1
|
Ferdous SE, Ferrell JM. Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches. Int J Mol Sci 2024; 25:8731. [PMID: 39201418 PMCID: PMC11354927 DOI: 10.3390/ijms25168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), often featuring hyperglycemia or insulin resistance, is a global health concern that is increasing in prevalence in the United States and worldwide. A common complication is metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of metabolic syndrome that is also rapidly increasing in prevalence. The majority of patients with T2DM will experience MASLD, and likewise, individuals with MASLD are at an increased risk for developing T2DM. These two disorders may act synergistically, in part due to increased lipotoxicity and inflammation within the liver, among other causes. However, the pathophysiological mechanisms by which this occurs are unclear, as is how the improvement of one disorder can ameliorate the other. This review aims to discuss the pathogenic interactions between T2D and MASLD, and will highlight novel therapeutic targets and ongoing clinical trials for the treatment of these diseases.
Collapse
Affiliation(s)
- Shifat-E Ferdous
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Jin C, Chen H, Xie L, Zhou Y, Liu LL, Wu J. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin 2024; 45:1321-1336. [PMID: 38326623 PMCID: PMC11192902 DOI: 10.1038/s41401-023-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR's structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
- College of Clinical Medicine, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li-Li Liu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
3
|
Kong X, Wan SJ, Chen TB, Jiang L, Xing YJ, Bai YP, Hua Q, Yao XM, Zhao YL, Zhang HM, Wang DG, Su Q, Lv K. Increased serum extrachromosomal circular DNA SORBS1 circle level is associated with insulin resistance in patients with newly diagnosed type 2 diabetes mellitus. Cell Mol Biol Lett 2024; 29:12. [PMID: 38212723 PMCID: PMC10785328 DOI: 10.1186/s11658-023-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNAs (eccDNAs) exist in human blood and somatic cells, and are essential for oncogene plasticity and drug resistance. However, the presence and impact of eccDNAs in type 2 diabetes mellitus (T2DM) remains inadequately understood. METHODS We purified and sequenced the serum eccDNAs obtained from newly diagnosed T2DM patients and normal control (NC) subjects using Circle-sequencing. We validated the level of a novel circulating eccDNA named sorbin and SH3-domain- containing-1circle97206791-97208025 (SORBS1circle) in 106 newly diagnosed T2DM patients. The relationship between eccDNA SORBS1circle and clinical data was analyzed. Furthermore, we explored the source and expression level of eccDNA SORBS1circle in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. RESULTS A total of 22,543 and 19,195 eccDNAs were found in serum samples obtained from newly diagnosed T2DM patients and NC subjects, respectively. The T2DM patients had a greater distribution of eccDNA on chromosomes 1, 14, 16, 17, 18, 19, 20 and X. Additionally, 598 serum eccDNAs were found to be upregulated, while 856 eccDNAs were downregulated in T2DM patients compared with NC subjects. KEGG analysis demonstrated that the genes carried by eccDNAs were mainly associated with insulin resistance. Moreover, it was validated that the eccDNA SORBS1circle was significantly increased in serum of newly diagnosed T2DM patients (106 T2DM patients vs. 40 NC subjects). The serum eccDNA SORBS1circle content was positively correlated with the levels of glycosylated hemoglobin A1C (HbA1C) and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM patients. Intracellular eccDNA SORBS1circle expression was significantly enhanced in the high glucose and palmitate (HG/PA)-induced hepatocyte (HepG2 cell) insulin resistance model. Moreover, the upregulation of eccDNA SORBS1circle in the HG/PA-treated HepG2 cells was dependent on generation of apoptotic DNA fragmentation. CONCLUSIONS These results provide a preliminary understanding of the circulating eccDNA patterns at the early stage of T2DM and suggest that eccDNA SORBS1circle may be involved in the development of insulin resistance.
Collapse
Affiliation(s)
- Xiang Kong
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Shu-Jun Wan
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Tian-Bing Chen
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Lan Jiang
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China
| | - Yu-Jie Xing
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China
| | - Qiang Hua
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Yong-Li Zhao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China
| | - Hong-Mei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - De-Guo Wang
- Geriatric Endocrinology Unit, Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, 241001, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Kun Lv
- Anhui Provincial Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241002, China.
- Central Laboratory of Yijishan Hospital, Wuhu, 241001, China.
| |
Collapse
|
4
|
Bansode AH, Damuka N, Bashetti N, Gollapelli KK, Krizan I, Bhoopal B, Miller M, Jv SK, Whitlow CT, McClain D, Ma T, Jorgensen MJ, Solingapuram Sai KK. First GPR119 PET Imaging Ligand: Synthesis, Radiochemistry, and Preliminary Evaluations. J Med Chem 2023; 66:9120-9129. [PMID: 37315328 PMCID: PMC10999001 DOI: 10.1021/acs.jmedchem.3c00720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.
Collapse
Affiliation(s)
- Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Shanmukha Kumar Jv
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vijayawada, 522302 Andhra Pradesh, India
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Donald McClain
- Department of Endocrinology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Matthew J Jorgensen
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | | |
Collapse
|
5
|
Qian Y, Wang J, Yang L, Liu Y, Wang L, Liu W, Lin Y, Yang H, Ma L, Ye S, Wu S, Qiao A. Activation and signaling mechanism revealed by GPR119-G s complex structures. Nat Commun 2022; 13:7033. [PMID: 36396650 PMCID: PMC9671963 DOI: 10.1038/s41467-022-34696-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Agonists selectively targeting cannabinoid receptor-like G-protein-coupled receptor (GPCR) GPR119 hold promise for treating metabolic disorders while avoiding unwanted side effects. Here we present the cryo-electron microscopy (cryo-EM) structures of the human GPR119-Gs signaling complexes bound to AR231453 and MBX-2982, two representative agonists reported for GPR119. The structures reveal a one-amino acid shift of the conserved proline residue of TM5 that forms an outward bulge, opening up a hydrophobic cavity between TM4 and TM5 at the middle of the membrane for its endogenous ligands-monounsaturated lipid metabolites. In addition, we observed a salt bridge between ICL1 of GPR119 and Gβs. Disruption of the salt bridge eliminates the cAMP production of GPR119, indicating an important role of Gβs in GPR119-mediated signaling. Our structures, together with mutagenesis studies, illustrate the conserved binding mode of the chemically different agonists, and provide insights into the conformational changes in receptor activation and G protein coupling.
Collapse
Affiliation(s)
- Yuxia Qian
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Jiening Wang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanru Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Lina Wang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Yun Lin
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| | - Hong Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Lixin Ma
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Sheng Ye
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China ,grid.13402.340000 0004 1759 700XLife Sciences Institute, Zhejiang University, Hangzhou, Zhejiang China
| | - Shan Wu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei China
| | - Anna Qiao
- grid.33763.320000 0004 1761 2484Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
6
|
Yao E, Luo L, Lin C, Wen J, Li Y, Ren T, Chen Y, Huang J, Jin X. OEA alleviates apoptosis in diabetic rats with myocardial ischemia/reperfusion injury by regulating the PI3K/Akt signaling pathway through activation of TRPV1. Front Pharmacol 2022; 13:964475. [PMID: 36452230 PMCID: PMC9701823 DOI: 10.3389/fphar.2022.964475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/27/2022] [Indexed: 07/22/2023] Open
Abstract
Reperfusion therapy after myocardial infarction may lead to myocardial injury, which can be complicated and exacerbated by diabetes. The existing therapeutic methods for myocardial ischemia-reperfusion injury (MIRI) in diabetic patients are not ideal. Oleoylethanolamide (OEA) has been found to have protective effects on diabetes and acute cerebral ischemia. This study aimed to determine whether OEA can alleviate MIRI in diabetic rats, and to explore the underlying mechanism. The model of diabetic rats with MIRI was established by blocking the left coronary artery for 30 min, followed by restoring blood flow stability for 120 min. The myocardial enzyme spectrum, area of MIRI, and expression levels of apoptosis-related proteins were detected. The results showed that OEA pretreatment could reduce myocardial infarction area, protect myocardial tissue structure, and reduce myocardial cell apoptosis in diabetic rats with MIRI. Meanwhile, the levels of creatine kinase (CK)-MB (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA) were reduced, while superoxide dismutase (SOD) level was elevated. H9C2 cells were treated with high glucose and oxygen-glucose deprivation/reperfusion (OGD/R) to establish an in vitro model. Capsazepine (CPZ), an antagonist of transient receptor potential vanilloid subtype 1 (TRPV1), and LY294002, an inhibitor of PI3K, were used to treat H9C2 cells in vitro. Apoptosis level and the expression levels of apoptosis-related proteins were measured. It was found that OEA activated TRPV1 and the PI3K/Akt signaling pathway, downregulated the expression levels of apoptosis-related proteins (Bcl-2 and cleaved caspase-3), and ameliorated the apoptosis of H9C2 cells treated with high glucose and OGD/R. This study clarified that OEA, as a TRPV1 agonist, could reduce myocardial cell apoptosis by activating the PI3K/Akt signaling pathway in diabetic rats with MIRI. The findings may provide a theoretical basis for administration of OEA as a potential therapeutic agent into diabetic patients with MIRI.
Collapse
Affiliation(s)
- Enhui Yao
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Lili Luo
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Lin
- Department of Pediatrics, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jing Wen
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Yanglongfei Li
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| | - Yujie Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Jinhua Huang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Artery Disease, Fujian Heart Medical Center, Fuzhou, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Wang X, Rao B, Wang H, Liu C, Ren Z, Yu Z. Serum metabolome alterations in patients with early nonalcoholic fatty liver disease. Biosci Rep 2022; 42:BSR20220319. [PMID: 36124945 PMCID: PMC9583763 DOI: 10.1042/bsr20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although metabolomic analysis for patients with nonalcoholic fatty liver disease (NAFLD) was a promising approach to identify novel biomarkers as targets for the diagnosis of NAFLD, the serum metabolomics profile of early-stage NAFLD patients from central China remain unknown. OBJECTIVE The aim of the present study was to explore the metabolic characteristics of patients with early-stage NAFLD based on the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, to identify differential metabolites and perform functional analysis, and especially, to establish a novel early NAFLD clinical diagnostic tool. RESULTS Compared with healthy controls, serum metabolite species increased significantly in early stage NAFLD patients. Expression of 88 metabolites including 1-naphthylmethanol, rosavin, and theophylline were up-regulated in early NAFLD, while 68 metabolites including 2-hydroxyphenylacetic acid and lysophosphatidylcholine (24:1(15Z)) were down-regulated. The early NAFLD classifier achieved a strong diagnostic efficiency in the discovery phases (80.99%) and was successfully verified in the validation phases (75.23%). CONCLUSIONS These results advance our understanding about the composition and biological functions of serum metabolites of early NAFLD. In addition, serum metabolic markers can serve as an efficient diagnostic tool for the early-stage NAFLD.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Benchen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Seo Y, Tak H, Park D, Song H, Choe S, Park C, Park B. The Neuroprotective Effect of NEUROMIDE, a Compound Bioidentical to Commensal Bacteria Metabolites. Life (Basel) 2022; 12:life12101529. [PMID: 36294963 PMCID: PMC9605164 DOI: 10.3390/life12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
GPR119 is a novel cannabinoid receptor that is primarily expressed in the pancreas and gastrointestinal tract and has beneficial effects on glucose homeostasis exerted through the stimulation of GLP-1 secretion, as demonstrated in the rodent brain. GLP-1 also has important anti-inflammatory effects in chronic inflammatory diseases, including type 1 and 2 diabetes, asthma, psoriasis, and neurodegenerative disorders. Recently, there has been increasing interest in the effect of the gut microbiota on both the gut and the brain. However, few studies have examined how gut microbes affect brain health through the endocannabinoid system. NEUROMIDE is a compound that shares a bioidentical structure with certain commensal bacterial metabolites, acting as a CB1 and GPR119 agonist. In an in vitro system exposed to reactive oxygen species (ROS), pretreatment with NEUROMIDE resulted in a significant increase in cell viability. The ROS-exposed system also showed decreased acetylcholine and an increase in inflammatory cytokines such as IL-1β, changes that were counteracted in a dose-dependent manner in the NEUROMIDE treatment groups. To measure the effectiveness of NEUROMIDE in an in vivo system, we used scopolamine-treated mice as a neurodegenerative disease model and performed a series of passive avoidance tests to observe and quantify the cognitive impairment of the mice. Mice in the NEUROMIDE treatment group had increased latency time, thus indicating an improvement in their cognitive function. Furthermore, the NEUROMIDE treatment groups showed dose-dependent increases in acetylcholine along with decreases in TNF-α and IL-1β. These experiments demonstrate that NEUROMIDE can potentially be used for neuroprotection and the improvement of cognitive ability.
Collapse
Affiliation(s)
- Yoonhee Seo
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Hyunji Tak
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Dohee Park
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Hyejin Song
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Sooyoung Choe
- Efficacy Evaluation Center, Dt & CRO, Yongin 17042, Korea
| | - Chaehyeong Park
- Pomona College, 333 N College Way, Claremont, CA 91711, USA or
| | - Byeongdeog Park
- Dr. Raymond Lab Inc., #301 GwanPyung 2 RO, 7-7, Daejeon 34019, Korea
- Correspondence: ; Tel.: +82-10-8449-0229
| |
Collapse
|
9
|
Byeon HR, Jang SY, Lee Y, Kim D, Hong MG, Lee D, Shin JH, Seo JG. New Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii are Effective for Improving the Muscle Strength of Mice with Immobilization-Induced Muscular Atrophy. J Med Food 2022; 25:565-575. [PMID: 35708632 DOI: 10.1089/jmf.2021.k.0148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. Akkermansia muciniphila and Faecalibacterium prausnitzii strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research. In this study, we evaluated the efficacy of A. muciniphila strain EB-AMDK19 and F. prausnitzii strain EB-FPDK11 in a mouse model of muscular atrophy, since atrophy inhibits energy metabolism and immune activation. After oral administration of each strain for 4 weeks, the hind legs of the mice were fixed with a plaster cast to immobilize them for a week. As a result, the administration of EB-AMDK19 and EB-FPDK11 strains improved grip strength but did not increase muscle mass. At the molecular level, A. muciniphila and F. prausnitzii treatments decreased the expression levels of ubiquitin-proteasome genes, atrogin-1, MuRF, and cathepsin L. They increased the expression level of the mitochondrial biogenesis regulatory gene, PGC-1α. The effect of the strains was confirmed by a decrease in myostatin. Furthermore, A. muciniphila and F. prausnitzii modulated the immune function by enhancing ZO-1 and inhibiting IL-6. In particular, EB-AMDK19 promoted the expression of IL-10, an anti-inflammatory cytokine. These results suggest that A. muciniphila and F. prausnitzii may have beneficial effects on muscular atrophy, verified by newly isolated EB-AMDK19 and EB-FPDK11 as potential next-generation probiotics.
Collapse
Affiliation(s)
- Hye Rim Byeon
- Efficacy Assessment Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Seo-Yul Jang
- Efficacy Assessment Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Yoonmi Lee
- Efficacy Assessment Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Dohak Kim
- Strain Development Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Moon-Gi Hong
- Strain Development Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Dokyung Lee
- Strain Development Team, R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Joo-Hyun Shin
- R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Siksa-dong, Ilsandong-gu, Goyang-si, Korea
| |
Collapse
|
10
|
Hepatoprotective Role of 4-Octyl Itaconate in Concanavalin A-Induced Autoimmune Hepatitis. Mediators Inflamm 2022; 2022:5766434. [PMID: 35310452 PMCID: PMC8933104 DOI: 10.1155/2022/5766434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
4-Octyl itaconate (OI) is a novel anti-inflammatory metabolite that exerts protective effects in many various disease models. However, its function in autoimmune hepatitis- (AIH-) associated hepatic injury has not been investigated. In this study, we successfully used concanavalin A (Con A) to establish an AIH-associated liver injury model. Furthermore, we investigated the effect of OI in Con A-induced liver injury and found that OI mitigated Con A-induced histopathological damage. OI administration reduced serum levels of alanine transaminase and aspartate transaminase in Con A-treated mice and attenuated the infiltration of macrophages induced by Con A. Moreover, OI effectively inhibited the expression of proinflammatory cytokines including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and IL-1β induced by Con A. Furthermore, OI decreased hepatocyte apoptosis and malondialdehyde levels and increased the reduced glutathione/oxidized glutathione ratio in the Con A-induced liver injury model. In addition, we found that OI inhibited Con A-induced hepatocyte apoptosis in vitro, while Nrf2 deletion eliminated this effect. Furthermore, we administrated the Nrf2 inhibitor ML385 in OI+Con A-treated mice and found that ML385 eliminated the protective effect of OI in vivo. In addition, OI inhibited Con A-induced activation of nuclear factor-kappa B (NF-𝜅B) and the expression of proinflammatory cytokines in macrophages. Therefore, OI protected mice from Con A-induced liver damage and may be associated with Nrf2 activation and NF-𝜅B inhibition. Finally, our study revealed that OI inhibited TNF-α, or supernatants from Con A-treated RAW264.7 cells induced hepatocyte apoptosis. In conclusion, our study indicated that OI alleviated Con A-induced hepatic damage by reducing inflammatory response, oxidative stress, and apoptosis.
Collapse
|
11
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
12
|
Petersen N, Greiner TU, Torz L, Bookout A, Gerstenberg MK, Castorena CM, Kuhre RE. Targeting the Gut in Obesity: Signals from the Inner Surface. Metabolites 2022; 12:metabo12010039. [PMID: 35050161 PMCID: PMC8778595 DOI: 10.3390/metabo12010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is caused by prolonged energy surplus. Current anti-obesity medications are mostly centralized around the energy input part of the energy balance equation by increasing satiety and reducing appetite. Our gastrointestinal tract is a key organ for regulation of food intake and supplies a tremendous number of circulating signals that modulate the activity of appetite-regulating areas of the brain by either direct interaction or through the vagus nerve. Intestinally derived messengers are manifold and include absorbed nutrients, microbial metabolites, gut hormones and other enterokines, collectively comprising a fine-tuned signalling system to the brain. After a meal, nutrients directly interact with appetite-inhibiting areas of the brain and induce satiety. However, overall feeding behaviour also depends on secretion of gut hormones produced by highly specialized and sensitive enteroendocrine cells. Moreover, circulating microbial metabolites and their interactions with enteroendocrine cells further contribute to the regulation of feeding patterns. Current therapies exploiting the appetite-regulating properties of the gut are based on chemically modified versions of the gut hormone, glucagon-like peptide-1 (GLP-1) or on inhibitors of the primary GLP-1 inactivating enzyme, dipeptidyl peptidase-4 (DPP-4). The effectiveness of these approaches shows that that the gut is a promising target for therapeutic interventions to achieve significant weigh loss. We believe that increasing understanding of the functionality of the intestinal epithelium and new delivery systems will help develop selective and safe gut-based therapeutic strategies for improved obesity treatment in the future. Here, we provide an overview of the major homeostatic appetite-regulating signals generated by the intestinal epithelial cells and how these signals may be harnessed to treat obesity by pharmacological means.
Collapse
Affiliation(s)
- Natalia Petersen
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Correspondence:
| | - Thomas U. Greiner
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Lola Torz
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Angie Bookout
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Marina Kjærgaard Gerstenberg
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
| | - Carlos M. Castorena
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk Research Center, Seattle, WA 98109, USA; (A.B.); (C.M.C.)
| | - Rune Ehrenreich Kuhre
- Global Obesity and Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Novo Park 1, 2670 Måløv, Denmark; (L.T.); (M.K.G.); (R.E.K.)
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Lin LC, Quon T, Engberg S, Mackenzie AE, Tobin AB, Milligan G. G Protein-Coupled Receptor GPR35 Suppresses Lipid Accumulation in Hepatocytes. ACS Pharmacol Transl Sci 2021; 4:1835-1848. [PMID: 34927014 DOI: 10.1021/acsptsci.1c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Although prevalent, nonalcoholic fatty liver disease is not currently treated effectively with medicines. Initially, using wild-type and genome-edited clones of the human hepatocyte cell line HepG2, we show that activation of the orphan G protein-coupled receptor GPR35 is both able and sufficient to block liver X-receptor-mediated lipid accumulation. Studies on hepatocytes isolated from both wild-type and GPR35 knock-out mice were consistent with a similar effect of GPR35 agonists in these cells, but because of marked differences in the pharmacology of GPR35 agonists and antagonists at the mouse and human orthologues, as well as elevated basal lipid levels in hepatocytes from the GPR35 knock-out mice, no definitive conclusion could be reached. To overcome this, we generated and characterized a transgenic knock-in mouse line in which the corresponding human GPR35 splice variant replaced the mouse orthologue. In hepatocytes from these humanized GPR35 mice, activation of this receptor was shown conclusively to prevent, and also reverse, lipid accumulation induced by liver X-receptor stimulation. These studies highlight the potential to target GPR35 in the context of fatty liver diseases.
Collapse
Affiliation(s)
- Li-Chiung Lin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tezz Quon
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Susanna Engberg
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Amanda E Mackenzie
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Graeme Milligan
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
14
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|