1
|
Zhang Y, Zhang J, Tan Y, Wang X, Chen H, Yu H, Chen F, Yan X, Sun J, Luo J, Song F. Kidney transcriptome analysis reveals the molecular responses to salinity adaptation in largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101362. [PMID: 39566113 DOI: 10.1016/j.cbd.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Recently, against the background of increasing land salinization and global warming, many studies have examined the mechanisms of freshwater fish adaptation to elevated salinity. However, the mechanisms underlying salinity tolerance in the kidney of Micropterus salmoides, a popular saline aquaculture species, remain poorly understood. We used RNA-seq to explore the differentially expressed genes (DEGs) in the kidney of M. salmoides at 0 ‰, 5 ‰, and 10 ‰ salinity for 24 d and 48 d. These DEGs mainly affected metabolism-related pathways, such as secondary metabolite biosynthesis, arachidonic acid metabolism, etc., and immunity-related pathways, such as IL-17 signaling and ECM-receptor interaction. Trend analysis on days 24 and 48 showed that, as salinity increased, the up-regulated genes were notably enriched in the cytochrome P450 xenobiotic metabolic pathway, and down-regulated genes substantially linked to cell cycle, phagosome, etc. More importantly, we identified a total of 22 genes enriched in the cytochrome P450 xenobiotic metabolic pathway, including seven UDP-glucuronosyltransferase genes (UGTs) and five glutathione S-transferase genes (GSTs). We speculated that M. salmoides kidneys removed toxic substances produced due to salinity stress and mitigated oxidative damage by up-regulating UGTs and GSTs, hence maintaining normal physiological function. In addition, genes such as Cystatin A1, significantly up-regulated with increasing salinity stress and duration, favoured the recovery of kidney injury. This research delved into the molecular processes involved in the adaptability of M. salmoides to high salinity stress and provided valuable information for the future breeding of salinity-tolerant strains.
Collapse
Affiliation(s)
- Yichun Zhang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jinxin Zhang
- Jiangsu Fisheries Technology Promotion Center, Nanjing 210036, China
| | - Yafang Tan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinxin Wang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huapeng Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Haoran Yu
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feiyang Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinling Yan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Junlong Sun
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jian Luo
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feibiao Song
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Cao Y, Wang S, Ma J, Long M, Ma X, Yang X, Ji Y, Tang X, Liu J, Lin C, Yang Y, Du P. Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells. Cell Death Dis 2024; 15:931. [PMID: 39719443 DOI: 10.1038/s41419-024-07321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored. Immunohistochemistry (IHC) and Western Blot (WB) analyses were used to assess the expression levels of SIRT7/EZH2 and RND3 in bladder cancer tissues, normal ureteral epithelial cells, and bladder cancer cell lines. Furthermore, the impact of various treatments on of UMUC3 cell proliferation and CDDP sensitivity was assessed using CCK-8 assays, plate cloning assays, and flow cytometry analysis. Additionally, the levels of H3K18ac and H3K27me3 at the promoter region of the RND3 gene, the binding abilities of SIRT7 and EZH2, and the succinylation level of the EZH2 protein were examined using ChIP-qPCR assays, CO-IP assays, and IP assays, respectively. Moreover, in vivo experiments were conducted using a bladder cancer mouse model created by subcutaneously injecting UMUC3 cells into Balb/c nude mice. According to the results, SIRT7 correlated with the sensitivity of bladder cancer cells to both the platinum-based chemotherapy and CDDP. Specifically, SIRT7 could bind to the RND3 promoter, downregulating H3K18ac and RND3, ultimately leading to an increased CDDP sensitivity in UMUC3 cells. Furthermore, EZH2 siRNA could decrease H3K27me3 levels in the RND3 promoter, upregulating RND3. Overall, in the promoter region of the RND3 gene, SIRT7 upregulated H3K27me3 and EZH2 downregulated H3K18ac, leading to a decline in RND3 expression and CDDP sensitivity in bladder cancer cells. Additionally, SIRT7 reduced the succinylation of the EZH2 protein resulting in an EZH2-mediated RND3 downregulation. Therefore, targeting SIRT7 and EZH2 could be a viable approach to enhancing CDDP efficacy in bladder cancer treatment.
Collapse
Affiliation(s)
- Yudong Cao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shuo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinchao Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mengping Long
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiuli Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiao Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yongpeng Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingxing Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jia Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chen Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yong Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Peng Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Ni X, Pan F, Lang YK, Zhang W. Prognostic significance of NUAK1 and its association with immune infiltration in stomach adenocarcinoma. Discov Oncol 2024; 15:800. [PMID: 39692916 DOI: 10.1007/s12672-024-01688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) represents a significant global health burden, accounting for a considerable proportion of cancer-related mortalities, and NUAK1, a protein kinase, plays a crucial role in cellular metabolism, cell cycle regulation, migration, and tumor progression. However, its relationship with prognosis and immune infiltration in STAD has not been thoroughly investigated. METHODS RNA sequencing data from the Cancer Genome Atlas (TCGA) and Genotypic Tissue Expression Project (GTEx) databases were employed to assess disparities in NUAK1 expression between STAD tumour and normal tissues. Additionally, we investigated the correlation between NUAK1 expression and patient prognosis, in addition to the level of immune cell infiltration. The potential functions were elucidated through an examination of the Gene Ontology (GO) Encyclopedia, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and an enrichment analysis (GSEA). The GeneMANIA was used to validate the functions of nuak1-related genes. RESULTS Our analysis demonstrated that NUAK1 expression in tumour tissues exhibited a notable disparity from that observed in normal tissues, with elevated levels detected in STAD tissues. We used the GeneMANIA database to identify functionally similar genes with significantly higher expression for some genes in the unpaired group samples. An elevated NUAK1 expression level was found to correlate with a poorer overall survival (OS), disease-specific survival (DSS), and progression-free intervals (PFI). Additionally, immune infiltration analysis indicated a significant positive correlation between NUAK1 expression and various tumor-infiltrating immune cells, while a negative correlation was observed with T helper cell 17(Th17) cells. Furthermore, enrichment analysis was conducted to identify relevant biological features and pathways. CONCLUSION The expression levels of NUAK1 are significantly increased in STAD, and this heightened expression correlates with diminished OS, DSS, and PFI among affected patients. These observations indicate that NUAK1 has the potential to function as a prognostic biomarker for STAD and may represent a viable therapeutic target for intervention in its management.
Collapse
Affiliation(s)
- Xin Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, Jiangsu, China
| | - Fan Pan
- Department of Articular Surgery, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, Jiangsu, China
| | | | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Zuo Z, Wen R, Jing S, Chen X, Liu R, Xue J, Zhang L, Li Q. Ganoderma lucidum (Curtis) P. Karst. Immunomodulatory Protein Has the Potential to Improve the Prognosis of Breast Cancer Through the Regulation of Key Prognosis-Related Genes. Pharmaceuticals (Basel) 2024; 17:1695. [PMID: 39770537 PMCID: PMC11677753 DOI: 10.3390/ph17121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Breast cancer in women is the most commonly diagnosed and most malignant tumor. Although luminal A breast cancer (LumA) has a relatively better prognosis, it still has a persistent pattern of recurrence. Ganoderma lucidum (Curtis) P. Karst. is a kind of traditional Chinese medicine and has antitumor effects. In this study, we aimed to identify the genes relevant to prognosis, find novel targets, and investigate the function of the bioactive protein from G. lucidum, called FIP-glu, in improving prognosis. Methods: Gene expression data and clinical information of LumA breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Using bioinformatics methods, a predictive risk model was constructed to predict the prognosis for each patient. The cell counting kit-8 (CCK8) and clone formation assays were used to validate gene function. The ability of FIP-glu to regulate RNA levels of risk genes was validated. Results: Six risk genes (slit-roundabout GTPase-activating protein 2 (SRGAP2), solute carrier family 35 member 2 (SLC35A2), sequence similarity 114 member A1 (FAM114A1), tumor protein P53-inducible protein 11 (TP53I11), transmembrane protein 63C (TMEM63C), and polymeric immunoglobulin receptor (PIGR)) were identified, and a prognostic model was constructed. The prognosis was worse in the high-risk group and better in the low-risk group. The receiver operating characteristic (ROC) curve confirmed the model's accuracy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the differentially expressed genes (DEGs) between the high- and low-risk groups were significantly enriched in the immune responses. TMEM63C could promote tumor viability, growth, and proliferation in vitro. FIP-glu significantly regulated these risk genes, and attenuated the promoting effect of TMEM63C in breast cancer cells. Conclusions: SRGAP2, SLC35A2, FAM114A1, TP53I11, TMEM63C, and PIGR were identified as the potential risk genes for predicting the prognosis of patients. TMEM63C could be a potential novel therapeutic target. Moreover, FIP-glu was a promising drug for improving the prognosis of LumA breast cancer.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
| | - Ruihua Wen
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
| | - Shuang Jing
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
| | - Xianghui Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ruisang Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life Science and Health Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jianping Xue
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
| | - Lei Zhang
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qizhang Li
- Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.)
| |
Collapse
|
5
|
Millen JL, Luyten LJ, Dieu M, Bové H, Ameloot M, Bongaerts E, Demazy C, Fransolet M, Martens DS, Renard P, Reimann B, Plusquin M, Nawrot TS, Debacq-Chainiaux F. Alterations in the placental proteome in association with the presence of black carbon particles: A discovery study. ENVIRONMENTAL RESEARCH 2024; 263:120214. [PMID: 39442658 DOI: 10.1016/j.envres.2024.120214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Exposure to ambient air pollution is known to cause direct and indirect molecular expression changes in the placenta, on the DNA, mRNA, and protein levels. Ambient black carbon (BC) particles can be found in the human placenta already very early in gestation. However, the effect of in utero BC exposure on the entire placental proteome has never been studied to date. OBJECTIVES We explored whether placental proteome differs between mothers exposed to either high or low BC levels throughout the entire pregnancy. METHODS We used placental tissue samples from the ENVIRONAGE birth cohort, of 20 non-smoking, maternal- and neonate characteristic-matched women exposed to high (n = 10) or low (n = 10) levels of ambient BC throughout pregnancy. We modeled prenatal BC exposure levels based on the mother's home address and measured BC levels in the fetal side of the placenta. The placental proteome was analyzed by nano-liquid chromatography Q-TOF mass spectrometry. PEAKS software was used for protein identification and label-free quantification. Protein-protein interaction and functional pathway enrichment analyses were performed with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) software. RESULTS The accumulation of BC particles in placenta was 2.19 times higher in the high versus low exposure group (20943.4 vs 9542.7 particles/mm³; p = 0.007). Thirteen proteins showed a ≥2-fold expression difference between the two exposure groups, all overexpressed in the placentas of women prenatally exposed to high BC levels. Three protein-protein interactions were enriched within this group, namely between TIMP3 and COL4A2, SERPINE2 and COL4A2, and SERPINE2 and GP1BB. Functional pathway enrichment analysis put forward pathways involved in extracellular matrix-receptor interaction, fibrin clot formation, and sodium ion transport regulation. DISCUSSION Prenatal BC exposure affects the placental proteome. Future research should focus on the potential consequences of these alterations on placental functioning, and health and disease during early childhood development.
Collapse
Affiliation(s)
- Joline L Millen
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Leen J Luyten
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Catherine Demazy
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Patricia Renard
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium; MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University (UHasselt), Diepenbeek, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
6
|
Zhang C, La Y, Ma X, Zhandui P, Wu X, Guo X, Yan P, Dunzhu L, Liang C. The effects of different doses of compound enzyme preparations on the production performance, meat quality and rumen microorganisms of yak were studied by metagenomics and transcriptomics. Front Microbiol 2024; 15:1491551. [PMID: 39726957 PMCID: PMC11670318 DOI: 10.3389/fmicb.2024.1491551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Yak (Bos grunniens) is a large ruminant endemic to the Tibetan plateau. The addition of enzyme complexes to feed can significantly improve their growth performance. Therefore, studying the effects of ruminant compound enzyme preparations dosage on yak rumen microorganisms and production performance is crucial to promoting the development of the yak industry. This study aimed to determine the effects of feeding yaks with different doses of ruminant enzyme compounds on the performance, meat quality, and rumen microorganisms of yaks. Three kinds of experimental diets with doses of 0.5 g/kg (LE group), 1 g/kg (ME group), and 2 g/kg (HE group) were selected to determine the growth index, meat quality, serum biochemical indexes, rumen fluid pH and other indexes of the three experimental groups. Metagenomics studies were used to investigate the differences in rumen microbial composition and function among yak groups, and transcriptome sequencing of the longest dorsal muscle was performed to reveal the expression of differential genes among different groups. It was determined that the levels of dietary enzyme complexes significantly affected growth performance, rumen fluid pH, and serum biochemical indices. At the phylum level, the dominant phylum in all three treatment groups was Bacteroidota, Bacillota, Kiritimatiellota, and Pseudomonadota. At the genus level, Prevotella, Methanobrevibacter, Oscillibacter. Fibrobacter showed statistically significant differences in abundance (p < 0.05). CAZymes family analysis revealed significant differences in GHs, CTs, and CEs among the three groups. Genome-wide differential gene expression in the longest muscle of the yak back was analyzed by RNA-seq between the three experimental groups. Some DEGs were found to be enriched in the ECM, PI3K-Akt, PPAR, and protein digestion and absorption receptor pathways. Combined metagenomics and transcriptomics analyses revealed that some microorganisms were significantly associated with the genes COL11A1, POSTN, and PTHLH, which are involved in growth metabolism. In summary, this study investigated the effects and interrelationships of ruminant complex enzymes on yak performance, meat quality, and rumen environment. The results of this study provide a scientific basis for adding ruminant enzymes to yaks.
Collapse
Affiliation(s)
- Chenyang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - YongFu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Pingcuo Zhandui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lasa, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Luosan Dunzhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lasa, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Plateau Agricultural Science and Technology Innovation Center, Lasa, China
| |
Collapse
|
7
|
Chen X, Zuo Z, Li X, Li Q, Zhang L. Identification of a Potential PGK1 Inhibitor with the Suppression of Breast Cancer Cells Using Virtual Screening and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:1636. [PMID: 39770478 PMCID: PMC11676932 DOI: 10.3390/ph17121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer is the second most common malignancy worldwide and poses a significant threat to women's health. However, the prognostic biomarkers and therapeutic targets of breast cancer are unclear. A prognostic model can help in identifying biomarkers and targets for breast cancer. In this study, a novel prognostic model was developed to optimize treatment, improve clinical prognosis, and screen potential phosphoglycerate kinase 1 (PGK1) inhibitors for breast cancer treatment. METHODS Using data from the Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) were identified in normal individuals and breast cancer patients. The biological functions of the DEGs were examined using bioinformatics analysis. A novel prognostic model was then constructed using the DEGs through LASSO and multivariate Cox regression analyses. The relationship between the prognostic model, survival, and immunity was also evaluated. In addition, virtual screening was conducted based on the risk genes to identify novel small molecule inhibitors of PGK1 from Chemdiv and Targetmol libraries. The effects of the potential inhibitors were confirmed through cell experiments. RESULTS A total of 230 up- and 325 down-regulated DEGs were identified in HER2, LumA, LumB, and TN breast cancer subtypes. A new prognostic model was constructed using ten risk genes. The analysis from The Cancer Genome Atlas (TCGA) indicated that the prognosis was poorer in the high-risk group compared to the low-risk group. The accuracy of the model was confirmed using the ROC curve. Furthermore, functional enrichment analyses indicated that the DEGs between low- and high-risk groups were linked to the immune response. The risk score was also correlated with tumor immune infiltrates. Moreover, four compounds with the highest score and the lowest affinity energy were identified. Notably, D231-0058 showed better inhibitory activity against breast cancer cells. CONCLUSIONS Ten genes (ACSS2, C2CD2, CXCL9, KRT15, MRPL13, NR3C2, PGK1, PIGR, RBP4, and SORBS1) were identified as prognostic signatures for breast cancer. Additionally, results showed that D231-0058 (2-((((4-(2-methyl-1H-indol-3-yl)-1,3-thiazol-2-yl)carbamoyl)methyl)sulfanyl)acetic acid) may be a novel candidate for treating breast cancer.
Collapse
Affiliation(s)
- Xianghui Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zanwen Zuo
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xianbin Li
- School of Computer and Big Data Science, Jiujiang University, Jiujiang 332000, China
| | - Qizhang Li
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lei Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Nie W, Yu Y, Wang X, Wang R, Li SC. Spatially Informed Graph Structure Learning Extracts Insights from Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403572. [PMID: 39382177 PMCID: PMC11615819 DOI: 10.1002/advs.202403572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/04/2024] [Indexed: 10/10/2024]
Abstract
Embeddings derived from cell graphs hold significant potential for exploring spatial transcriptomics (ST) datasets. Nevertheless, existing methodologies rely on a graph structure defined by spatial proximity, which inadequately represents the diversity inherent in cell-cell interactions (CCIs). This study introduces STAGUE, an innovative framework that concurrently learns a cell graph structure and a low-dimensional embedding from ST data. STAGUE employs graph structure learning to parameterize and refine a cell graph adjacency matrix, enabling the generation of learnable graph views for effective contrastive learning. The derived embeddings and cell graph improve spatial clustering accuracy and facilitate the discovery of novel CCIs. Experimental benchmarks across 86 real and simulated ST datasets show that STAGUE outperforms 15 comparison methods in clustering performance. Additionally, STAGUE delineates the heterogeneity in human breast cancer tissues, revealing the activation of epithelial-to-mesenchymal transition and PI3K/AKT signaling in specific sub-regions. Furthermore, STAGUE identifies CCIs with greater alignment to established biological knowledge than those ascertained by existing graph autoencoder-based methods. STAGUE also reveals the regulatory genes that participate in these CCIs, including those enriched in neuropeptide signaling and receptor tyrosine kinase signaling pathways, thereby providing insights into the underlying biological processes.
Collapse
Affiliation(s)
- Wan Nie
- Department of Computer ScienceCity University of Hong KongHong Kong SARChina
| | - Yingying Yu
- Department of Computer ScienceCity University of Hong KongHong Kong SARChina
| | - Xueying Wang
- Department of Computer ScienceCity University of Hong KongHong Kong SARChina
- City University of Hong Kong (Dongguan)Dongguan523000China
| | - Ruohan Wang
- Department of Computer ScienceCity University of Hong KongHong Kong SARChina
| | - Shuai Cheng Li
- Department of Computer ScienceCity University of Hong KongHong Kong SARChina
| |
Collapse
|
9
|
Wang X, Zhao S, Guo Y, Wang C, Han S, Wang X. CST2 promotes cell proliferation and regulates cell cycle by activating Wnt-β-catenin signalling pathway in serous ovarian cancer. J OBSTET GYNAECOL 2024; 44:2363515. [PMID: 38864487 DOI: 10.1080/01443615.2024.2363515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Cystatin SA (CST2) plays multiple roles in different types of malignant tumours; however, its role in serous ovarian cancer (SOC) remains unclear. Therefore, we aimed to investigate the expression levels, survival outcomes, immune cell infiltration, proliferation, cell cycle, and underlying molecular mechanisms associated with the CST2 signature in SOC. METHODS The Cancer Genome Atlas database was used to acquire clinical information and CST2 expression profiles from patients with SOC. Wilcoxon rank-sum tests were used to compare CST2 expression levels between SOC and normal ovarian tissues. A prognostic assessment of CST2 was conducted using Cox regression analysis and the Kaplan-Meier method. Differentially expressed genes were identified using functional enrichment analysis. Immune cell infiltration was examined using a single-sample gene set enrichment analysis. Cell cycle characteristics and proliferation were assessed using a colony formation assay, flow cytometry, and a cell counting kit-8 assay. Western blots and quantitative reverse transcription PCR analyses were employed to examine CST2 expressions and related genes involved in the cell cycle and the Wnt-β-catenin signalling pathway. RESULTS Our findings revealed significant upregulation of CST2 in SOC, and elevated CST2 expression was correlated with advanced clinicopathological characteristics and unfavourable prognoses. Pathway enrichment analysis highlighted the association between the cell cycle and the Wnt signalling pathway. Moreover, increased CST2 levels were positively correlated with immune cell infiltration. Functionally, CST2 played vital roles in promoting cell proliferation, orchestrating the G1-to-S phase transition, and driving malignant SOC progression through activating the Wnt-β-catenin signalling pathway. CONCLUSIONS The elevated expression of CST2 may be related to the occurrence and progression of SOC by activating the Wnt-β-catenin pathway. Additionally, our findings suggest that CST2 is a promising novel biomarker with potential applications in therapeutic, prognostic, and diagnostic strategies for SOC.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Gynecology and Obstetrics, The Second Hospital of HeiBei Medical University, Shijiazhuang, China
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Sufen Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of HeiBei Medical University, Shijiazhuang, China
| | - Yanwei Guo
- Department of Obstetrics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Chunhui Wang
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Shuyu Han
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xingcha Wang
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
10
|
Liu Y, Yang H, Lv G, Duan J, Zhao W, Shi Y, Lei Y. Integration analysis of cis- and trans-regulatory long non-coding RNAs associated with immune-related pathways in non-small cell lung cancer. Biochem Biophys Rep 2024; 40:101832. [PMID: 39539669 PMCID: PMC11558640 DOI: 10.1016/j.bbrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are importantly involved in the initiation and progression of non-small cell lung cancer (NSCLC). However, the classification and mechanisms of lncRNAs remain largely elusive. Aim Hence, we addressed this through bioinformatics analysis. Methods and results We utilized microarray technology to analyze lncRNAs and mRNAs in twenty paired NSCLC tumor tissues and adjacent normal tissues. Gene set enrichment analysis, Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology were conducted to discern the biological functions of identified differentially expressed transcripts. Additionally, networks of lncRNA-mRNA co-expression, including cis-regulation, lncRNA-transcription factor (TF)-mRNA, trans-regulation, and lncRNA-miRNA-mRNA interactions were explored. Furthermore, the study examined differentially expressed transcripts and their prognostic values in a large RNA-seq dataset of 1016 NSCLC tumors and normal tissues extracted from the Cancer Genome Atlas (TCGA). The analysis revealed 391 lncRNAs and 344 mRNAs with differential expression in NSCLC tumor tissues compared to adjacent normal tissues. Subsequently, 43,557 co-expressed lncRNA-mRNA pairs were identified, including 27 lncRNA-mRNA pairs in cis, 9 lncRNA-TF-mRNA networks, 34 lncRNA-mRNA pairs in trans, and 8701 lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Notably, these lncRNAs were found to be involved in immune-related pathways. Six significant transcripts, including NTF4, PTPRD-AS, ITGA11, HID1-AS1, RASGRF2-AS1, and TBX2-AS1, were identified within the ceRNA network and trans-regulation. Conclusion This study brings important insights into the regulatory roles of lncRNAs in NSCLC, providing a fresh perspective on lncRNA research in tumor biology.
Collapse
Affiliation(s)
| | | | - Guoli Lv
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Jin Duan
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Wei Zhao
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Yunfei Shi
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| | - Youming Lei
- Department of Geriatric Thoracic Surgery, the First Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Zhou Q, You Y, Zhao Y, Xiao S, Song Z, Huang C, Qian J, Lu W, Tong H, Zhang Y, Wang Z, Li W, Zhang C, Guo X, Luo R, Hou Y, Cui J, Lu L, Zhou Y. TRPV4 drives the progression of leiomyosarcoma by promoting ECM1 generation and co-activating the FAK/PI3K/AKT/GSK3β pathway. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01008-7. [PMID: 39612152 DOI: 10.1007/s13402-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Leiomyosarcoma (LMS) is an aggressive mesenchymal malignant tumor with poor therapeutic options, but the molecular mechanisms underlying LMS remain largely unknown. Increasing evidence indicates that transient receptor potential vanilloid 4 (TRPV4) levels are closely related to the advancement of various malignant tumors through diverse molecular mechanisms. However, the roles and regulatory mechanisms of TRPV4 in LMS progression remain unclear. METHODS Immunohistochemistry, Western blot, and immunofluorescence were used to investigate the relationship between TRPV4 expression and LMS. Survival analysis was conducted to evaluate the association between TRPV4 levels and prognosis in LMS patients. Intracellular Ca2+ measurement, colony formation, CCK-8, wound healing and Transwell assays and peritoneal metastasis mouse model were used to verify the effect of TRPV4 activity and expression on LMS proliferation and metastasis. RNA-seq and proteomics were performed to explore the underlying mechanism. RESULTS TRPV4 was upregulated in LMS tissues and cells and served as a novel prognostic factor. Moreover, TRPV4 overexpression enhanced cell proliferation, cell migration and invasion of LMS cells in vitro, as well as promoted tumor metastasis in vivo, which could be blocked by HC067047 intervention or TRPV4 knockdown. Combined RNA-seq and proteomics analysis of KEGG pathway indicated that ECM receptor interaction was obviously activated. Extracellular matrix protein 1 (ECM1) was identified as downstream gene of TRPV4. Mechanistically, TRPV4 overexpression increased ECM1 level and activated the FAK/PI3K/AKT/GSK3β pathway, which could be reversed by TRPV4 knockdown or LY294002 treatment. Moreover, ECM1 overexpression enhanced the activation of FAK/PI3K/AKT/GSK3β pathway. And simultaneous overexpression of TRPV4 and ECM1 synergistically activated this pathway. CONCLUSION Our findings provide a novel mechanism by which TRPV4 directly activates Ca2+/FAK/PI3K/AKT/GSK3β pathway and further indirectly enhances the FAK/PI3K/AKT/GSK3β pathway through the promotion and secretion of ECM1 to promote LMS malignant progression. Targeting the TRPV4/FAK axis might be a promising potential strategy for prognosis and treatment of LMS.
Collapse
Affiliation(s)
- Qiwen Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang You
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Shuxiu Xiao
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengqing Song
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenlu Zhang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Guo
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Lili Lu
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361000, China.
| | - Yuhong Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Li J, Xiang S, Wei D. Deciphering progressive lesion areas in breast cancer spatial transcriptomics via TGR-NMF. Brief Bioinform 2024; 26:bbae707. [PMID: 39780487 DOI: 10.1093/bib/bbae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Identifying spatial domains is critical for understanding breast cancer tissue heterogeneity and providing insights into tumor progression. However, dropout events introduces computational challenges and the lack of transparency in methods such as graph neural networks limits their interpretability. This study aimed to decipher disease progression-related spatial domains in breast cancer spatial transcriptomics by developing the three graph regularized non-negative matrix factorization (TGR-NMF). A unitization strategy was proposed to mitigate the impact of dropout events on the computational process, enabling utilization of the complete gene expression count data. By integrating one gene expression neighbor topology and two spatial position neighbor topologies, TGR-NMF was developed for constructing an interpretable low-dimensional representation of spatial transcriptomic data. The progressive lesion area that can reveal the progression of breast cancer was uncovered through heterogeneity analysis. Moreover, several related pathogenic genes and signal pathways on this area were identified by using gene enrichment and cell communication analysis.
Collapse
Affiliation(s)
- Juntao Li
- School of Mathematics and Statistics, Henan Normal University, 46 Jianshe East Road, 453007 Xinxiang, China
| | - Shan Xiang
- School of Mathematics and Statistics, Henan Normal University, 46 Jianshe East Road, 453007 Xinxiang, China
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| |
Collapse
|
13
|
Jardanowska-Kotuniak M, Dramiński M, Własnowolski M, Łapiński M, Sengupta K, Agarwal A, Filip A, Ghosh N, Pancaldi V, Grynberg M, Saha I, Plewczynski D, Dąbrowski MJ. Unveiling epigenetic regulatory elements associated with breast cancer development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623187. [PMID: 39605637 PMCID: PMC11601335 DOI: 10.1101/2024.11.12.623187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Breast cancer is the most common cancer in women and the 2nd most common cancer worldwide, yearly impacting over 2 million females and causing 650 thousand deaths. It has been widely studied, but its epigenetic variation is not entirely unveiled. We aimed to identify epigenetic mechanisms impacting the expression of breast cancer related genes to detect new potential biomarkers and therapeutic targets. We considered The Cancer Genome Atlas database with over 800 samples and several omics datasets such as mRNA, miRNA, DNA methylation, which we used to select 2701 features that were statistically significant to differ between cancer and control samples using the Monte Carlo Feature Selection and Interdependency Discovery algorithm, from an initial total of 417,486. Their biological impact on cancerogenesis was confirmed using: statistical analysis, natural language processing, linear and machine learning models as well as: transcription factors identification, drugs and 3D chromatin structure analyses. Classification of cancer vs control samples on the selected features returned high classification weighted Accuracy from 0.91 to 0.98 depending on feature-type: mRNA, miRNA, DNA methylation, and classification algorithm. In general, cancer samples showed lower expression of differentially expressed genes and increased β-values of differentially methylated sites. We identified mRNAs whose expression is well explained by miRNA expression and differentially methylated sites β-values. We recognized differentially methylated sites possibly affecting NRF1 and MXI1 transcription factors binding, causing a disturbance in NKAPL and PITX1 expression, respectively. Our 3D models showed more loosely packed chromatin in cancer. This study successfully points out numerous possible regulatory dependencies.
Collapse
Affiliation(s)
- Marta Jardanowska-Kotuniak
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dramiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michał Własnowolski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Łapiński
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Kaustav Sengupta
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Adam Filip
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, 751030, India
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata 700106, India
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał J. Dąbrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Liu J, Yang T, Liu J, Hao X, Guo Y, Luo S, Zhou B. Developing hypoxia and lactate metabolism-related molecular subtypes and prognostic signature for clear cell renal cell carcinoma through integrating machine learning. Discov Oncol 2024; 15:653. [PMID: 39538070 PMCID: PMC11561225 DOI: 10.1007/s12672-024-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The microenvironment of clear cell renal cell carcinoma (ccRCC) is characterized by hypoxia and increased lactate production. However, the impact of hypoxia and lactate metabolism on ccRCC remains incompletely understood. In this study, a new molecular subtype is developed based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs), aiming to create a tool that can predict the survival rate, immune microenvironment status, and responsiveness to treatment of ccRCC patients. METHOD We obtained RNA-seq data and clinical information of patients with ccRCC from TCGA and GEO. HRGs and LMRGs are sourced from the Molecular Signatures Database. Integrating 10 machine learning algorithms and 101 frameworks, we constructed a prognostic model related to hypoxia and lactate metabolism. Its accuracy and reliability are evaluated through constructing prognostic nomograms, drawing ROC curves, and validating with clinical datasets. Additionally, risk subgroups are evaluated based on functional enrichment, tumor mutational burden (TMB), immune cell infiltration degree, and immune checkpoint expression level. Finally, we evaluate the responsiveness of risk subgroups to immunotherapy and determine personalized drugs for specific risk subgroups. RESULTS 85 valuable prognostic genes were screened out. Functional enrichment analysis shows that the group with high-risk hypoxia and lactate metabolism-related genes scores (HLMRGS) is mainly involved in the activation of immune-related activities, while the low risk HLMRGS group is more active in metabolic and tumor-related pathways. At the same time, differences in the cellular functional states in the tumor microenvironment between the high risk HLMRGS group and the low risk HLMRGS group were observed. Finally, potential drugs for specific risk subgroups were determined. CONCLUSION We have developed a novel prognostic signature that integrates hypoxia and lactate metabolism. It is expected to become an effective tool for prognosis prediction, immunotherapy and personalized medicine of ccRCC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Tianliu Yang
- Medical Record Statistics Department, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Jiayuan Liu
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Xianghui Hao
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Yuhang Guo
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China
| | - Sheng Luo
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China.
| | - Benzheng Zhou
- Department of Urology, People's Hospital, Hubei University of Medicine, Xiangyang No. 1, Xiangyang, 441000, China.
| |
Collapse
|
15
|
Li Q, Zhang C, Ren Y, Qiao L, Xu S, Li K, Liu Y. A novel platelets-related gene signature for predicting prognosis, immune features and drug sensitivity in gastric cancer. Front Immunol 2024; 15:1477427. [PMID: 39606245 PMCID: PMC11599260 DOI: 10.3389/fimmu.2024.1477427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Platelets can dynamically regulate tumor development and progression. Nevertheless, research on the predictive value and specific roles of platelets in gastric cancer (GC) is limited. This research aims to establish a predictive platelets-related gene signature in GC with prognostic and therapeutic implications. Methods We downloaded the transcriptome data and clinical materials of GC patients (n=378) from The Cancer Genome Atlas (TCGA) database. Prognostic platelets-related genes screened by univariate Cox regression were included in Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a risk model. Kaplan-Meier curves and receiver operating characteristic curves (ROCs) were performed in the TCGA cohort and three independent validation cohorts. A nomogram integrating the risk score and clinicopathological features was constructed. Functional enrichment and tumor microenvironment (TME) analyses were performed. Drug sensitivity prediction was conducted through The Cancer Therapeutics Response Portal (CTRP) database. Finally, the expression of ten signature genes was validated by quantitative real-time PCR (qRT-PCR). Results A ten-gene (SERPINE1, ANXA5, DGKQ, PTPN6, F5, DGKB, PCDH7, GNG11, APOA1, and TF) predictive risk model was finally constructed. Patients were categorized as high- or low-risk using median risk score as the threshold. The area under the ROC curve (AUC) values for the 1-, 2-, and 3-year overall survival (OS) in the training cohort were 0.670, 0.695, and 0.707, respectively. Survival analysis showed a better OS in low-risk patients in the training and validation cohorts. The AUCs of the nomogram for predicting 1-, 2-, and 3-year OS were 0.708, 0.763, and 0.742, respectively. TME analyses revealed a higher M2 macrophage infiltration and an immunosuppressive TME in the high-risk group. Furthermore, High-risk patients tended to be more sensitive to thalidomide, MK-0752, and BRD-K17060750. Conclusion The novel platelets-related genes signature we identified could be used for prognosis and treatment prediction in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Liu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Zhang Y, Zhang M, Hu X, Hao H, Quan C, Ren T, Gao H, Wang J. Engineering a porphyrin COFs encapsulated by hyaluronic acid tumor-targeted nanoplatform for sequential chemo-photodynamic multimodal tumor therapy. Int J Biol Macromol 2024; 279:135328. [PMID: 39242006 DOI: 10.1016/j.ijbiomac.2024.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Han Hao
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Cuilu Quan
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Tiantian Ren
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan, Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064 Chengdu, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China.
| |
Collapse
|
17
|
Xu C, Li S, Chen H, Chi L, Wang X, He M, Wang Q, Zhang X, Lin Y, Xue F. Integrative analysis of recurrence related gene signature and STC1 in colorectal cancer proliferation and metastasis. J Cancer 2024; 15:6724-6739. [PMID: 39668832 PMCID: PMC11632977 DOI: 10.7150/jca.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/13/2024] [Indexed: 12/14/2024] Open
Abstract
Colorectal cancer remains a formidable global health challenge, characterized by high recurrence rates and poor prognosis. This study introduces a novel Recurrence Related Gene Signature (RRGS), designed to predict therapy response and enhance prognostic accuracy in colorectal cancer. Through analysis of the GSE17536 cohort, we identified 79 differentially expressed genes (DEGs) between recurrent and non-recurrent cases, comprising 54 upregulated and 25 downregulated genes. Pathway analysis revealed that upregulated genes were enriched in cancer progression-related pathways, while downregulated genes were associated with immune-related processes. Leveraging these findings, we developed the RRGS using LASSO regression, resulting in an innovative 11-gene model with robust diagnostic and prognostic capabilities. Notably, the RRGS demonstrated significant predictive value for both overall survival and disease-free survival across multiple datasets, with higher RRGS scores correlating with advanced tumor stages and poorer outcomes, particularly in post-chemotherapy patients. This predictive power highlights the RRGS's potential in guiding personalized treatment strategies. Furthermore, we identified STC1 as a critical component of the RRGS, playing a significant role in tumor progression and immune evasion. Through rigorous in vitro and in vivo experiments we confirmed that STC1 knockdown substantially reduced cell proliferation and metastasis, emphasizing its potential as a therapeutic target. This comprehensive study not only elucidates the molecular mechanisms driving colorectal cancer recurrence but also introduces a powerful tool for enhancing prognostic accuracy and personalizing therapeutic interventions.
Collapse
Affiliation(s)
- Chao Xu
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - ShuYuan Li
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - HongYuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - LiangJie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - XiangYu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - Muzhen He
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiuli Zhang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - FangQin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, No. 134 Dongjie, Fuzhou, China
| |
Collapse
|
18
|
Liu Y, Wang Z, Yang L, Zhang M, Li M, Zhang J, Tang L, Jiang Z, Li X, Deng J, Meng Q, Liu S, Wang K, Qi L. Identification of a rank-based radiomic signature with individualized prognostic value for lung adenocarcinoma in a multi-cohort study. Eur J Radiol 2024; 181:111782. [PMID: 39427495 DOI: 10.1016/j.ejrad.2024.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVES Radiomics provides an opportunity to evaluate cancer prognosis noninvasively. However, the susceptibility of the radiomic quantitative features to multicenter effects, leads to the clinical dilemma of the radiomic signatures. This study aimed to develop a radiomic signature to circumvent multicenter effects, achieving the individualized prognostic assessment of lung adenocarcinoma (LUAD). METHODS Using computed tomography (CT) imaging of 234 stage I-IIIA LUAD patients derived from three public multicenter cohorts, we proposed a rank-based method that utilized the relative rank patterns of quantitative values between radiomic feature pairs within individual patients and established a feature pair signature for LUAD prognosis. We collected a new clinical cohort with 162 LUAD patients for independent validation. RESULTS A rank-based radiomic signature, consisting of 12 feature pairs, was developed, and it could determine the mortality risk for an individual according to the rank patterns of 12 feature pairs within the patient's CT imaging. The prognostic performance of the rank-based signature was effectively validated in the new clinical cohort (log-rank P = 0.0051, C-index = 0.73), whereas other signatures lost their prognostic ability across centers. The novel proposed radiomic nomogram significantly improved the prognostic performance of clinicopathological factors. The further radiogenomic analyses revealed the underlying biological characteristics (e.g., Stemness, Ferroptosis, 'ECM') reflected by the rank-based radiomic signature. CONCLUSIONS This multicenter study illustrates the accuracy and stability of the rank-based radiomic signature for LUAD prognosis, and demonstrates a unique advantage of clinical individualized application. The biological characteristics underlying the rank-based radiomic signature would accelerate its clinical application.
Collapse
Affiliation(s)
- Yixin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China; Modern Education Technology Center, Harbin Medical University, Harbin, China
| | - Zhihui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liping Yang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Juxuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Lefan Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Zhiyun Jiang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Jiaxing Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, China.
| | - Kezheng Wang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
19
|
Zhang B, Chen X, Song H, Gao X, Ma S, Ji H, Qu H, Xia S, Shang D. Identification of basement membrane-related prognostic model associated with the immune microenvironment and synthetic therapy response in pancreatic cancer: integrated bioinformatics analysis and clinical validation. J Cancer 2024; 15:6273-6298. [PMID: 39513120 PMCID: PMC11540510 DOI: 10.7150/jca.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/28/2024] [Indexed: 11/15/2024] Open
Abstract
Pancreatic cancer (PC) is a common and highly malignant tumor. Basement membrane (BM) is formed by the crosslinking of extracellular matrix macromolecules and acts as a barrier against tumor cell metastasis. However, the role of BM in PC prognosis, immune infiltration, and treatment remains unclear. This study collected transcriptome and clinical survival data of PC via TCGA, GEO, and ICGC databases. PC patients (PCs) from the First Affiliated Hospital of Dalian Medical University were obtained as the clinical validation cohort. BM-related genes (BMRGs) were acquired from GeneCards and basement membraneBASE databases. A total of 46 differential-expressed BMRGs were identified. Then the BM-related prognostic model (including DSG3, MET, and PLAU) was built and validated. PCs with a low BM-related score had a better outcome and were more likely to benefit from oxaliplatin, irinotecan, and KRAS(G12C) inhibitor-12, and immunotherapy. Immune analysis revealed that BM-related score was positively correlated with neutrophils, cancer-associated fibroblasts, and macrophages infiltration, but negatively correlated with CD8+ T cells, NK cells, and B cells infiltration. PCs from the clinical cohort further verified that BM-related model could accurately predict PCs' outcomes. DSG3, MET, and PLAU were notably up-regulated within PC tissues and linked to a poor prognosis. In vitro experiments showed that DSG3 knockdown markedly suppressed the proliferation, migration, and invasion of PC cells. Molecular docking indicated that epigallocatechin gallate had a strong binding activity with DSG3, MET, and PLAU and may be used as a potential therapeutic agent for PC. In conclusion, this study developed a BM-related model associated with PC prognosis, immune infiltration, and treatment, which provided new insights into PC stratification and drug intervention.
Collapse
Affiliation(s)
- Biao Zhang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xu Chen
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shurong Ma
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hongying Ji
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huixian Qu
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Pancreas & Biliary Center, Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Rapier-Sharman N, Spendlove MD, Poulsen JB, Appel AE, Wiscovitch-Russo R, Vashee S, Gonzalez-Juarbe N, Pickett BE. Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers. Cancers (Basel) 2024; 16:3379. [PMID: 39409999 PMCID: PMC11476281 DOI: 10.3390/cancers16193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Breast cancer is diagnosed in 2.3 million women each year and kills 685,000 (~30% of patients) worldwide. The prognosis for many breast cancer subtypes has improved due to treatments targeting the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In contrast, patients with triple-negative breast cancer (TNBC) tumors, which lack all three commonly targeted membrane markers, more frequently relapse and have lower survival rates due to a lack of tumor-selective TNBC treatments. We aim to investigate TNBC mechanistic markers that could be targeted for treatment. Methods: We performed a secondary TNBC analysis of 196 samples across 10 publicly available bulk RNA-sequencing studies to better understand the molecular mechanism(s) of disease and predict robust mechanistic markers that could be used to improve the mechanistic understanding of and diagnostic capabilities for TNBC. Results: Our analysis identified ~12,500 significant differentially expressed genes (FDR-adjusted p-value < 0.05), including KIF14 and ELMOD3, and two significantly modulated pathways. Additionally, our novel findings include highly accurate mechanistic markers identified using machine learning methods, including CIDEC (97.1% accuracy alone), CD300LG, ASPM, and RGS1 (98.9% combined accuracy), as well as TNBC subtype-differentiating mechanistic markers, including the targets PDE3B, CFD, IFNG, and ADM, which have associated therapeutics that can potentially be repurposed to improve treatment options. We then experimentally and computationally validated a subset of these findings. Conclusions: The results of our analyses can be used to better understand the mechanism(s) of disease and contribute to the development of improved diagnostics and/or treatments for TNBC.
Collapse
Affiliation(s)
- Naomi Rapier-Sharman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Mauri Dobbs Spendlove
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Jenna Birchall Poulsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| | - Amanda E. Appel
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Rosana Wiscovitch-Russo
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, Rockville, MD 20850, USA;
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA; (A.E.A.); (R.W.-R.); (N.G.-J.)
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (N.R.-S.); (M.D.S.); (J.B.P.)
| |
Collapse
|
21
|
Xie S, Su Y, Zhang J, Yin F, Liu X. Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway. Transl Cancer Res 2024; 13:4800-4812. [PMID: 39430863 PMCID: PMC11483453 DOI: 10.21037/tcr-24-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Ovarian cancer (OC) is the most malignant gynecologic cancer, and chemoresistance is a major cause of treatment failure in patients with OC. The understanding of microRNA (miRNA) in cancer is limited, and the role of miRNA (miR)-450b-5p in cancer drug resistance is unknown. In this study, we aim to evaluate the role of miR-450b-5p in drug-resistant OC and its underlying mechanisms. Methods MiR-450b-5p expression was assessed in drug-sensitive and resistant OC cells via quantitative real-time polymerase chain reaction. Cell viability was evaluated using the Cell Counting Kit-8 assay. Progression-free survival (PFS) and overall survival (OS) curves were generated using the Kaplan-Meier method and the log-rank test. Target genes of miR-450b-5p were identified from the Cancer MIRNome database. Co-expressed genes were obtained from The Cancer Genome Atlas and Cancer Genome cBioportal for pathway enrichment and functional clustering analysis. Results The miRNA-450b-5p expression was significantly increased in A2780 and SKOV3 OC-resistant cells and significantly increased by 17-fold in the A2780-CBP-Lv-miR-450b-5p cells compared to A2780-CBP and A2780-CBP-Lv-NC cells. The up-regulated expression of miR-450b-5p increased the cell viability and half maximal inhibitory concentration (IC50) of A2780 platinum-resistant cells and was associated with poor OS. We obtained 33 potential target genes of miR-450b-5p and beta-actin (ACTB) might be a potential target of miR-450b-5p. Low expression of ACTB predicted poor OS and PFS. We obtained 362 common genes co-expressed with ACTB, which involved 4 critical pathways. PI3K acted as an upstream pathway of the other three pathways, which ultimately responded to drug resistance regulation in OC. The genes enriched in four pathways were cross-analyzed and 13 overlapping genes were obtained. These 13 genes were also significantly and positively co-expressed with ACTB at both protein and mRNA levels. Conclusions High expression of miRNA-450b-5p might affect drug resistance and prognosis in OC by targeting 13 co-expressed genes of ACTB directly through the PI3K/Akt signaling pathway. Thus, miR-450b-5p might provide a new therapeutic target for drug resistance in OC.
Collapse
Affiliation(s)
- Shanzhou Xie
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumour Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Jinyan Zhang
- College of Stomatology, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of High-Incidence-Tumour Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Human Development and Disease Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Liu T, Liu J, Chen Q, Wu L, Zhang L, Qiao D, Huang Z, Lu T, Hu A, Wang J. The prognostic value of bioinformatics analysis of ECM receptor signaling pathways and LAMB1 identification as a promising prognostic biomarker of lung adenocarcinoma. Medicine (Baltimore) 2024; 103:e39854. [PMID: 39312319 PMCID: PMC11419468 DOI: 10.1097/md.0000000000039854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic network of cross-linked proteins and a fundamental building block in multicellular organisms. Our study investigates the impact of genes related to the ECM receptor interaction pathway on immune-targeted therapy and lung adenocarcinoma (LUAD) prognosis. This study obtained LUAD chip data (GSE68465, GSE31210, and GSE116959) from NCBI GEO. Moreover, the gene data associated with the ECM receptor interaction pathway was downloaded from the Molecular Signature Database. Differentially expressed genes were identified using GEO2R, followed by analyzing their correlation with immune cell infiltration. Univariate Cox regression analysis screened out ECM-related genes significantly related to the survival prognosis of LUAD patients. Additionally, Lasso regression and multivariate Cox regression analysis helped construct a prognostic model. Patients were stratified by risk score and survival analyses. The prognostic models were evaluated using receiver operating characteristic curves, and risk scores and prognosis associations were analyzed using univariate and multivariate Cox regression analyses. A core gene was selected for gene set enrichment analysis and CIBERSORT analysis to determine its function and tumor-infiltrating immune cell proportion, respectively. The results revealed that the most abundant pathways among differentially expressed genes in LUAD primarily involved the cell cycle, ECM receptor interaction, protein digestion and absorption, p53 signaling pathway, complement and coagulation cascade, and tyrosine metabolism. Two ECM-associated subtypes were identified by consensus clustering. Besides, an ECM-related prognostic model was validated to predict LUAD survival, and it was associated with the tumor immune microenvironment. Additional cross-analysis screened laminin subunit beta 1 (LAMB1) for further research. The survival time of LUAD patients with elevated LAMB1 expression was longer than those with low LAMB1 expression. Gene set enrichment analysis and CIBERSORT analyses revealed that LAMB1 expression correlated with tumor immune microenvironment. In conclusion, a prognostic model of LUAD patients depending on the ECM receptor interaction pathway was constructed. Screening out LAMB1 can become a prognostic risk factor for LUAD patients or a potential target during LUAD treatment.
Collapse
Affiliation(s)
- Tingjun Liu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Liu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingzhi Zhang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dandan Qiao
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianyuan Lu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Cao Y, Guan L, Yang L, Wei C. PANoptosis-related molecular clustering and prognostic signature associated with the immune landscape and therapy response in breast cancer. Medicine (Baltimore) 2024; 103:e39511. [PMID: 39287311 PMCID: PMC11404910 DOI: 10.1097/md.0000000000039511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Breast cancer (BC) remains one of the most pervasive and complex malignancies. PANoptosis represents a recently identified cellular mechanism leading to programmed cell death. However, the prognostic implications and influence on the immune microenvironment of BC pertaining to PANoptosis-related genes (PRGs) remain significantly understudied. We conducted differential expression analysis to identify prognostic-Related PRGs by the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic signature using LASSO and Cox regression analyses. ROC curves were employed to assess the performance of the signatures. Furthermore, drug sensitivity between low- and high-risk group were analysis. Finally, we conducted RT-qPCR to assess the gene expression levels involved in this signature. We categorized BC patients into 2 distinct molecular clusters based on PRGs and identified differentially expressed genes associated with prognosis. Subsequently, BC patients were then divided into 2 gene clusters. The identified PRGs molecular clusters and gene clusters demonstrated association with patient survival, immune system functions, and biological processes and pathways of BC. A prognostic signature comprising 5 genes was established, and BC patients were classified into low- and high-risk groups based on the risk scores. The ROC curves demonstrated that those in the low-risk category exhibited notably extended survival compared to the high-risk group. A nomogram model for patient survival was constructed based on the risk score in conjunction with other clinical features. High-risk group had higher tumor burden mutation, CSC index and lower StomalScore, ImmuneScore, and ESTIMATEScore. Subsequently, we established a correlation between the risk score and drug sensitivity among BC patients. Finally, qRT-PCR results showed that the expression of CXCL1, PIGR, and TNFRSF14 significantly decreased, while CXCL13 and NKAIN were significantly increased in BC tissues. We have developed a molecular clustering and prognostic signature based on PANoptosis to improve the prediction of BC prognosis. This discovery has the potential to not only assist in assessing overall patient prognosis but also to deepen our understanding of the underlying mechanisms of PANoptosis in BC pathogenesis.
Collapse
Affiliation(s)
- Yiming Cao
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
- Department of Breast and Thyroid Surgery, Liuzhou People’s Hospital, Liuzhou, P.R. China
| | - LinJing Guan
- Department of Abdomen Ultrasound, Nanning Sixth People’s Hospital, Nanning, P.R. China
| | - Li Yang
- Department of Pathology, Liuzhou People’s Hospital, Liuzhou, P.R. China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| |
Collapse
|
24
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
25
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi J, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification promotes breast cancer development and chemoresistance. Cancer Lett 2024; 597:217074. [PMID: 38901667 PMCID: PMC11290987 DOI: 10.1016/j.canlet.2024.217074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Oncogene activation through DNA amplification or overexpression is a crucial driver of cancer initiation and progression. The FOXK2 gene, located on chromosome 17q25, encodes a transcription factor with a forkhead DNA-binding domain. Analysis of genomic datasets reveals that FOXK2 is frequently amplified and overexpressed in breast cancer, correlating with poor patient survival. Knockdown of FOXK2 significantly inhibited breast cancer cell proliferation, migration, anchorage-independent growth, and delayed tumor growth in a xenograft mouse model. Additionally, inhibiting FOXK2 sensitized breast cancer cells to chemotherapy. Co-overexpression of FOXK2 and mutant PI3KCA transformed non-tumorigenic MCF-10A cells, suggesting a role for FOXK2 in PI3KCA-driven tumorigenesis. CCNE2, PDK1, and ESR1 were identified as transcriptional targets of FOXK2 in MCF-7 cells. Small-molecule inhibitors of CCNE2/CDK2 (dinaciclib) and PDK1 (dichloroacetate) exhibited synergistic anti-tumor effects with PI3KCA inhibitor (alpelisib) in vitro. Inhibition of FOXK2 by dinaciclib synergistically enhanced the anti-tumor effects of alpelisib in a xenograft mouse model. Collectively, these findings highlight the oncogenic function of FOXK2 and suggest that FOXK2 and its downstream genes represent potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinling Yi
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Chunchao Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA.
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Wang J, Xing C, Wang H, Zhang H, Wei W, Xu J, Liu Y, Guo X, Jiang R. Identification of key modules and hub genes involved in regulating the feather follicle development of Wannan chickens using WGCNA. Poult Sci 2024; 103:103903. [PMID: 38908121 PMCID: PMC11253687 DOI: 10.1016/j.psj.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
Carcass appearance is important economic trait, which affects customers in making purchase decisions. Both density and diameter of feather follicles are two important indicators of carcass appearance. However, the regulatory network and key genes be involved in feather follicle development remain poorly understood. To identify key genes and modules that involved in feather follicle development in chickens, 16 transcriptome datasets of Wannan chickens skin tissue (3 birds at the E9, E11, and E14, respectively, and 7 birds at the 12W) were used for weighted gene co-expression network analysis (WGCNA) analysis, and 12 skin tissue samples (3 birds for each stage) were selected for DEGs analysis. A total of 5,025, 2,337, and 10,623 DEGs were identified in 3 comparison groups, including the E9 vs. E11, the E11 vs. E14, and the E14 vs. 12W. Additionally, 31 co-expression gene modules were identified by WGCNA and the dark-orange, cyan, and blue module were found to be significantly associated with feather follicle development (p < 0.01). In total, 92,898 and 8,448 hub genes were obtained in the dark-orange, cyan, and blue modules, respectively. We focused on the cyan and blue modules, as 6 and 336 hub genes of these modules were identified to overlap with the DEGs of the three comparison groups, respectively. The 6 overlapped genes such as LAMC2, COL6A3, and COL6A2 etc., were over-represented in 12 categories such as focal adhesion and ECM-receptor interaction signaling pathway. Among the 336 genes that overlapped between the blue module and different DEGs comparison groups several genes including WNT7A and WNT9B were enriched in Wnt and ECM-receptor interaction signaling pathway. These results suggested that the LAMC2, COL6A3, COL6A2, WNT7A, and WNT9B genes may play a crucial role in the regulation of feather follicle development in Wannan chickens. Our results provided a reference for the molecular regulatory network and key genes in the development of feather follicles and contribute to molecular breeding for carcass appearance traits in chickens.
Collapse
Affiliation(s)
- Jiangxian Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chaohui Xing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
27
|
Lai F, He L, Lia T, Yang Z, Huang C. Identification and validation of basement membrane-related genes predicting prognosis and immune infiltration associated with bladder cancer. Medicine (Baltimore) 2024; 103:e38858. [PMID: 39029072 PMCID: PMC11398827 DOI: 10.1097/md.0000000000038858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Bladder cancer (BC) is fatal during muscle invasion and treatment progress is limited. In this study, we aimed to construct and validate basement membrane (BM)-associated gene prognosis to predict BC progression and tumor immune infiltration correlation. We choreographed BM-related genes in the Cancer Genome Atlas (TCGA) database using COX regression and least absolute shrinkage and selection operator (LASSO) analysis, and the predictive value of BM-related genes was further validated by the GSE32548, GSE129845, and immunohistochemistry staining. All analyses were performed with R-version 4.2.2, and its appropriate packages. Three genes were identified to construct a gene signature to predictive of BC prognosis. We divided the TCGA database into 2 groups, and patients in the high-risk group had worse overall survival (OS) than those in the low-risk group. In GSE32548, we confirmed that patients in the high-risk group had a poorer prognosis compared to those in the low-risk group in terms of OS. Immunohistochemical staining of EPEMP1, GPC2, and ITGA3 showed significantly higher expression at the protein level in BC tissues than in normal tissues. The Spearman analysis showed risk score was positively correlated with B cell naïve, Macrophages M2, and Mast cells resting. stromal score, immune score, and ESTIMATE scores were significantly higher in the high-risk group. drugs sensitivity analysis showed IC50 of Cisplatin, Gemcitabine, and Methotrexate in the high-risk group was significantly higher than that in the low-risk group. We identified 3 prognostic genes from a novel perspective of BM genes as effective risk stratification tools for BC patients.
Collapse
Affiliation(s)
- Fie Lai
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Lin He
- Department of Pathology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Thongher Lia
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Zhen Yang
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Chaoyou Huang
- Department of Urology Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
29
|
Dou H, Sun J, Wang T, Bi S, Feng X, Sun H, Quan J. Transcriptomic profiling and discovery of key transcription factors involved in adventitious roots formation from root cuttings of mulberry. BMC Genomics 2024; 25:693. [PMID: 39009981 PMCID: PMC11251115 DOI: 10.1186/s12864-024-10593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.
Collapse
Affiliation(s)
- Hao Dou
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajia Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Wang
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuwen Bi
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi Feng
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huijuan Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin'e Quan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024; 22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Da Pan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xuan Cao
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhihao Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Songlin He
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
31
|
Liu S, Gu Y, Shi Y, Yu S, Li W, Lv W. AEBP1 upregulation contributes to cervical cancer progression by facilitating cell proliferation, migration, and invasion. J Obstet Gynaecol Res 2024; 50:1166-1174. [PMID: 38684171 DOI: 10.1111/jog.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aberrant expression of adipocyte enhancer-binding protein 1 (AEBP1) has been demonstrated to be involved in the tumorigenesis and progression of numerous cancers. This study was aimed to investigate the mechanism of AEBP1 in the development of cervical cancer. METHODS The expression of AEBP1 in cervical cancer was assessed by immunohistochemistry. The function of AEBP1 on cell proliferation, migration, and invasion was determined by methyl thiazolyl tetrazolium assay, colony formation, and transwell assay. The activation of related signaling pathway was determined by western blot. The bioinformatics analysis was performed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS Higher protein expression of AEBP1 was observed in patients with cervical cancer. Overexpressed AEBP1 promoted cell proliferation, migration, and invasion abilities in cervical cancer cells. Moreover, the research manifested that AEBP1 activated the phosphorylation of STAT3. GO and KEGG analysis showed that genes positively related to AEBP1 were highly enriched in functions like epithelial cell proliferation, muscle cell migration, myoblast migration, smooth muscle tissue development, ECM-receptor interaction, transcriptional misregulation in cancer, and proteoglycans in cancer. While genes negatively related to AEBP1 were associated with immunity, including inflammatory response, external-stimulus response, neutrophil, granulocyte, and macrophage chemotaxis. CONCLUSIONS This study suggested that AEBP1 acts as an oncogened and might be a potential therapeutic target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Songjun Liu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanpin Gu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yin Shi
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shuqian Yu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wu Li
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
32
|
Kulaeva ED, Muzlaeva ES, Mashkina EV. mRNA-lncRNA gene expression signature in HPV-associated neoplasia and cervical cancer. Vavilovskii Zhurnal Genet Selektsii 2024; 28:342-350. [PMID: 38946889 PMCID: PMC11211991 DOI: 10.18699/vjgb-24-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 07/02/2024] Open
Abstract
Cervical cancer is one of the most frequent cancers in women and is associated with human papillomavirus (HPV) in 70 % of cases. Cervical cancer occurs because of progression of low-differentiated cervical intraepithelial neoplasia through grade 2 and 3 lesions. Along with the protein-coding genes, long noncoding RNAs (lncRNAs) play an important role in the development of malignant cell transformation. Although human papillomavirus is widespread, there is currently no well-characterized transcriptomic signature to predict whether this tumor will develop in the presence of HPV-associated neoplastic changes in the cervical epithelium. Changes in gene activity in tumors reflect the biological diversity of cellular phenotype and physiological functions and can be an important diagnostic marker. We performed comparative transcriptome analysis using open RNA sequencing data to assess differentially expressed genes between normal tissue, neoplastic epithelium, and cervical cancer. Raw data were preprocessed using the Galaxy platform. Batch effect correction, identification of differentially expressed genes, and gene set enrichment analysis (GSEA) were performed using R programming language packages. Subcellular localization of lncRNA was analyzed using Locate-R and iLoc-LncRNA 2.0 web services. 1,572 differentially expressed genes (DEGs) were recorded in the "cancer vs. control" comparison, and 1,260 DEGs were recorded in the "cancer vs. neoplasia" comparison. Only two genes were observed to be differentially expressed in the "neoplasia vs. control" comparison. The search for common genes among the most strongly differentially expressed genes among all comparison groups resulted in the identification of an expression signature consisting of the CCL20, CDKN2A, CTCFL, piR-55219, TRH, SLC27A6 and EPHA5 genes. The transcription level of the CCL20 and CDKN2A genes becomes increased at the stage of neoplastic epithelial changes and stays so in cervical cancer. Validation on an independent microarray dataset showed that the differential expression patterns of the CDKN2A and SLC27A6 genes were conserved in the respective gene expression comparisons between groups.
Collapse
Affiliation(s)
- E D Kulaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E S Muzlaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E V Mashkina
- Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
33
|
Wang Q, Bi P, Luo D, Cao P, Chen W, Yang B. Identification of Long Noncoding RNAs Expression Profiles Between Gallstone and Gallbladder Cancer Using Next-Generation Sequencing Analysis. Int J Gen Med 2024; 17:2417-2431. [PMID: 38813241 PMCID: PMC11135568 DOI: 10.2147/ijgm.s442379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Background Gallstone disease (GS) is an important risk factor for Gallbladder cancer (GBC). However, the mechanisms of the progression of GS to GBC remain unclear. Long non-coding RNA (lncRNA), modulates DNA/RNA/proteins at epigenetic, pre-transcriptional, transcriptional and posttranscriptional levels, and plays a potential therapeutic role in various diseases. This study aims to identify lncRNAs that have a potential impact on GS-promoted GBC progression. Methods and Results Six GBC patients without GS, six normal gallbladder tissues, nine gallstones and nine GBC patients with GS were admitted to our hospital. The next-generation RNA-sequencing was performed to analyze differentially expressed (DE) lncRNA and messenger RNA (mRNA) in four groups. Then overlapping and specific molecular signatures were analyzed. We identified 29 co-DEGs and 500 co-DElncRNAs related to gallstone or GBC. The intersection and concatenation of co-DEGs and co-DElncRNA functionally involved in focal adhesion, Transcriptional misregulation in cancers, Protein digestion and absorption, and ECM-receptor interaction signaling pathways may contribute to the development of gallbladder cancer. Further exploration is necessary for early diagnosis and the potential treatment of GBC. FXYD2, MPZL1 and PAH were observed in both co-DEGs and co-DElncRNA and validated by qRT-PCR. Conclusion Our data identified a series of DEGs and DElncRNAs, which were involved in the progression of GBC and GS-related metabolism pathways. Compared to GBC, the GS profile was more similar to para-tumor tissues in transcriptome level and lower risk of cancer. Further exploration is necessary from GBC patients with different periods of follow-up gallstone.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Ding Luo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Bin Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
34
|
Abudereheman M, Lian Z, Ainitu B. Weighted gene co-expression network analysis and whole genome sequencing identify potential lung cancer biomarkers. Front Oncol 2024; 14:1355527. [PMID: 38854719 PMCID: PMC11157001 DOI: 10.3389/fonc.2024.1355527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Tuberculosis (TB) leads to an increased risk of lung cancer (LC). However, the carcinogenetic mechanism of TB remains unclear. We constructed gene co-expression networks and carried out whole-exome sequencing (WES) to identify key modules, hub genes, and the most recurrently mutated genes involved in the pathogenesis of TB-associated LC. Methods The data used in this study were obtained from the Gene Expression Omnibus (GEO) and WES. First, we screened LC-related genes in GSE43458 and TB-related genes in GSE83456 by weighted gene co-expression network analysis (WGCNA). Subsequently, we screened differentially expressed genes related to LC and TB in GSE42834. We also performed WES of 15 patients (TB, n = 5; LC, n = 5; TB+LC, n = 5), constructed mutational profiles, and identified differences in the profiles of the three groups for further investigation. Results We identified 278 hub genes associated with tumorigenesis of pulmonary TB. Moreover, WES identified 112 somatic mutations in 25 genes in the 15 patients. Finally, four common genes (EGFR, HSPA2, CECR2, and LAMA3) were confirmed in a Venn diagram of the 278 hub genes and the mutated genes from WES. KEGG analysis revealed various pathway changes. The PI3K-AKT signaling pathway was the most enriched pathway, and all four genes are included in this pathway. Thus, these four genes and the PI3K-AKT signaling pathway may play important roles in LC. Conclusion Several potential genes and pathways related to TB-associated LC were identified, including EGFR and three target genes not found in previous studies. These genes are related to cell proliferation, colony formation, migration, and invasion, and provide a direction for future research into the mechanisms of LC co-occurring with TB. The PI3K-AKT signaling pathway was also identified as a potential key pathway involved in LC development.
Collapse
Affiliation(s)
| | | | - Baidurula Ainitu
- Oncology Department, The Eighth Affiliated Hospital of XinJiang Medical University, Urumqi, China
| |
Collapse
|
35
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
36
|
Zhu Z, Lu J. Development and assessment of an RNA editing-based risk model for the prognosis of cervical cancer patients. Medicine (Baltimore) 2024; 103:e38116. [PMID: 38728474 PMCID: PMC11081546 DOI: 10.1097/md.0000000000038116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of Biostatistics, School of Public Health, Nanjing Medical University 101 Longmian Avenue, Nanjing, P.R. China
| | - Jing Lu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Ahmad H, Ali A, Khalil AT, Ali R, Khan I, Khan MM, Ahmed I, Basharat Z, Alorini M, Mehmood A. Clinico-genomic findings, molecular docking, and mutational spectrum in an understudied population with breast cancer patients from KP, Pakistan. Front Genet 2024; 15:1383284. [PMID: 38784039 PMCID: PMC11111998 DOI: 10.3389/fgene.2024.1383284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we report the mutational profiles, pathogenicity, and their association with different clinicopathologic and sociogenetic factors in patients with Pashtun ethnicity for the first time. A total of 19 FFPE blocks of invasive ductal carcinoma (IDC) from the Breast Cancer (BC) tissue and 6 normal FFPE blocks were analyzed by whole-exome sequencing (WES). Various somatic and germline mutations were identified in cancer-related genes, i.e., ATM, CHEK2, PALB2, and XRCC2. Among a total of 18 mutations, 14 mutations were somatic and 4 were germline. The ATM gene exhibited the maximum number of mutations (11/18), followed by CHEK2 (3/18), PALB2 (3/18), and XRCC2 (1/18). Except one frameshift deletion, all other 17 mutations were nonsynonymous single-nucleotide variants (SNVs). SIFT prediction revealed 7/18 (38.8%) mutations as deleterious. PolyPhen-2 and MutationTaster identified 5/18 (27.7%) mutations as probably damaging and 10/18 (55.5%) mutations as disease-causing, respectively. Mutations like PALB2 p.Q559R (6/19; 31.5%), XRCC2 p.R188H (5/19; 26.31%), and ATM p.D1853N (4/19; 21.05%) were recurrent mutations and proposed to have a biomarker potential. The protein network prediction was performed using GeneMANIA and STRING. ISPRED-SEQ indicated three interaction site mutations which were further used for molecular dynamic simulation. An average increase in the radius of gyration was observed in all three mutated proteins revealing their perturbed folding behavior. Obtained SNVs were further correlated with various parameters related to the clinicopathological status of the tumors. Three mutation positions (ATM p. D1853N, CHEK2 p.M314I, and PALB2 p.T1029S) were found to be highly conserved. Finally, the wild- and mutant-type proteins were screened for two drugs: elagolix (DrugBank ID: DB11979) and LTS0102038 (a triterpenoid, isolated from the anticancer medicinal plant Fagonia indica). Comparatively, a higher number of interactions were noted for normal ATM with both compounds, as compared to mutants.
Collapse
Affiliation(s)
- Hilal Ahmad
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Asif Ali
- Institute of Pathology and Diagnostic Medicine (IPDM), Khyber Medical University, Peshawar, Pakistan
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Roshan Ali
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Ishaq Khan
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Mah Muneer Khan
- Department of Surgery, Khyber Teaching Hospital, Medical Teaching Institution, Peshawar, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics (Private) Limited, Islamabad, Pakistan
- Microbiological Analysis Team, Group for Biometrology, The Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | | | - Mohammed Alorini
- Department of Pathology, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Amna Mehmood
- Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
38
|
Lu Y, Wang H, Chen S, Yang B, Li Y, Li Y. Cystatin SA attenuates gastric cancer cells growth and increases sensitivity to oxaliplatin via PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:244. [PMID: 38717526 PMCID: PMC11078793 DOI: 10.1007/s00432-024-05780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.
Collapse
Affiliation(s)
- Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Sihan Chen
- Taikang Ningbo Hospital, Ningbo, Zhejiang, 315000, People's Republic of China
| | - Bo Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yaxian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
39
|
Liu Z, Chiu YC, Chen Y, Huang Y. A Metastatic Cancer Expression Generator (MetGen): A Generative Contrastive Learning Framework for Metastatic Cancer Generation. Cancers (Basel) 2024; 16:1653. [PMID: 38730604 PMCID: PMC11083328 DOI: 10.3390/cancers16091653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, a generative contrastive learning tool based on a deep learning model. MetGen generates synthetic metastatic cancer expression profiles using primary cancer and normal tissue expression data. Our results demonstrate that MetGen generates comparable samples to actual metastatic cancer samples, and the cancer and tissue classification yields performance rates of 99.8 ± 0.2% and 95.0 ± 2.3%, respectively. A benchmark analysis suggests that the proposed model outperforms traditional generative models such as the variational autoencoder. In metastatic subtype classification, our generated samples show 97.6% predicting power compared to true metastatic samples. Additionally, we demonstrate MetGen's interpretability using metastatic prostate cancer and metastatic breast cancer. MetGen has learned highly relevant signatures in cancer, tissue, and tumor microenvironments, such as immune responses and the metastasis process, which can potentially foster a more comprehensive understanding of metastatic cancer biology. The development of MetGen represents a significant step toward the study of metastatic cancer biology by providing a generative model that identifies candidate therapeutic targets for the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Zhentao Liu
- Department of Electrical and Computer, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yidong Chen
- Greehey Children Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Science, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yufei Huang
- Department of Electrical and Computer, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Yin Y, Yang X, Cheng Z, Wang H, Lei J, Wang D, Wang P, Li B, Mi J, Yuan Q. Identification of extracellular matrix-related biomarkers in colon adenocarcinoma by bioinformatics and experimental validation. Front Immunol 2024; 15:1371584. [PMID: 38694509 PMCID: PMC11061380 DOI: 10.3389/fimmu.2024.1371584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Backgrounds Extracellular matrix (ECM) is an important component of tumor microenvironment, and its abnormal expression promotes tumor formation, progression and metastasis. Methods Weighted gene co-expression network analysis (WGCNA) was used to identify ECM-related hub genes based on The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) data. COAD clinical samples were used to verify the expression of potential biomarkers in tumor tissues, and siRNA was used to explore the role of potential biomarkers in cell proliferation and epithelial-mesenchymal transition (EMT). Results Three potential biomarkers (LEP, NGF and PCOLCE2) related to prognosis of COAD patients were identified and used to construct ERGPI. Immunohistochemical analysis of clinical samples showed that the three potential biomarkers were highly expressed in tumor tissues of COAD patients. Knockdown of LEP, NGF or PCOLCE2 inhibited COAD cell proliferation and EMT. Dictamnine inhibited tumor cell growth by binding to these three potential biomarkers based on molecular docking and transplanted tumor model. Conclusion The three biomarkers can provide new ideas for the diagnosis and targeted therapy of COAD patients.
Collapse
Affiliation(s)
- Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojie Yang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengyi Cheng
- Department of Pathology, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| | - Hui Wang
- Department of Rheumatology and Immunology, Tangdu Hospital of The Air Force Medical University, Xi’an, China
| | - Jun Lei
- Department of Assets Management, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Biao Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Jing Mi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
41
|
Lv Y, Feng G, Yang L, Wu X, Wang C, Ye A, wang S, Xu C, Shi H. Differential whole-genome doubling based signatures for improvement on clinical outcomes and drug response in patients with breast cancer. Heliyon 2024; 10:e28586. [PMID: 38576569 PMCID: PMC10990872 DOI: 10.1016/j.heliyon.2024.e28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Whole genome doublings (WGD), a hallmark of human cancer, is pervasive in breast cancer patients. However, the molecular mechanism of the complete impact of WGD on survival and treatment response in breast cancer remains unclear. To address this, we performed a comprehensive and systematic analysis of WGD, aiming to identify distinct genetic alterations linked to WGD and highlight its improvement on clinical outcomes and treatment response for breast cancer. A linear regression model along with weighted gene co-expression network analysis (WGCNA) was applied on The Cancer Genome Atlas (TCGA) dataset to identify critical genes related to WGD. Further Cox regression models with random selection were used to optimize the most useful prognostic markers in the TCGA dataset. The clinical implication of the risk model was further assessed through prognostic impact evaluation, tumor stratification, functional analysis, genomic feature difference analysis, drug response analysis, and multiple independent datasets for validation. Our findings revealed a high aneuploidy burden, chromosomal instability (CIN), copy number variation (CNV), and mutation burden in breast tumors exhibiting WGD events. Moreover, 247 key genes associated with WGD were identified from the distinct genomic patterns in the TCGA dataset. A risk model consisting of 22 genes was optimized from the key genes. High-risk breast cancer patients were more prone to WGD and exhibited greater genomic diversity compared to low-risk patients. Some oncogenic signaling pathways were enriched in the high-risk group, while primary immune deficiency pathways were enriched in the low-risk group. We also identified a risk gene, ANLN (anillin), which displayed a strong positive correlation with two crucial WGD genes, KIF18A and CCNE2. Tumors with high expression of ANLN were more prone to WGD events and displayed worse clinical survival outcomes. Furthermore, the expression levels of these risk genes were significantly associated with the sensitivities of BRCA cell lines to multiple drugs, providing valuable insights for targeted therapies. These findings will be helpful for further improvement on clinical outcomes and contribution to drug development in breast cancer.
Collapse
Affiliation(s)
| | | | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoliang Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chengyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Aokun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuyuan wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
42
|
Tan Y, Huang Y, Xu C, Huang X, Li S, Yin Z. Long noncoding RNAs and mRNAs profiling in ovary during laying and broodiness in Taihe Black-Bone Silky Fowls (Gallus gallus Domesticus Brisson). BMC Genomics 2024; 25:357. [PMID: 38600449 PMCID: PMC11005167 DOI: 10.1186/s12864-024-10281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.
Collapse
Affiliation(s)
- Yuting Tan
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Yunyan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Chunhui Xu
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Xuan Huang
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Shibao Li
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China
| | - Zhaozheng Yin
- Zijingang Campus, Animal Science College, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Tai Y, Han D, Yang X, Cai G, Li H, Zhang Y, Li J, Deng X. In vitro culture and tissue-derived specific expression of melanocytes from ovary of adult Silky Fowl. Poult Sci 2024; 103:103379. [PMID: 38306917 PMCID: PMC10847685 DOI: 10.1016/j.psj.2023.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024] Open
Abstract
The presence of a significant number of melanocytes in the ovary and follicular membrane of Silky Fowl suggests their potential involvement in follicle development. Currently, there is a lack of available data regarding to the isolation of primary melanocytes from adult chickens. To date, primary melanocytes and their in vitro culture system have been successfully conducted in the peritoneum of chicken embryos. Herein, melanocytes from silky fowl ovaries were isolated and identified. Silky Fowl ovaries were obtained by mixed digestion of 0.1% collagenase II and 0.25% trypsin-EDTA. Melanocytes could be further purified and cultured up to 5 generations in vitro. RNA-seq analysis was used to investigate whether there were differences in the functional status of melanocytes in different tissues and developmental stages. Consequently, differential gene expressions between peritoneal and ovarian melanocytes were compared. These findings demonstrated that the Silky Fowl ovary had higher expression levels of genes involved in the production of sexual hormones and melanogenesis, while those of melanocytes derived from the peritoneum were involved in amino acid metabolism, lipid synthesis, and overall metabolic rates. This suggests that the role of melanocytes is dependent on the origin tissue and developmental stage, and is tightly connected to the function of the specific source tissue from which the cells were derived. This study provides a method for isolating adult melanocytes and serve as a basis for further investigate the effect of SFOM on germ cells.
Collapse
Affiliation(s)
- Yurong Tai
- Hainan Sanya Research Institute, Seed Laboratory & Sanya Research Institute, Hainan, China; State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Deping Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xue Yang
- State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Ganxian Cai
- State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - HuaiYu Li
- State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xuemei Deng
- Hainan Sanya Research Institute, Seed Laboratory & Sanya Research Institute, Hainan, China; State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of the Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
44
|
Xiong K, Fang Y, Qiu B, Chen C, Huang N, Liang F, Huang C, Lu T, Zheng L, Zhao J, Zhu B. Investigation of cellular communication and signaling pathways in tumor microenvironment for high TP53-expressing osteosarcoma cells through single-cell RNA sequencing. Med Oncol 2024; 41:93. [PMID: 38526643 DOI: 10.1007/s12032-024-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024]
Abstract
Osteosarcoma (OS) stands as the most prevalent primary bone cancer in children and adolescents, and its limited treatment options often result in unsatisfactory outcomes, particularly for metastatic cases. The tumor microenvironment (TME) has been recognized as a crucial determinant in OS progression. However, the intercellular dynamics between high TP53-expressing OS cells and neighboring cell types within the TME are yet to be thoroughly understood. In our study, we harnessed the single-cell RNA sequencing (scRNA-seq) technology in combination with the computational tool-Cellchat, aiming to elucidate the intercellular communication networks present within OS. Through meticulous quantitative inference and subsequent analysis of these networks, we succeeded in identifying significant signaling pathways connecting high TP53-expressing OS cells with proximate cell types, namely Macrophages, Monocytes, Endothelial Cells, and PVLs. This research brings forth a nuanced understanding of the intricate patterns and coordination involved in the TME's intercellular communication signals. These findings not only provide profound insights into the molecular mechanisms underpinning OS but also indicate potential therapeutic targets that could revolutionize treatment strategies.
Collapse
Affiliation(s)
- Kai Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The Third Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530031, China
| | - Yuqi Fang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Boyuan Qiu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Chaotao Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Nanchang Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Feiyuan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Chuangming Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Tiantian Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
45
|
Lan Y, Tao W, Ma L, Wang X, Li H, Du Y, Yang R, Wu S, Ou Y, Liu X, Huang Y, Zhou Y. The RNA sequencing results revealed the expression of different genes and signaling pathways during chemotherapy resistance in peripheral T-cell lymphoma. BMC Med Genomics 2024; 17:74. [PMID: 38468267 PMCID: PMC10929086 DOI: 10.1186/s12920-024-01842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Peripheral T-cell lymphoma (PTCL) is a subtype of non-Hodgkin's lymphoma that occurs primarily at extranodal sites and is commonly treated using chemotherapy and radiotherapy. PTCL is more malignant than other lymphoid tumors, resulting in a poor prognosis.The 5-year recurrence rate remains high, and there is a lack of standard treatment for patients with relapse-resistant disease. However, the molecular mechanisms underlying the resistance of peripheral T-cell lymphoma cells to chemotherapeutic drugs, as well as identifying strategies to overcome drug resistance remains unclear. In this study, we aimed to identify pivotal genes and signaling pathways associated with chemotherapy resistance in PTCL. METHODS In this study, a total of 5 healthy controls and 7 clinical patients were enrolled; 4 patients were classified as chemotherapy sensitive, and 3 patients were classified as chemotherapy resistant. Peripheral blood samples were collected from each participant, and total RNA was extracted from the white blood cells. RNA sequencing was conducted on the Illumina HiSeq platform to obtain comprehensive gene expression profiles. Subsequently, the expression patterns of the DEGs associated with the most enriched signaling pathways, with a special focus on cancer-related genes, were validated using quantitative real-time polymerase chain reaction (qRT-PCR) in peripheral TCL patients. RESULTS RNA sequencing (RNA-seq) analysis revealed 4063 differentially expressed genes (DEGs) in peripheral T-cell lymphoma specimens from patients with chemotherapy resistance, of which 1128 were upregulated and 2935 were downregulated. Subsequent quantitative gene expression analysis confirmed a differential expression pattern in all the libraries, with 9 downregulated genes and 10 upregulated genes validated through quantitative real-time PCR in 6 clinical specimens from patients with chemotherapy resistance. KEGG pathway analysis revealed significant alterations in several pathways, with 6 downregulated pathways and 9 upregulated pathways enriched in the DEGs. Notably, the TNF signaling pathway, which is extensively regulated, was among the pathways that exhibited significant changes. These findings suggest that DEGs and the TNF signaling pathway may play crucial roles in chemotherapy resistance in peripheral T-cell lymphoma. CONCLUSION Our study revealed that the expression of specific genes, including TNFRSF1B, TRADD2, and MAP3K7, may play an important role in chemotherapy resistance in peripheral T-cell lymphoma. Moreover, we identified the downregulation of the TNF signaling pathway, a crucial pathway involved in cell survival, death, and differentiation, as a potential contributor to the development of chemotherapy resistance in peripheral T-cell lymphoma. These findings provide valuable insights into the molecular mechanisms underlying chemotherapy resistance and highlight potential targets for overcoming treatment resistance in this challenging disease.
Collapse
Affiliation(s)
- Yunyi Lan
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China.
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China.
| | - Wei Tao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luyao Ma
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Xiaoxiong Wang
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Hongsheng Li
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yaxi Du
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Ruijiao Yang
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Shunxian Wu
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yingxin Ou
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Xin Liu
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yunchao Huang
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yongchun Zhou
- Molecular Diagnostic Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- International Joint Laboratory On High Altitude Regional Cancer, Kunming, China
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| |
Collapse
|
46
|
Guo J, Zhou M, Li J, Yang Y, Hu Y, Tang T, Quan Y. The Prognosis and Immunotherapy Prediction Model of Ovarian Serous Cystadenocarcinoma Patient was Constructed Based on Cuproptosis-Related LncRNA. TOHOKU J EXP MED 2024; 262:63-74. [PMID: 37438122 DOI: 10.1620/tjem.2023.j056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cuproptosis can serve as potential prognostic predictors in patients with cancer. However, the role of this relationship in ovarian serous cystadenocarcinoma (OV) remains unclear. 376 OV tumor samples were obtained from the Cancer Genome Atlas (TCGA) database, and long non-coding RNAs (lncRNAs) related to cuproptosis were obtained through correlation analysis. The risk assessment model was further constructed by univariate Cox regression analysis and LASSO Cox regression. Bioinformatics was used to analyze the regulatory effect of relevant risk assessment models on tumor mutational burden (TMB) and immune microenvironment. We obtained 5 lncRNAs (AC025287.2, AC092718.4, AC112721.2, LINC00996, and LINC01639) and incorporated them into the Cox proportional hazards model. Kaplan-Meier (KM) curve analysis of the prognosis found that the high-risk group was associated with a poorer prognosis. The receiver operating characteristic (ROC) curve showed stronger predictive power compared to other clinicopathological features. Immune infiltration analysis showed that high-risk scores were inversely correlated with CD8+ T cells, CD4+ T cells, macrophages, NK cells, and B cells. Functional enrichment analysis found that they may act via the extracellular matrix (ECM)-interacting proteins and other pathways. We successfully constructed a reliable cuproptosis-related lncRNA model for the prognosis of OV.
Collapse
Affiliation(s)
- Junliang Guo
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Muchuan Zhou
- Department of Anesthesia, Sichuan Integrative Medicine Hospital, Sichuan Academy of Chinese Medicine Science (SACMS)
- Sichuan Provincial Key Laboratory of Quality of Chinese Medicinal Materials and Research on Innovative Chinese Medicine
| | - Jinhong Li
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yihong Yang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yang Hu
- West China School of Medicine, Sichuan University
| | - Tian Tang
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| | - Yi Quan
- Department of Obstetrics and Gynaecology, Centre for Reproductive Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University
- Sichuan Provincial Key Laboratory of Development and Related Diseases of Women and Children
| |
Collapse
|
47
|
Li P, Chen CZ, Liu L, Li ZH. Whole-Transcriptome Analysis Reveals the RNA Profiles in Mouse Bone Marrow Mesenchymal Stem Cells or Zebrafish Embryos After Exposure to Environmental Level of Tributyltin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:34. [PMID: 38342962 DOI: 10.1007/s00128-024-03861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
To understand the underlying molecular mechanisms, mouse bone marrow mesenchymal stem cells (BMSCs) and zebrafish embryos were exposed to the control group and Tributyltin (TBT) group (10 ng/L, environmental concentration) for 48 h, respectively. The expression profiles of RNAs were investigated using whole-transcriptome analysis in mouse BMSCs or zebrafish embryos after TBT exposure. For mouse BMSCs, the results showed 2,449 differentially expressed (DE) mRNAs, 59 DE miRNAs, 317 DE lncRNAs, and 15 circRNAs. Similarly, for zebrafish embryos, the results showed 1,511 DE mRNAs, 4 DE miRNAs, 272 DE lncRNAs, and 28 circRNAs. According to KEGG pathway analysis showed that DE RNAs were mainly associated with immune responses, signaling, and cellular interactions. Competing endogenous RNA (ceRNA) network analysis revealed that the regulatory network of miRNA-circRNA constructed in zebrafish embryos was more complex compared to that of mouse BMSCs.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
48
|
Chang LY, Lee MZ, Wu Y, Lee WK, Ma CL, Chang JM, Chen CW, Huang TC, Lee CH, Lee JC, Tseng YY, Lin CY. Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles. Nucleic Acids Res 2024; 52:e17. [PMID: 38096046 PMCID: PMC10853793 DOI: 10.1093/nar/gkad1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge.
Collapse
Affiliation(s)
- Lan-Yun Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Zhan Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yujia Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Kai Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Liang Ma
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jun-Mao Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ciao-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chun Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 110, Taiwan
| | - Yu-Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
49
|
Xiao G, Zheng Y, Chen H, Luo M, Yang C, Ren D, Qin P, Zhang H, Lin H. Single-cell transcriptome analysis reveals immunosuppressive landscape in overweight and obese colorectal cancer. J Transl Med 2024; 22:134. [PMID: 38311726 PMCID: PMC10838453 DOI: 10.1186/s12967-024-04921-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Overweight and obesity are established risk factors for various types of cancers including colorectal cancer (CRC). However the underlying molecular mechanisms remain unclear. An in-depth understanding of the oncologic characteristics of overweight and obese CRC at the single-cell level can provide valuable insights for the development of more effective treatment strategies for CRC. METHODS We conducted single-cell RNA sequencing (scRNA-seq) analysis on tumor and adjacent normal colorectal samples from 15 overweight/obese and 15 normal-weight CRC patients. Immunological and metabolic differences between overweight/obese CRC and non-obese CRC were characterized. RESULTS We obtained single-cell transcriptomics data from a total of 192,785 cells across all samples. By evaluating marker gene expression patterns, we annotated nine main cell types in the CRC ecosystem. Specifically, we found that the cytotoxic function of effector T cells and NK cells was impaired in overweight/obese CRC compared with non-obese CRC, relating to its metabolic dysregulation. CD4+T cells in overweight/obese CRC exhibited higher expression of immune checkpoint molecules. The antigen-presenting ability of DCs and B cells is down-regulated in overweight/obese CRC, which may further aggravate the immunosuppression of overweight/obese CRC. Additionally, dysfunctional stromal cells were identified, potentially promoting invasion and metastasis in overweight/obese CRC. Furthermore, we discovered the up-regulated metabolism of glycolysis and lipids of tumor cells in overweight/obese CRC, which may impact the metabolism and function of immune cells. We also identified inhibitory interactions between tumor cells and T cells in overweight/obese CRC. CONCLUSIONS The study demonstrated that overweight/obese CRC has a more immunosuppressive microenvironment and distinct metabolic reprogramming characterized by increased of glycolysis and lipid metabolism. These findings may have implications for the development of novel therapeutic strategies for overweight/obese CRC patients.
Collapse
Affiliation(s)
- Guozhong Xiao
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yihui Zheng
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Huaxian Chen
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Minyi Luo
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Chaoxin Yang
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Donglin Ren
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Pengfei Qin
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Chongqing, 401329, China.
| | - Heng Zhang
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Hongcheng Lin
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
50
|
Lin X, Liu Z, Wang W, Duan G, Zhu Y. Effects of artificial sweetener acesulfame on soil-dwelling earthworms (Eisenia fetida) and its gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167641. [PMID: 37806587 DOI: 10.1016/j.scitotenv.2023.167641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Artificial sweeteners (AS) are the emerging contaminants with potential toxicity to living organisms. The effects of AS to soil typical invertebrates have not been revealed. In this study, the responses of earthworms (Eisenia fetida) and gut microbial communities to acesulfame-contaminated soils (0.1, 1 and 10 mg kg-1) were studied using transcriptomics, metabolomics and metagenomics analyses. The fresh weight of earthworms was significantly stimulated by acesulfame at concentrations of 1 mg kg-1. Sphingolipid metabolism, purine metabolism, cutin, suberine and wax biosynthesis pathways were significantly affected. At 10 mg kg-1 treatment, the amount and weight of cocoons were significantly increased and decreased, respectively, accompanied by the significant disorder of ECM-receptor interaction, and carbon fixation in photosynthetic organisms pathways. Lysosome pathway was significantly affected in all the treatments. Moreover, the acesulfame significantly increased the relative abundance of Bacteroidetes and Mucoromycota, and decreased Proteobacteria in the gut of earthworms. Our multi-level investigation indicated that AS at a relatively low concentration induced toxicity to earthworms and AS pollution has significant environmental risks for soil fauna.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|