1
|
Xu W, Zhang Y, Li L, Pan L, Lu L, Zhi S, Li W. Osteocyte-derived exosomes regulate the DLX2/wnt pathway to alleviate osteoarthritis by mediating cartilage repair. Autoimmunity 2024; 57:2364686. [PMID: 38946534 DOI: 10.1080/08916934.2024.2364686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS An injury cell model was established by treating chondrocytes with IL-1β. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION Osteocyte-derived exosomal DLX2 alleviated IL-1β-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.
Collapse
Affiliation(s)
- Wenjuan Xu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Yuanyuan Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Lijuan Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Liyan Pan
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Li Lu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Shenshen Zhi
- Department of Blood Transfusion, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| |
Collapse
|
2
|
Zhang X, Zhang R, Wang Y, Li L, Zhong Z. CDK5 Upregulated by ELF3 Transcription Promotes IL-1β-induced Inflammation and Extracellular Matrix Degradation in Human Chondrocytes. Cell Biochem Biophys 2024:10.1007/s12013-024-01415-5. [PMID: 39020088 DOI: 10.1007/s12013-024-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Osteoarthritis (OA) is a common chronic disease with age-associated increase in both incidence and prevalence. The cyclin-dependent kinase 5 (CDK5), which is a member of the CDK family, is involved in many chronic diseases. This study was performed to explore the functional role of CDK5 in OA and to discuss the detailed molecular mechanisms. The expressions of CDK5 and ELF3 before or after transfection were detected with reverse transcription-quantitative PCR (RT-qPCR) and western blot. 5-ethynyl-2'-deoxyuridine (Edu) and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assays were used to detect the proliferation and apoptosis of C28/I2 cells. The levels of inflammatory cytokines were estimated using enzyme-linked immunosorbent assay (ELISA) while the expressions of proteins implicated in extracellular matrix (ECM) degradation- and apoptosis were detected using western blot. Additionally, the activity of CDK5 promoters and its binding with ELF3 were detected using luciferase activity assay and chromatin immunoprecipitation (CHIP) assay. In the present study, it was discovered that the mRNA and protein expressions of CDK5 were significantly increased in IL-1β-induced C28/I2 cells. After depleting CDK5 expression, the apoptosis, inflammation and ECM in C28/I2 cells with IL-1β induction were suppressed. It was also found that ELF3 expression was increased in IL-1β-induced C28/I2 cells and acted as a transcription factor binding to the CDK5 promoter to regulate its transcriptional expression. The further experiments evidenced that ELF3 overexpression partially reversed the inhibitory effects of CDK5 deficiency on IL-1β-induced apoptosis, inflammation and ECM in C28/I2 cells. Collectively, CDK5 that upregulated by ELF3 transcription could promote the development of OA.
Collapse
Affiliation(s)
- Xuyuan Zhang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Ruize Zhang
- School of Optoelectronic Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310007, PR China
| | - Yinhai Wang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Liang Li
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Zong Zhong
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China.
| |
Collapse
|
3
|
Fang Z, Hu Q, Liu W. Vitamin B6 alleviates osteoarthritis by suppressing inflammation and apoptosis. BMC Musculoskelet Disord 2024; 25:447. [PMID: 38844896 PMCID: PMC11155127 DOI: 10.1186/s12891-024-07530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.
Collapse
Affiliation(s)
- Zhaoyi Fang
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qingxiang Hu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Wenxin Liu
- Department of Sports Medicine, National Center for Orthopaedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
4
|
Moqadami A, Khalaj-Kondori M, Hosseinpour Feizi MA, Baradaran B. Minocycline declines interleukin-1ß-induced apoptosis and matrix metalloproteinase expression in C28/I2 chondrocyte cells: an in vitro study on osteoarthritis. EXCLI JOURNAL 2024; 23:114-129. [PMID: 38487083 PMCID: PMC10938238 DOI: 10.17179/excli2023-6710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 03/17/2024]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that occurs with aging. In its late phases, it is determined by the loss of chondrocytes and the breakdown of the extracellular matrix, resulting in pain and functional impairment. Interleukin-1 beta (IL-1β) is increased in the injured joints and contributes to the OA pathobiology by inducing chondrocyte apoptosis and up-regulation of matrix metalloproteinases (MMPs). Here, we aimed to understand whether minocycline could protect chondrocytes against the IL-1β-induced effects. The human C28/I2 chondrocyte cell line was treated with IL-1β or IL-1β plus minocycline. Cell viability/toxicity, cell cycle progression, and apoptosis were assessed with MMT assay and flow cytometry. Expression of apoptotic genes and MMPs were evaluated with qRT-PCR and western blotting. IL-1β showed a significant cytotoxic effect on the C28/I2 chondrocyte cells. The minocycline effective concentration (EC50) significantly protected the C28/I2 cells against the IL-1β-induced cytotoxic effect. Besides, minocycline effectively lowered IL-1β-induced sub-G1 cell population increase, indicating the minocycline anti-apoptotic effect. When assessed by real-time PCR and western blotting, the minocycline treatment group showed an elevated level of Bcl-2 and a significant decrease in the mRNA and protein expression of the apoptotic markers Bax and Caspase-3 and Matrix metalloproteinases (MMPs) such as MMP-3 and MMP-13. In conclusion, IL-1β promotes OA by inducing chondrocyte death and MMPs overexpression. Treatment with minocycline reduces these effects and decreases the production of apoptotic factors as well as the MMP-3 and MMP-13. Minocycline might be considered as an anti-IL-1β therapeutic supplement in the treatment of osteoarthritis. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Yousof S, Erfan H, Shehata S, Hosny M, El-Sayed K. Assessment of the potential cerebellar toxicity of gold nanoparticles on the structure and function of adult male albino rats. Biosci Rep 2023; 43:BSR20222255. [PMID: 37527500 PMCID: PMC10472208 DOI: 10.1042/bsr20222255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The regular use of gold nanoparticles (Au-NPs) may increase the likelihood of human exposure to these nanoparticles (NPs) and raises concerns about toxicity. AIM This study investigated the short-term impact of exposure to Au-NPs on inducing cerebellar pathology in rats, and whether the dose or duration of exposure was more important. METHODOLOGY The study used two concentrations of Au-NPs (25 and 50 particles per million) and 18 rats were randomly assigned to three groups. Assessments of the animals were done via behavioral, gene expression, histological, and immunohistochemistry analyses. RESULTS Both concentrations of Au-NPs caused cerebellar pathology, as assessed through the investigation test battery. The Au-NPs50 group displayed more injury and decreased mobility compared with the control and the Au-NPs25 group. The Au-NPs25 group showed an increase in supported rearing and significant up-regulation of the Rgc32 gene compared with the control. The Trkb gene was insignificantly up-regulated in both Au-NPs groups compared with the control. CONCLUSION The study indicates that exposure to Au-NPs can cause cerebellar pathology in rats and that the toxicity is more dependent on dose than the duration of exposure. These findings have significant implications for the safe use of Au-NPs in various applications.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Horeya Erfan
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Oncology Diagnostic Unit Lab, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Karima El-Sayed
- Department of Medical Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Xu H, Zhao C, Guo G, Li Y, A X, Qiu G, Wang Y, Kang B, Xu X, Xie J, Xiao L. The Effectiveness of Tuina in Relieving Pain, Negative Emotions, and Disability in Knee Osteoarthritis: A Randomized Controlled Trial. PAIN MEDICINE 2023; 24:244-257. [PMID: 35997590 DOI: 10.1093/pm/pnac127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of Tuina in relieving the pain, negative emotions, and disability of patients with knee osteoarthritis (KOA). DESIGN Single-center, parallel, randomized controlled trial. SETTING Shanghai Guanghua Integrated Chinese and Western Medicine Hospital, Shanghai, China. SUBJECTS Adult patients with KOA who were able to speak Chinese and self-report symptoms were eligible. METHODS A total of 104 patients were randomly allocated to receive the 6-week treatment of Tuina (Tuina group) or celecoxib (celecoxib group). Data on pain, negative emotions, and disability were collected at baseline, at week 2, 4, and 6, and follow-up (1 month after the last treatment). The primary outcomes were the pressure pain thresholds. The secondary outcomes were: (1) numerical rating scale at rest and with movement; (2) Hamilton Anxiety Scale; (3) Hamilton Depression Scale; (4) Western Ontario and McMaster Universities Osteoarthritis Index; and (5) clinical effective rate. The adverse events of the trial were evaluated. RESULTS In total, 99 patients completed the follow-up. Generalized linear mixed models were constructed to analyse the between-group differences. Statistically significant differences were found in the interaction effects (P < .05). In evaluating the group effect, statistical differences were found at week 6 and follow-up (P < .05). Further, all variables showed a time effect (P < .05). A statistical difference in the clinical effective rate was found between the Tuina and celecoxib groups (P < .05). CONCLUSIONS Tuina produced superior effects for pain, negative emotions, and disability over time, as compared to celecoxib in patients with KOA.
Collapse
Affiliation(s)
- Hui Xu
- School of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China.,Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chi Zhao
- School of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China.,Orthopedics Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangxin Guo
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu A
- Guanghua School of Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guowei Qiu
- Guanghua School of Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Wang
- Outpatient Office, Rehabilitation Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bingxin Kang
- Rehabilitation Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xirui Xu
- Guanghua School of Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Guanghua School of Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Joint Surgery Department, Shanghai Guanghua Integrated Chinese and Western Medicine Hospital, Shanghai, China
| | - Lianbo Xiao
- Joint Surgery Department, Shanghai Guanghua Integrated Chinese and Western Medicine Hospital, Shanghai, China.,Arthritis Research Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Chatterjee S, Lou XY, Liang F, Yang YW. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Sibuyi NRS, Moabelo KL, Fadaka AO, Meyer S, Onani MO, Madiehe AM, Meyer M. Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. NANOSCALE RESEARCH LETTERS 2021; 16:174. [PMID: 34866165 PMCID: PMC8645298 DOI: 10.1186/s11671-021-03632-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 05/07/2023]
Abstract
The medical properties of metals have been explored for centuries in traditional medicine for the treatment of infections and diseases and still practiced to date. Platinum-based drugs are the first class of metal-based drugs to be clinically used as anticancer agents following the approval of cisplatin by the United States Food and Drug Administration (FDA) over 40 years ago. Since then, more metals with health benefits have been approved for clinical trials. Interestingly, when these metals are reduced to metallic nanoparticles, they displayed unique and novel properties that were superior to their bulk counterparts. Gold nanoparticles (AuNPs) are among the FDA-approved metallic nanoparticles and have shown great promise in a variety of roles in medicine. They were used as drug delivery, photothermal (PT), contrast, therapeutic, radiosensitizing, and gene transfection agents. Their biomedical applications are reviewed herein, covering their potential use in disease diagnosis and therapy. Some of the AuNP-based systems that are approved for clinical trials are also discussed, as well as the potential health threats of AuNPs and some strategies that can be used to improve their biocompatibility. The reviewed studies offer proof of principle that AuNP-based systems could potentially be used alone or in combination with the conventional systems to improve their efficacy.
Collapse
Affiliation(s)
- Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Koena Leah Moabelo
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
9
|
Abdel-Aziz MA, Ahmed HMS, El-Nekeety AA, Abdel-Wahhab MA. Osteoarthritis complications and the recent therapeutic approaches. Inflammopharmacology 2021; 29:1653-1667. [PMID: 34755232 DOI: 10.1007/s10787-021-00888-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
The accelerated prevalence of osteoarthritis (OA) disease worldwide and the lack of convenient management led to the frequent search for unprecedented and specific treatment approaches. OA patients usually suffer from many annoying complications that negatively influence their quality of life, especially in the elderly. Articular erosions may lead eventually to the loss of joint function as a whole which occurs over time according to the risk factors presented in each case and the grade of the disease. Conventional therapies are advancing, showing most appropriate results but still greatly associated with many adverse effects and have restricted curative actions as well. Hence, novel management tools are usually required. In this review, we summarized the recent approaches in OA treatment and the role of natural products, dietary supplements and nanogold application in OA treatment to provide new research tracks for more therapeutic opportunities to those who are in care in this field.
Collapse
Affiliation(s)
- Manal A Abdel-Aziz
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M S Ahmed
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
Shang H, Gu H, Zhang N. From traditional to novel treatment of arthritis: a review of recent advances in nanotechnology-based thermal therapy. Nanomedicine (Lond) 2021; 16:2117-2132. [PMID: 34525845 DOI: 10.2217/nnm-2021-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Arthritis has been a heavy burden on the economy and society at large. Recently, nanomaterials that can convert near-infrared light into localized heat have demonstrated better targeting to arthritic joints, fewer side effects, ease of combined application with current therapeutics and enhanced efficacy for arthritis treatment. In this review, the authors summarize traditional thermal therapies for arthritis treatment and their molecular mechanisms and discuss the advantages and applications of nanotechnology-based thermal therapies for arthritis treatment. In conclusion, nanotechnology-based thermal therapies are effective alternatives or adjuvant strategies to the current pharmacological treatment of arthritis. Future clinical translation of thermal therapies could benefit from research elucidating their mechanisms and standardizing their parameters to optimize efficacy.
Collapse
Affiliation(s)
- Hongtao Shang
- School of Sports Sciences (main campus), Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
11
|
Luo J, Zhang Y, Zhu S, Tong Y, Ji L, Zhang W, Zhang Q, Bi Q. The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1991-2002. [PMID: 34415355 PMCID: PMC8486704 DOI: 10.1007/s00210-021-02131-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
The current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yin Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Senbo Zhu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Lichen Ji
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Wei Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Qingdao University, Qingdao, 266071, Shandong, China
| | - Qiong Zhang
- Operating Theater, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China. .,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
12
|
Chakraborty A, Das A, Raha S, Barui A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111778. [PMID: 31931389 DOI: 10.1016/j.jphotobiol.2020.111778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/29/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
In the last decade, gold nanoparticles have emerged as promising agents for in vitro bio-sensing and in vivo cancer theranostics. However, different investigations have reported widely varying cytotoxicity and uptake efficiency of gold nanoparticles depending upon their size. Therefore, more extensive studies are needed to standardize these biological effects as a function of size on a particular cell line. In addition, to obtain robust confirmation on the correlation of a size to biological effect, thorough mechanistic study must also be performed. In this study, the size dependent biological activities of gold nanoparticles on osteosarcoma cells is investigated towards exploring their potential theranostic application in bone cancer, for which very scarce literature reports are available. Tris-assisted citrate based method was optimized to synthesize stable gold naoparticles of 40-60 nm sizes. Nanoparticles were characterized through UV-Vis spectroscopy, field emission scanning electron microscope (FESEM) and dynamic light scattering (DLS). Increasing concentrations of gold nanoparticles (AuNPs) of 46 nm size, enhanced the rate of reactive oxygen species (ROS)-induced apoptosis in MG63 cells by disrupting their mitochondrial membrane potential. Considerably higher cell death was observed for 46 and 60 nm AuNPs compared to 38 nm at all concentrations of 200, 400 and 800 ng/mL. Further, molecular signatures of cellular apoptosis under nanoparticle treatment were optically assessed through surface enhanced Raman scattering (SERS). A significant Raman enhancement in cancer cells under treatment of larger gold nanoparticles (46 and 60 nm) at fixed wavelength of 785 nm and laser power of 8.0 mW was evident. In corroboration with molecular biology techniques, SERS observation confirmed the size-dependent apoptotic phenomena in osteosarcoma cells under treatment of gold nanoparticles. Study demonstrates a facile, non-active targeting approach for detection of size-dependent AuNP-induced apoptosis in osteosarcoma cells through label-free SERS method.
Collapse
Affiliation(s)
- Avishek Chakraborty
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST) Shibpur, Howrah 711103, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST) Shibpur, Howrah 711103, India
| | - Sreyan Raha
- Department of Physics, Main Campus, Bose Institute, Kolkata 700009, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology (IIEST) Shibpur, Howrah 711103, India.
| |
Collapse
|
13
|
Ebrahim HM, El-Rouby MN, Morsy ME, Said MM, Ezz MK. The Synergistic Cytotoxic Effect of Laser-Irradiated Gold Nanoparticles and Sorafenib Against the Growth of a Human Hepatocellular Carcinoma Cell Line. Asian Pac J Cancer Prev 2019; 20:3369-3376. [PMID: 31759361 PMCID: PMC7062997 DOI: 10.31557/apjcp.2019.20.11.3369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Gold nanoparticles are the most promising candidate in cancer treatment due to their physiochemical properties and increased use in photothermal therapy (PTT). In the present study, spherical gold nanoparticles (AuNPs) were synthesized using citrate reduction method. The particles were then characterized using UV-VIS spectroscopy and transmission electron microscope. A hepatocellular carcinoma cell line (HepG2) was incubated with sorafenib and/or non-irradiated or laser-irradiated AuNPs for 48 hrs. The cytotoxic effect of different treatment modalities was determined using MTT assay. Furthermore, apoptosis was determined by flow cytometry using annexin V/propidium iodide, as well as estimating the level of caspases. Results showed that AuNPs and sorafenib reduced HepG2 cell viability, and the cytotoxicity was associated with increased release of LDH in the culture medium. The recorded cytotoxicity was attributed to enhanced apoptosis as revealed by increased cellular caspases (3, 8 and 9), that was further confirmed by flow cytometry. The most notable cytotoxic effect was recorded when combining sorafenib with laser-irradiated AuNPs. In conclusion, a synergistic cytotoxic effect was observed between sorafenib and laser-irradiated AuNPs against the growth of HepG2, suggesting the potential substitution of large toxic doses of sorafenib by lower doses in combination with photothermal therapy.
Collapse
Affiliation(s)
- Haidy M Ebrahim
- Department of Cancer Biology, National Cancer Institute (NCI), Cairo University, Giza, Egypt
| | - Mahmoud N El-Rouby
- Department of Cancer Biology, National Cancer Institute (NCI), Cairo University, Giza, Egypt
| | - Mona E Morsy
- Department of Medical Applications, National Institute of Laser-Enhanced Science, Cairo University, Giza, Egypt
| | - Mahmoud M Said
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magda K Ezz
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Wang BW, Jiang Y, Yao ZL, Chen PS, Yu B, Wang SN. Aucubin Protects Chondrocytes Against IL-1β-Induced Apoptosis In Vitro And Inhibits Osteoarthritis In Mice Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3529-3538. [PMID: 31631977 PMCID: PMC6791845 DOI: 10.2147/dddt.s210220] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
Objective Chondrocyte apoptosis has also been strongly correlated with the severity of cartilage damage and matrix depletion in an osteoarthritis (OA) joint. Therefore, pharmacological inhibitors of apoptosis may provide a novel treatment option for patients with OA. Aucubin, a natural compound isolated from Eucommia ulmoides, has been proved to possess antioxidative and anti-apoptotic properties. However, anti-osteoarthritis effect of aucubin in animal model and anti-apoptotic response of aucubin in OA chondrocytes remain unclear. This study aimed to determine whether aucubin could slow progression of OA in a mouse model and inhibit the IL-1β-induced chondrocyte apoptosis. Methods OA severity and articular cartilage degradation were evaluated by Safranin-O staining, Hematoxylin-eosin (H&E) staining, and Osteoarthritis Research Society International (OARSI) standards. Chondrocyte viability was observed by Cell Counting Kit-8 (CCK8) and live/dead cells assay; the apoptotic rate of chondrocytes was evaluated by flow cytometry (FCM) with Annexin V-FITC/PI kit. Mediators of apoptosis were tested by Western blot of Bax, caspase-3, caspase-9, and Bcl-2 expression. The intracellular levels of Reactive oxygen species (ROS) were assessed by the probe of 2,7-Dichlorofluorescin diacetate (DCFH-DA). Results The articular cartilage in the limb with destabilization of the medial meniscus (DMM) exhibited early OA-like manifestations characterized by proteoglycan loss, cartilage fibrillation, and erosion, with lower OARSI score. Oral administration of aucubin remarkably attenuated the loss of proteoglycan and the articular cartilage erosion and decreased the OARSI scores underwent DMM surgery. Aucubin treatment significantly reverses IL-1β-induced cytotoxicity and attenuated the IL-1β-induced chondrocyte apoptosis. In addition, aucubin can significantly inhibit mediators of apoptosis in rat primary chondrocytes. Furthermore, aucubin remarkably attenuated the IL-1β-induced intracellular ROS production. Conclusion Our findings suggest that aucubin has a protective effect on articular cartilage and slowing progression of OA in a mouse model. This protective effect may result from inhibiting chondrocyte apoptosis and excessive ROS production.
Collapse
Affiliation(s)
- Bo-Wei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yi Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zi-Long Yao
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Pei-Sheng Chen
- Department of Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, People's Republic of China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Sheng-Nan Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
15
|
Agarwal A, Venkatakrishnan K, Tan B. Small Gold Quantum Probes for Drug‐Free Cancer Theranostics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayushi Agarwal
- Keenan Research CenterSt. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada
- Ultrashort Laser Nano Manufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University 9 350 Victoria Street Toronto Ontario M5B 2K3 Canada
- Institute for Biomedical EngineeringScience and TechnologyPartnership between Ryerson University and St. Michael's Hospital Toronto Ontario M5B 1W8 Canada
- Nano Bio Interface FacilityDepartment of Mechanical and Industrial EngineeringRyerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Krishnan Venkatakrishnan
- Keenan Research CenterSt. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada
- Ultrashort Laser Nano Manufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University 9 350 Victoria Street Toronto Ontario M5B 2K3 Canada
- Nano Characterization LaboratoryDepartment of Aerospace EngineeringRyerson University 350 Victoria Street Toronto Ontario M5B 2K3 Canada
| | - Bo Tan
- Keenan Research CenterSt. Michael's Hospital 209 Victoria Street Toronto Ontario M5B 1T8 Canada
- Ultrashort Laser Nano Manufacturing Research FacilityDepartment of Mechanical and Industrial EngineeringRyerson University 9 350 Victoria Street Toronto Ontario M5B 2K3 Canada
- Institute for Biomedical EngineeringScience and TechnologyPartnership between Ryerson University and St. Michael's Hospital Toronto Ontario M5B 1W8 Canada
| |
Collapse
|
16
|
The Influence of Available Cu and Au Nanoparticles (NPs) on the Survival of Water Fleas (Daphnia pulex). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193617. [PMID: 31561619 PMCID: PMC6801461 DOI: 10.3390/ijerph16193617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 02/01/2023]
Abstract
Applications of nanotechnologies in different sectors and everyday items are very promising and their popularity continues to grow. The number of products containing nanoparticles makes environmental exposure to nanoparticles inevitable. The current understanding of the relationships between nanoparticles and the environment is inadequate despite the fast growth of nanotechnologies. The aim of the study was to investigate the influence of copper and gold nanoparticles on Daphnia pulex survival. Our study included 48-h acute toxicity tests and determination of median lethal concentration values (LC50s) for Cu-NPs and Au-NPs. For nano-copper, 24 h LC50 was assumed > 1 mg/L, and 48 h LC50 = 0.5117 mg/L. For nano-gold the LC50 value after 24 h was 0.4027 mg/L, and after 48 h 0.1007 mg/L. The toxicity of nano -gold solutions was thus found to be higher than that of nano-copper. The addition of Cu-NPs at 0.0625 mg/L and 0.125 mg/L caused an increased multiplication of daphnia, while Au-NPs at 1 mg/L was an inhibitor of reproduction.
Collapse
|
17
|
Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. J Control Release 2019; 299:121-137. [DOI: 10.1016/j.jconrel.2019.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/31/2022]
|
18
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
19
|
Sarkar A, Carvalho E, D'souza AA, Banerjee R. Liposome-encapsulated fish oil protein-tagged gold nanoparticles for intra-articular therapy in osteoarthritis. Nanomedicine (Lond) 2019; 14:871-887. [PMID: 30895865 DOI: 10.2217/nnm-2018-0221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM To provide multilayered combination therapies encompassing nanoparticles and organic peptides and to assess their efficacy in the treatment of arthritis. MATERIALS & METHODS Fish oil protein (FP) was isolated from fish oil glands and tagged with spherical gold nanoparticles (GNPs). Tagged GNPs were encapsulated in DPPC liposomes (FP-GNP-DPPC) and characterized. RESULTS & CONCLUSION FP increased the hydrophilicity of GNP, while encapsulation of FP-GNP within liposomes increased the hydrophobicity. In vitro release studies of FP-GNP-DPPC exhibited sustained release of FP in simulated synovial fluid. FP-GNP-DPPC injected into intra-articular joints of rats displayed anti-osteoarthritic effects in osteoarthritic rat model. This is the first study to report the anti-osteoarthritic activity of FP and DPPC encapsulated FP-GNP liposomes.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.,Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Edmund Carvalho
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.,Department of Microbiology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Anisha A D'souza
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Rinti Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
20
|
Hu S, Yu Y, Zhou D, Li R, Xiao X, Wu H. Global transcriptomic Acid Tolerance Response in Salmonella Enteritidis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Abstract
Cell death is crucial to human health and is related to various serious diseases. Therefore, generation of new cell death regulators is urgently needed for disease treatment. Nanoparticles (NPs) are now routinely used in a variety of fields, including consumer products and medicine. Exhibiting stability and ease of decoration, gold nanoparticles (GNPs) could be used in diagnosis and disease treatment. Upon entering the human body, GNPs contact human cells in the blood, targeting organs and the immune system. This property results in the disturbance of cell function and even cell death. Therefore, GNPs may act as powerful cell death regulators. However, at present, we are far from establishing a structure–activity relationship between the physicochemical properties of GNPs and cell death, and predicting GNP-induced cell death. In this review, GNPs’ size, shape, and surface properties are observed to play key roles in regulating various cell death modalities and related signaling pathways. These results could guide the design of GNPs for nanomedicine.
Collapse
Affiliation(s)
- Hainan Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
22
|
Labens R, Daniel C, Hall S, Xia XR, Schwarz T. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model. PLoS One 2017; 12:e0190216. [PMID: 29287105 PMCID: PMC5747449 DOI: 10.1371/journal.pone.0190216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could potentially lead to a new diagnostic technique for early detection of cartilage disease.
Collapse
Affiliation(s)
- Raphael Labens
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| | - Carola Daniel
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Sarah Hall
- Animal & Veterinary Sciences, Scotland’s Rural College, Easter Bush Campus, Midlothian, United Kingdom
| | - Xin-Rui Xia
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
23
|
Song B, Song H, Wang W, Wang H, Peng H, Cui J, Wang R, Huang H, Wang W, Wang L. Beclin 1 overexpression inhibits chondrocyte apoptosis and downregulates extracellular matrix metabolism in osteoarthritis. Mol Med Rep 2017; 16:3958-3964. [PMID: 28731147 PMCID: PMC5646975 DOI: 10.3892/mmr.2017.7064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/24/2017] [Indexed: 01/03/2023] Open
Abstract
In the present study, the expression of Beclin 1 in osteoarthritis (OA) cartilage tissue was investigated, and also its role in proliferation, apoptosis and expression of matrix metalloproteinases (MMPs) in chondrocytes obtained from patients with OA. Beclin 1 expression in cartilage tissue from OA patients, and in the age- and sex-matched controls, was detected by immunohistochemistry, semi-quantitative polymerase chain reaction and western blotting. Chondrocytes were divided into control and Beclin 1-overexpressed groups. After transfection for 48, 72 and 96 h, cell viability, apoptosis, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and MMPs were examined. The mRNA and protein expression levels of Beclin 1 were significantly decreased in cartilage tissue from OA patients compared with the sex- and age-matched controls (P<0.05). In chondrocytes from OA patients, Beclin 1 overexpression significantly increased cell viability (P<0.05). Beclin 1 overexpression additionally decreased the degree of apoptosis, as demonstrated by Hoechst staining and flow cytometric analysis. B-cell lymphoma-2 (Bcl-2) was upregulated, and Bcl-2 associated X was downregulated, following Beclin 1 overexpression (P<0.05). The PI3K/Akt/mTOR signaling pathway was mitigated following Beclin 1 overexpression (P<0.05). In addition, MMP1, MMP3 and MMP13 were downregulated after Beclin 1 overexpression (P<0.05). Taken together, low expression levels of Beclin 1 may contribute towards the degeneration of chondrocytes. Beclin 1 overexpression increased cell viability, inhibited apoptosis and MMPs, likely via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Bin Song
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Hong Song
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Weiguo Wang
- Department of Pathology, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Hongru Wang
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Hanyuan Peng
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Jing Cui
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Rong Wang
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Hua Huang
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Wei Wang
- Department of Internal Medicine, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| | - Lili Wang
- Science and Education Department, Guizhou Osteological Hospital, Guiyang, Guizhou 550007, P.R. China
| |
Collapse
|
24
|
Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017; 14:1517-1527. [PMID: 28026957 PMCID: PMC6628714 DOI: 10.1021/acs.molpharmaceut.6b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based drug delivery carrier has been one of the most employed modalities in biopharmaceuticals. In this study, we have compared avidin and its two analogues, neutravidin and streptavidin, as nanocarriers for the delivery of biotin-labeled siRNA with the help of biotinylated cholesterol (targeting ligand) and protamine (condensing agent). These proteins have similar binding affinity to biotin but substantial difference in their physical and chemical characteristics. Here, we have shown how these characteristics affect the size, cellular uptake, and activity of the avidin-based siRNA nanocomplex. In contrast to avidin and streptavidin nanocomplexes, neutravidin-based nanocomplex shows very low endosome entrapment and high cytoplasmic localization at extended times. High amount of the siRNA released in the cytoplasm by neutravidin-based nanocomplex at extended times (24 h) results in extensive and sustained PCBP2 gene silencing activity in HSC-T6 rat hepatic stellate cells. Neutravidin-based nanocomplex shows significantly low exocytosis in comparison to the streptavidin-based nanocomplex. Avidin-, neutravidin-, and streptavidin-based nanocomplexes are similar in size and had no significant cytotoxicity in transfected HSC-T6 cells or inflammatory cytokine induction in a whole blood assay. Compared to free siRNA, the neutravidin-based siRNA nanocomplex exhibits higher accumulation at 2 h in the liver of the rats with CCl4-induced liver fibrosis. Neutravidin has therefore been shown to be the most promising avidin analogue for the delivery of siRNA.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|