, respectively.
Collapse
Affiliation(s)
- Pengfei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, No. 12, Urumqi Middle Road, Jingan District, Shanghai 200040, China
| | - Jingqi Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Danyang Wang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Kai Ai
- Department of Clinical and Technical Supports, Philips Healthcare, No. 64 West Section, South 2nd Ring Road, Yanta District, Xi'an 710000, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Gansu Medical MRI Equipment Application Industry Technology Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| |
Collapse
|
8
|
Ashina S, Robertson CE, Srikiatkhachorn A, Di Stefano G, Donnet A, Hodaie M, Obermann M, Romero-Reyes M, Park YS, Cruccu G, Bendtsen L. Trigeminal neuralgia. Nat Rev Dis Primers 2024; 10:39. [PMID: 38816415 DOI: 10.1038/s41572-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Trigeminal neuralgia (TN) is a facial pain disorder characterized by intense and paroxysmal pain that profoundly affects quality of life and presents complex challenges in diagnosis and treatment. TN can be categorized as classical, secondary and idiopathic. Epidemiological studies show variable incidence rates and an increased prevalence in women and in the elderly, with familial cases suggesting genetic factors. The pathophysiology of TN is multifactorial and involves genetic predisposition, anatomical changes, and neurophysiological factors, leading to hyperexcitable neuronal states, central sensitization and widespread neural plasticity changes. Neurovascular compression of the trigeminal root, which undergoes major morphological changes, and focal demyelination of primary trigeminal afferents are key aetiological factors in TN. Structural and functional brain imaging studies in patients with TN demonstrated abnormalities in brain regions responsible for pain modulation and emotional processing of pain. Treatment of TN involves a multifaceted approach that considers patient-specific factors, including the type of TN, with initial pharmacotherapy followed by surgical options if necessary. First-line pharmacological treatments include carbamazepine and oxcarbazepine. Surgical interventions, including microvascular decompression and percutaneous neuroablative procedures, can be considered at an early stage if pharmacotherapy is not sufficient for pain control or has intolerable adverse effects or contraindications.
Collapse
Affiliation(s)
- Sait Ashina
- BIDMC Comprehensive Headache Center, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- BIDMC Comprehensive Headache Center, Department of Anaesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Anne Donnet
- Department of Evaluation and Treatment of Pain, FHU INOVPAIN, Centre Hospitalier Universitaire de Marseille, Hopital de la Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - Mojgan Hodaie
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontairo, Canada
| | - Mark Obermann
- Department of Neurology, Hospital Weser-Egge, Hoexter, Germany
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Marcela Romero-Reyes
- Department of Pain and Neural Sciences, Brotman Facial Pain Clinic, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lars Bendtsen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, University of Copenhagen, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Copenhagen, Denmark
| |
Collapse
|
9
|
Cheng S, Zeng F, Zhou J, Dong X, Yang W, Yin T, Huang K, Liang F, Li Z. Altered static and dynamic functional brain network in knee osteoarthritis: A resting-state functional magnetic resonance imaging study: Static and dynamic FNC in KOA. Neuroimage 2024; 292:120599. [PMID: 38608799 DOI: 10.1016/j.neuroimage.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.
Collapse
Affiliation(s)
- Shirui Cheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Jun Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali 671000, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| | - Zhengjie Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
10
|
Yan J, Wang L, Pan L, Ye H, Zhu X, Feng Q, Wang H, Ding Z, Ge X. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain. BMC Med Imaging 2024; 24:66. [PMID: 38500069 PMCID: PMC10949736 DOI: 10.1186/s12880-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To investigate the altered trends of regional homogeneity (ReHo) based on time and frequency, and clarify the time-frequency characteristics of ReHo in 48 classical trigeminal neuralgia (CTN) patients after a single pain stimulate. METHODS All patients underwent three times resting-state functional MRI (before stimulation (baseline), after stimulation within 5 s (triggering-5 s), and in the 30th min of stimulation (triggering-30 min)). The spontaneous brain activity was investigated by static ReHo (sReHo) in five different frequency bands and dynamic ReHo (dReHo) methods. RESULTS In the five frequency bands, the number of brain regions which the sReHo value changed in classical frequency band were most, followed by slow 4 frequency band. The left superior occipital gyrus was only found in slow 2 frequency band and the left superior parietal gyrus was only found in slow 3 frequency band. The dReHo values were changed in midbrain, left thalamus, right putamen, and anterior cingulate cortex, which were all different from the brain regions that the sReHo value altered. There were four altered trends of the sReHo and dReHo, which dominated by decreased at triggering-5 s and increased at triggering-30 min. CONCLUSIONS The duration of brain function changed was more than 30 min after a single pain stimulate, although the pain of CTN was transient. The localized functional homogeneity has time-frequency characteristic in CTN patients after a single pain stimulate, and the changed brain regions of the sReHo in five frequency bands and dReHo complemented to each other. Which provided a certain theoretical basis for exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Haibin Wang
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, 310000, Hangzhou, China.
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Cancer Center, Hangzhou First People's Hospital, 310006, Hangzhou, China.
| |
Collapse
|
11
|
Mousavi SH, Lindsey JW, Westlund KN, Alles SRA. Trigeminal Neuralgia as a Primary Demyelinating Disease: Potential Multimodal Evidence and Remaining Controversies. THE JOURNAL OF PAIN 2024; 25:302-311. [PMID: 37643657 DOI: 10.1016/j.jpain.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Trigeminal neuralgia is a heterogeneous disorder with likely multifactorial and complex etiology; however, trigeminal nerve demyelination and injury are observed in almost all patients with trigeminal neuralgia. The current management strategies for trigeminal neuralgia primarily involve anticonvulsants and surgical interventions, neither of which directly address demyelination, the pathological hallmark of trigeminal neuralgia, and treatments targeting demyelination are not available. Demyelination of the trigeminal nerve has been historically considered a secondary effect of vascular compression, and as a result, trigeminal neuralgia is not recognized nor treated as a primary demyelinating disorder. In this article, we review the evolution of our understanding of trigeminal neuralgia and provide evidence to propose its potential categorization, at least in some cases, as a primary demyelinating disease by discussing its course and similarities to multiple sclerosis, the most prevalent central nervous system demyelinating disorder. This proposed categorization may provide a basis in investigating novel treatment modalities beyond the current medical and surgical interventions, emphasizing the need for further research into demyelination of the trigeminal sensory pathway in trigeminal neuralgia. PERSPECTIVE: This article proposes trigeminal neuralgia as a demyelinating disease, supported by histological, clinical, and radiological evidence. Such categorization offers a plausible explanation for controversies surrounding trigeminal neuralgia. This perspective holds potential for future research and developing therapeutics targeting demyelination in the condition.
Collapse
Affiliation(s)
- Seyed H Mousavi
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - John W Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
12
|
Ge X, Wang L, Yan J, Pan L, Ye H, Zhu X, Feng Q, Chen B, Du Q, Yu W, Ding Z. Altered brain function in classical trigeminal neuralgia patients: ALFF, ReHo, and DC static- and dynamic-frequency study. Cereb Cortex 2024; 34:bhad455. [PMID: 38012118 DOI: 10.1093/cercor/bhad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Bing Chen
- Jing Hengyi School of Education, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Yuhang District, Hangzhou City, Zhejiang Province 311121, China
| | - Quan Du
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| |
Collapse
|
13
|
Zhou Q, Zhao R, Qin Z, Qi Y, Tang W, Liu L, Wang W, Liu JR, Du X. Altered intra- and inter-network functional activity among migraine, chronic migraine, and trigeminal neuralgia. Mol Pain 2024; 20:17448069241300939. [PMID: 39655771 PMCID: PMC11629411 DOI: 10.1177/17448069241300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the specific manifestations and differences in brain network activity and functional connectivity between brain networks in patients with trigeminal neuralgia and migraine, aiming to reveal the neural basis of these two diseases. BACKGROUND Head and facial pain, including trigeminal neuralgia and migraine, is prevalent globally. However, the underlying neural mechanisms of these conditions remain unclear. Resting-state functional connectivity studies based on independent component analysis (ICA) may offer new insights into these diseases. METHODS The study involved 23 chronic migraine, 37 episodic migraine, 21 trigeminal neuralgia patients, and 33 age- and gender-matched controls. Resting-state functional magnetic resonance imaging was performed, and five sets of brain network components were extracted through ICA. Neuronal activity indicators were calculated for each participant's independent components, including amplitudes of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). Functional connectivity was also assessed and compared among the four groups. RESULTS Trigeminal neuralgia patients showed reduced ALFF in the dorsal attention network versus episodic migraine patients and controls. Both trigeminal neuralgia and chronic migraine patients had decreased ReHo in this network. Migraine patients had weaker connectivity between the default mode and visual networks than controls. Trigeminal neuralgia patients also showed higher connectivity between the somatosensory motor and dorsal attention networks. Compared to episodic migraine, trigeminal neuralgia, and chronic migraine patients had increased connectivity between the visual and dorsal attention networks. CONCLUSION The study provides evidence that long-term chronic head and facial pain may contribute to abnormalities in the activation and connectivity of the dorsal attention network. Compared to migraine patients, trigeminal neuralgia patients exhibit abnormal brain network connectivity, particularly within the somatomotor network, which may explain the presence of significant "trigger points." These findings offer new perspectives for understanding the characteristics of different head and facial pain subtypes.
Collapse
Affiliation(s)
- Qichen Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Zhaoxia Qin
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yapeng Qi
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Wenshuang Tang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Lan Liu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Weikan Wang
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
Kong Q, Sacca V, Walker K, Hodges S, Kong J. Thalamocortical Mechanisms Underlying Real and Imagined Acupuncture. Biomedicines 2023; 11:1830. [PMID: 37509469 PMCID: PMC10377130 DOI: 10.3390/biomedicines11071830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Both acupuncture and imagery have shown potential for chronic pain management. However, the mechanisms underlying their analgesic effects remain unclear. This study aims to explore the thalamocortical mechanisms underlying acupuncture and video-guided acupuncture imagery treatment (VGAIT), a combination of acupuncture and guided imagery, using the resting-state functional connectivity (rsFC) of three thalamic subdivisions-the ventral posterolateral thalamus (VPL), mediodorsal thalamus (MD), and motor thalamus subregion (Mthal)-associated with somatosensory, limbic, and motor circuity. Twenty-seven healthy individuals participated in a within-subject randomized crossover design study. Results showed that compared to sham acupuncture, real acupuncture altered the rsFC between the thalamus and default mode network (DMN) (i.e., mPFC, PCC, and precuneus), as well as the prefrontal and somatosensory cortex (SI/SII). Compared to the VGAIT control, VGAIT demonstrated greater rsFC between the thalamus and key nodes within the interoceptive network (i.e., anterior insula, ACC, PFC, and SI/SII), as well as the motor and sensory cortices (i.e., M1, SMA, and temporal/occipital cortices). Furthermore, compared to real acupuncture, VGAIT demonstrated increased rsFC between the thalamus (VPL/MD/Mthal) and task-positive network (TPN). Further correlations between differences in rsFC and changes in the heat or pressure pain threshold were also observed. These findings suggest that both acupuncture- and VGAIT-induced analgesia are associated with thalamocortical networks. Elucidating the underlying mechanism of VGAIT and acupuncture may facilitate their development, particularly VGAIT, which may be used as a potential remote-delivered pain management approach.
Collapse
Affiliation(s)
| | | | | | | | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
15
|
Wan X, Zhang P, Wang W, Wu X, Tan Q, Su X, Zhang S, Yang X, Li S, Shao H, Yue Q, Gong Q. Abnormal brain functional network dynamics in sleep-related hypermotor epilepsy. CNS Neurosci Ther 2023; 29:659-668. [PMID: 36510701 PMCID: PMC9873504 DOI: 10.1111/cns.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS This study aimed to use resting-state functional magnetic resonance imaging (rs-fMRI) to determine the temporal features of functional connectivity states and changes in connectivity strength in sleep-related hypermotor epilepsy (SHE). METHODS High-resolution T1 and rs-fMRI scanning were performed on all the subjects. We used a sliding-window approach to construct a dynamic functional connectivity (dFC) network. The k-means clustering method was performed to analyze specific FC states and related temporal properties. Finally, the connectivity strength between the components was analyzed using network-based statistics (NBS) analysis. The correlations between the abovementioned measures and disease duration were analyzed. RESULTS After k-means clustering, the SHE patients mainly exhibited two dFC states. The frequency of state 1 was higher, which was characterized by stronger connections within the networks; state 2 occurred at a relatively low frequency, characterized by stronger connections between networks. SHE patients had greater fractional time and a mean dwell time in state 2 and had a larger number of state transitions. The NBS results showed that SHE patients had increased connectivity strength between networks. None of the properties was correlated with illness duration among patients with SHE. CONCLUSION The patterns of dFC patterns may represent an adaptive and protective mode of the brain to deal with epileptic seizures.
Collapse
Affiliation(s)
- Xinyue Wan
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
| | - Pengfei Zhang
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
| | - Weina Wang
- Department of Radiology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xintong Wu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduChina
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Xibiao Yang
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Shuang Li
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Hanbing Shao
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Qiang Yue
- Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| |
Collapse
|
16
|
Liu H, Zheng R, Zhang Y, Zhang B, Hou H, Cheng J, Han S. Alterations of degree centrality and functional connectivity in classic trigeminal neuralgia. Front Neurosci 2023; 16:1090462. [PMID: 36699513 PMCID: PMC9870176 DOI: 10.3389/fnins.2022.1090462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives Recent neuroimaging studies have indicated a wide range of structural and regional functional alterations in patients with classic trigeminal neuralgia (CTN). However, few studies have focused on the intrinsic functional characteristics of network organization in the whole brain. Therefore, the present study aimed to characterize the potential intrinsic dysconnectivity pattern of the whole brain functional networks at the voxel level using the degree centrality (DC) analysis in CTN patients. Methods Thirty-four patients with CTN and twenty-nine well-matched healthy controls (HCs) participated in this study. All subjects underwent resting-state functional magnetic resonance imaging (rs-MRI) examination and clinical and neuropsychologic assessments. DC is a graph theory-based measurement that represents the overall functional connectivity (FC) numbers between one voxel and other brain voxels. We first investigated brain regions exhibiting abnormal DC, and further identified their perturbation on FC with other brain regions using a seed-based FC analysis in patients with CTN. In addition, correlation analyses were performed to evaluate the relationship between the abnormal DC value and clinical variables in CTN patients. Results Compared with the HCs, the patients with CTN exhibited significantly greater DC values in the right pallidum and right putamen, and lower DC values in the right lingual gyrus, right calcarine sulcus, left paracentral lobule, and left midcingulate cortex. A further seed-based FC analysis revealed that the right lingual gyrus showed decreased FC within the visual network and with other core brain networks, including the sensorimotor network, default mode network, and salience network, relative to HCs. Additionally, the left midcingulate cortex exhibited decreased FC within the middle cingulate cortex and the visual network in CTN patients. Moreover, the DC value in the left midcingulate cortex was negatively correlated with the illness duration. Conclusion The present study shows that CTN patients exhibited specific functional connectivity network alterations in the basal ganglia, visual network, and salience network, which may reflect the aberrant neural network communication in pain processing and modulation. These findings may provide novel insight for understanding the mechanisms of pain chronicity in CTN patients.
Collapse
Affiliation(s)
- Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Haiman Hou,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China,Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China,Shaoqiang Han,
| |
Collapse
|
17
|
Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, Fan S, Feng Q, Du Q, Wenhua Y, Ding Z. Alteration of brain network centrality in CTN patients after a single triggering pain. Front Neurosci 2023; 17:1109684. [PMID: 36875648 PMCID: PMC9978223 DOI: 10.3389/fnins.2023.1109684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Objective The central nervous system may also be involved in the pathogenesis of classical trigeminal neuralgia (CTN). The present study aimed to explore the characteristics of static degree centrality (sDC) and dynamic degree centrality (dDC) at multiple time points after a single triggering pain in CTN patients. Materials and methods A total of 43 CTN patients underwent resting-state function magnetic resonance imaging (rs-fMRI) before triggering pain (baseline), within 5 s after triggering pain (triggering-5 s), and 30 min after triggering pain (triggering-30 min). Voxel-based degree centrality (DC) was used to assess the alteration of functional connection at different time points. Results The sDC values of the right caudate nucleus, fusiform gyrus, middle temporal gyrus, middle frontal gyrus, and orbital part were decreased in triggering-5 s and increased in triggering-30 min. The sDC value of the bilateral superior frontal gyrus were increased in triggering-5 s and decreased in triggering-30 min. The dDC value of the right lingual gyrus was gradually increased in triggering-5 s and triggering-30 min. Conclusion Both the sDC and dDC values were changed after triggering pain, and the brain regions were different between the two parameters, which supplemented each other. The brain regions which the sDC and dDC values were changing reflect the global brain function of CTN patients, and provides a basis for further exploration of the central mechanism of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengze Wang
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Pan
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Haiqi Ye
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China
| | - Xiaofen Zhu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Fan
- Department of Radiology, The Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Feng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wenhua
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Jiangsu, China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, The Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Saway BF, Webb T, Weber A, Triano M, Barley J, Spampinato M, Rowland N. Functional MRI-Guided Motor Cortex and Deep Brain Stimulation for Intractable Facial Pain: A Novel, Personalized Approach in 1 Patient. Oper Neurosurg (Hagerstown) 2023; 24:103-110. [PMID: 36251418 DOI: 10.1227/ons.0000000000000440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Facial neuropathic pain syndromes such as trigeminal neuralgia are debilitating disorders commonly managed by medications, vascular decompression, and/or ablative procedures. In trigeminal neuralgia cases unresponsive to these interventions, trigeminal deafferentation pain syndrome (TDPS) can emerge and remain refractory to any further attempts at these conventional therapies. Deep brain stimulation (DBS) and motor cortex stimulation are 2 neuromodulatory treatments that have demonstrated efficacy in small case series of TDPS yet remain largely underutilized. In addition, functional MRI (fMRI) is a tool that can help localize central processing of evoked stimuli such as mechanically triggered facial pain. In this study, we present a case report and operative technique in a patient with TDPS who underwent fMRI to guide the operative management and placement of dual targets in the sensory thalamus and motor cortex. OBJECTIVE To evaluate the safety, efficacy, and outcome of a novel surgical approach for TDPS in a single patient. METHODS The fMRI and operative technique of unilateral DBS targeting the ventroposteromedial nucleus of the thalamus and facial motor cortex stimulator placement through a single burr hole is illustrated as well as the patient's clinical outcome. RESULTS In less than 1 year, the patient had near complete resolution of his facial pain with no postoperative complications. CONCLUSION We present the first published case of successful treatment of TDPS using simultaneous DBS of the ventroposteromedial and motor cortex stimulation. fMRI can be used as an effective imaging modality to guide neuromodulation in this complex disorder.
Collapse
Affiliation(s)
- Brian Fabian Saway
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Timothy Webb
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aimee Weber
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Triano
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica Barley
- Department of Clinical Neurophysiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria Spampinato
- Department of Radiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nathan Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Zhou Q, Li M, Fan Q, Chen F, Jiang G, Wang T, He Q, Fu S, Yin Y, Lin J, Yan J. Cerebral perfusion alterations in patients with trigeminal neuralgia as measured by pseudo-continuous arterial spin labeling. Front Neurosci 2022; 16:1065411. [PMID: 36601595 PMCID: PMC9807247 DOI: 10.3389/fnins.2022.1065411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Accumulating evidence suggests that trigeminal neuralgia (TN) causes structural and functional alterations in the brain. However, only a few studies have focused on cerebral blood flow (CBF) changes in patients with TN. This study aimed to explore whether altered cerebral perfusion patterns exist in patients with TN and investigate the relationship between abnormal regional CBF (rCBF) and clinical characteristics of TN. Materials and methods This study included 28 patients with TN and 30 age- and sex-matched healthy controls (HCs) who underwent perfusion functional MRI (fMRI) of the brain using pseudo-continuous arterial spin labeling (pCASL) in the resting state. The regions of significantly altered CBF in patients with TN were detected using group comparison analyses. Then, the relationships between the clinical characteristics and abnormal rCBF were further investigated. Results Compared to the control group, patients with TN exhibited increased rCBF, primarily in the thalamus, middle frontal gyrus (MFG), and left insula. Furthermore, the CBF values of the thalamus were negatively correlated with the pain intensity of TN and positively correlated with pain duration in patients with TN. Conclusion Primary alterations in rCBF in patients with TN occurred in different brain regions related to pain, which are involved in cognitive-affective interaction, pain perception, and pain modulation. These results indicate that non-invasive resting cerebral perfusion imaging may contribute complementary information to further understanding the neuropathological mechanism underlying TN.
Collapse
Affiliation(s)
- Qianling Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qisen Fan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qinmeng He
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jinzhi Lin
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhao Yan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China,*Correspondence: Jianhao Yan,
| |
Collapse
|
20
|
Pan L, Ye H, Zhu X, Wang L, Ge X. Radiomics analysis of unaffected side changes in classic trigeminal neuralgia. Am J Transl Res 2022; 14:8640-8649. [PMID: 36628234 PMCID: PMC9827329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the subtle differences in the structure of the unaffected trigeminal nerve between patients with classic trigeminal neuralgia (CTN) and healthy controls (HCs) by means of radiomics, so as to further explore the etiological mechanism of trigeminal neuralgia (TN). METHODS The imagine data of 95 CTN patients and 89 matched HCs were collected and retrospectively analyzed. They were assigned to four groups according to the presence or absence of neurovascular compression (NVC) of the unaffected trigeminal nerve (HCs with and without NVC; CTN patients with and without NVC on the unaffected side). All patients underwent magnetic resonance imaging (MRI) scans. Bilateral trigeminal cisternal segments were manually delineated, followed by feature extraction, dimensionality reduction, feature selection, model construction and model evaluation. RESULTS Six weighted textural signatures (sphericity, maximum 2D diameter, skewness, robust mean absolute deviation, large dependence low gray level emphasis, and surface-to-volume ratio) were found in HCs with and without NVC, while 7 were found in CTN patients without NVC on the unaffected side and HCs without NVC. The Rad_score was statistically different between the two groups (P < 0.05). The AUC of the training set was consistent with that of the validation set. The calibration curves of the training and validation sets demonstrated the high accuracy of the model. CONCLUSIONS NVC can alter trigeminal nerve structure and cause alterations in related characteristics; but NVC is not a necessary condition for the formation of CTN, and its incidence is also high in asymptomatic healthy people, and thus it is necessary to grade the severity of NVC. In addition, there are differences in the characteristics of the unaffected side between CTN patients and HCs, which may be due to congenital or secondary factors.
Collapse
Affiliation(s)
- Lei Pan
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Haiqi Ye
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Xiaofen Zhu
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Luoyu Wang
- Laboratory of Oncology Research Diagnosis and Treatment, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| | - Xiuhong Ge
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310000, Zhejiang, China
| |
Collapse
|
21
|
Liu R, Qiao N, Shi S, Li S, Wang Y, Song J, Jia W. Deficits in ascending pain modulation pathways in breast cancer survivors with chronic neuropathic pain: A resting-state fMRI study. Front Neurol 2022; 13:959122. [PMID: 36570451 PMCID: PMC9772282 DOI: 10.3389/fneur.2022.959122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Breast cancer (BC) is the highest frequent malignancy in women globally. Approximately 25-60% of BC patients with chronic neuropathic pain (CNP) result from advances in treating BC. Since the CNP mechanism is unclear, the various treatment methods for CNP are limited. We aimed to explore the brain alternations in BC patients with CNP and the relationship between depression and CNP utilizing resting-state functional magnetic resonance imaging (rs-fMRI). Methods To collect the data, the female BC survivors with CNP (n = 20) and healthy controls (n = 20) underwent rs-fMRI. We calculated and compared the functional connectivity (FC) between the two groups using the thalamus and periaqueductal gray (PAG) as seed regions. Results Patients with BC showed increased depression and FC between the thalamus and primary somatosensory cortices (SI). Moreover, the Hospital Anxiety and Depression Scale-Depression (HADS-D) and pain duration were linked positively to the strength of FC from the thalamus to the SI. Furthermore, the thalamus-SI FC mediated the impact of pain duration on HADS-D. Conclusion In BC patients with CNP, the ascending pain regulation mechanism is impaired and strongly associated with chronic pain and accompanying depression. This research increased our knowledge of the pathophysiology of CNP in patients with BC, which will aid in determining the optimal therapeutic strategy for those patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China,*Correspondence: Rui Liu
| | - Na Qiao
- Department of Breast Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China,Department of Breast Surgery, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Shuwei Shi
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Suyao Li
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Yingman Wang
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jie Song
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Wenting Jia
- Department of Chemoradiotherapy, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| |
Collapse
|
22
|
Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, Feng Q, Yu W, Ding Z. Amplitude of low-frequency fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia. J Headache Pain 2022; 23:117. [PMID: 36076162 PMCID: PMC9461270 DOI: 10.1186/s10194-022-01488-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Objective This study aimed to explore the central mechanism of classical trigeminal neuralgia (CTN) by analyzing the static amplitude of low-frequency fluctuation (sALFF) and dynamic amplitude of low-frequency fluctuation (dALFF) in patients with CTN before and after a single-trigger pain. Methods This study included 48 patients (37 women and 11 men, age 55.65 ± 11.41 years) with CTN. All participants underwent 3D-T1WI and three times resting-state functional magnetic resonance imaging. The images were taken before stimulating the trigger zone (baseline), within 5 s after stimulating the trigger zone (triggering-5 s), and in the 30th minute after stimulating the trigger zone (triggering-30 min). The differences between the three measurements were analyzed using a repeated-measures analysis of variance. Results The sALFF values of the bilateral middle occipital gyrus and right cuneus gradually increased, and the values of the left posterior cingulum gyrus and bilateral superior frontal gyrus gradually decreased in triggering-5 s and triggering-30 min. The values of the right middle temporal gyrus and right thalamus decreased in triggering-5 s and subsequently increased in triggering-30 min. The sALFF values of the left superior temporal gyrus increased in triggering-5 s and then decreased in triggering-30 min. The dALFF values of the right fusiform gyrus, bilateral lingual gyrus, left middle temporal gyrus, and right cuneus gyrus gradually increased in both triggering-5 s and triggering-30 min. Conclusions The sALFF and dALFF values changed differently in multiple brain regions in triggering-5 s and triggering-30 min of CTN patients after a single trigger of pain, and dALFF is complementary to sALFF. The results might help explore the therapeutic targets for relieving pain and improving the quality of life of patients with CTN. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01488-8.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China.,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Sandra Fan
- Zhejiang Chinese Medical University, Hangzhou, 310000, P.R. China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Shangcheng Distric, Hangzhou, 310000, P.R. China.
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China. .,Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou City, 310006, China.
| |
Collapse
|
23
|
Zhang P, Wan X, Ai K, Zheng W, Liu G, Wang J, Huang W, Fan F, Yao Z, Zhang J. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients. Neuroimage Clin 2022; 36:103160. [PMID: 36037660 PMCID: PMC9434131 DOI: 10.1016/j.nicl.2022.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in white matter microstructure and functional activity have been demonstrated to be involved in the central nervous system mechanism of classic trigeminal neuralgia (CTN). However, the rich-club organization and related topological alterations in the CTN brain networks remain unclear. METHODS We simultaneously collected diffusion-tensor imaging (DTI) and resting state functional magnetic resonance imaging (rs-fMRI) data from 29 patients with CTN (9 males, mean age = 54.59 years) and 34 matched healthy controls (HCs) (12 males, mean age = 54.97 years) to construct structural networks (SNs) and functional networks (FNs). Rich-club organization was determined separately based on each group's SN and different kinds of connections. For both network types, we calculated the basic connectivity properties (network density and strength) and topological properties (global/local/nodal efficiency and small worldness). Moreover, SN-FN coupling was obtained. The relationships between all those properties and clinical measures were evaluated. RESULTS Compared to their FN, the SN of CTN patients was disrupted more severely, including its topological properties (reduced network efficiency and small-worldness), and a decrease in network density and strength was observed. Patients showed reorganization of the rich-club architecture, wherein the nodes with decreased nodal efficiency in the SN were mainly non-hub regions, and the local connections were closely related to altered global efficiency and whole brain coupling. While the cortical-subcortical connections of feeder were found to be strengthened in the SN of patients, the coupling between networks increased in all types of connections. Finally, disease severity (duration, pain intensity, and affective alterations) was negatively correlated with coupling (rich-club, feeder, and whole brain) and network strength (the rich-club of the SN and local connections of the FN). A positive correlation was only found between pain intensity and the coupling of local connections. CONCLUSIONS The SN of patients with CTN may be more vulnerable. Accompanied by the reorganization of the rich-club, the less efficient network communication and the impaired functional dynamics were largely attributable to the dysfunction of non-hub regions. As compensation, the pain transmission pathway of feeder connections involving in pain processing and emotional regulation may strengthen. The local and feeder sub-networks may serve as potential biomarkers for diagnosis or prognosis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kai Ai
- Philips, Healthcare, Xi’an 710000, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guangyao Liu
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Wenjing Huang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fengxian Fan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| |
Collapse
|
24
|
Liu H, Hou H, Li F, Zheng R, Zhang Y, Cheng J, Han S. Structural and Functional Brain Changes in Patients With Classic Trigeminal Neuralgia: A Combination of Voxel-Based Morphometry and Resting-State Functional MRI Study. Front Neurosci 2022; 16:930765. [PMID: 35844235 PMCID: PMC9277055 DOI: 10.3389/fnins.2022.930765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Brain structural and functional abnormalities have been separately reported in patients with classic trigeminal neuralgia (CTN). However, whether and how the functional deficits are related to the structural alterations remains unclear. This study aims to investigate the anatomical and functional deficits in patients with CTN and explore their association. Methods A total of 34 patients with CTN and 29 healthy controls (HCs) with age- and gender-matched were recruited. All subjects underwent structural and resting-state functional magnetic resonance imaging (fMRI) scanning and neuropsychological assessments. Voxel-based morphometry (VBM) was applied to characterize the alterations of gray matter volume (GMV). The amplitude of low-frequency fluctuation (ALFF) method was used to evaluate regional intrinsic spontaneous neural activity. Further correlation analyses were performed between the structural and functional changes and neuropsychological assessments. Results Compared to the HCs, significantly reduced GMV was revealed in the right hippocampus, right fusiform gyrus (FFG), and temporal-parietal regions (the left superior/middle temporal gyrus, left operculo-insular gyrus, left inferior parietal lobule, and right inferior temporal gyrus) in patients with CTN. Increased functional activity measured by zALFF was observed mainly in the limbic system (the bilateral hippocampus and bilateral parahippocampal gyrus), bilateral FFG, basal ganglia system (the bilateral putamen, bilateral caudate, and right pallidum), left thalamus, left cerebellum, midbrain, and pons. Moreover, the right hippocampus and FFG were the overlapped regions with both functional and anatomical deficits. Furthermore, GMV in the right hippocampus was negatively correlated with pain intensity, anxiety, and depression. GMV in the right FFG was negatively correlated with illness duration. The zALFF value in the right FFG was positively correlated with anxiety. Conclusion Our results revealed concurrent structural and functional changes in patients with CTN, indicating that the CTN is a brain disorder with structural and functional abnormalities. Moreover, the overlapping structural and functional changes in the right hippocampus and FFG suggested that anatomical and functional changes might alter dependently in patients with CTN. These findings highlight the vital role of hippocampus and FFG in the pathophysiology of CTN.
Collapse
Affiliation(s)
- Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Haiman Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangfang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- *Correspondence: Yong Zhang,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Shaoqiang Han,
| |
Collapse
|