1
|
Lin M, Xu X, Zhou X, Feng H, Wang R, Yang Y, Li J, Fan N, Jiang Y, Li X, Guan F, Tan Z. Sialylation on vesicular integrin β1 determined endocytic entry of small extracellular vesicles into recipient cells. Cell Mol Biol Lett 2024; 29:46. [PMID: 38561669 PMCID: PMC10983696 DOI: 10.1186/s11658-024-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin β1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin β1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin β1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin β1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.
Collapse
Affiliation(s)
- Meixuan Lin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoqiang Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoman Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Hui Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Ruili Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Yunyun Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Yazhuo Jiang
- Department of Urology, Provincial People's Hospital, Xi'an, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Zengqi Tan
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Ibáñez-Molero S, Pruijs JTM, Atmopawiro A, Wang F, Terry AM, Altelaar M, Peeper DS, Stecker KE. Phosphoprotein dynamics of interacting T cells and tumor cells by HySic. Cell Rep 2024; 43:113598. [PMID: 38150364 DOI: 10.1016/j.celrep.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Functional interactions between cytotoxic T cells and tumor cells are central to anti-cancer immunity. However, our understanding of the proteins involved is limited. Here, we present HySic (hybrid quantification of stable isotope labeling by amino acids in cell culture [SILAC]-labeled interacting cells) as a method to quantify protein and phosphorylation dynamics between and within physically interacting cells. Using co-cultured T cells and tumor cells, we directly measure the proteome and phosphoproteome of engaged cells without the need for physical separation. We identify proteins whose abundance or activation status changes upon T cell:tumor cell interaction and validate our method with established signal transduction pathways including interferon γ (IFNγ) and tumor necrosis factor (TNF). Furthermore, we identify the RHO/RAC/PAK1 signaling pathway to be activated upon cell engagement and show that pharmacologic inhibition of PAK1 sensitizes tumor cells to T cell killing. Thus, HySic is a simple method to study rapid protein signaling dynamics in physically interacting cells that is easily extended to other biological systems.
Collapse
Affiliation(s)
- Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Joannes T M Pruijs
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands
| | - Alisha Atmopawiro
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fujia Wang
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alexandra M Terry
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands; Oncode Institute, 3521 AL Utrecht, the Netherlands.
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
3
|
Jiang P, Peng W, Zhao J, Goli M, Huang Y, Li Y, Mechref Y. Glycan/Protein-Stable Isotope Labeling in Cell Culture for Enabling Concurrent Quantitative Glycomics/Proteomics/Glycoproteomics. Anal Chem 2023; 95:16059-16069. [PMID: 37843510 DOI: 10.1021/acs.analchem.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The complexity and heterogeneity of protein glycosylation present an analytical challenge to the studies of characterization and quantitation. Various LC-MS-based quantitation strategies have emerged in recent decades. Metabolic stable isotope labeling has been developed to enhance the accurate LC/MS-based quantitation between different cell lines. Stable isotope labeling by amino acids in a cell culture (SILAC) is the most widely used metabolic labeling method in proteomic analysis. However, it can only label the peptide backbone and is thus limited in glycomic studies. Here, we present a metabolic isotope labeling strategy, named GlyProSILC (Glycan Protein Stable Isotope Labeling in Cell Culture), that can label both the glycan motif and peptide backbone from the same batch of cells. It was performed by feeding cells with a heavy medium containing amide-15N-glutamine, 13C6-arginine (Arg6), and 13C6-15N2-lysine (Lys8). No significant change of cell line metabolism after GlyProSILC labeling was observed based on transcriptomic, glycomic, and proteomic data. The labeling conditions, labeling efficiency, and quantitation accuracy were investigated. After quantitation correction, we simultaneously quantified 62 N-glycans, 574 proteins, and 344 glycopeptides using the same batch of mixed 231BR/231 cell lines. So far, GlyProSILC provides an accurate and effective quantitation approach for glycomics, proteomics, and glycoproteomics in a cell culture system.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, Texas 76204, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Qi Y, Hu M, Han C, Wang J, Chen F, Guo H, She Y, Zhang M, Zhang J, Zhao Z, Xie H, Wang S, Chen M, Wang J, Zeng D. ARHGAP4 promotes leukemogenesis in acute myeloid leukemia by inhibiting DRAM1 signaling. Oncogene 2023; 42:2547-2557. [PMID: 37443303 DOI: 10.1038/s41388-023-02770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Rho GTPase-activating protein 4 (ARHGAP4) is an important Rho family GTPase-activating protein that is strongly associated with the onset and progression of some tumors. We found that ARHGAP4 mRNA and protein are overexpressed in human acute myeloid leukemia (AML) patients and are associated with a poor prognosis. ARHGAP4 knockdown significantly impairs viability and colony formation capacity and induces apoptosis in AML cells. Further results demonstrate that ARHGAP4 deletion impairs AML progression in vivo. Interestingly, DRAM1 signaling is significantly activated in AML cells with ARHGAP4 knockdown. Our results also indicated that ARHGAP4 might function in AML cells by binding with p53 to inhibit DRAM1. Moreover, knockdown of DRAM1 rescues the defects of ARHGAP4 in AML cells. This newly described role of the ARHGAP4/DRAM1 axis in regulating AML progression may have important therapeutic implications.
Collapse
Affiliation(s)
- Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Hui Guo
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China.
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
5
|
Gonga-Cavé BC, Pena Diaz AM, O'Gorman DB. Biomimetic analyses of interactions between macrophages and palmar fascia myofibroblasts derived from Dupuytren's disease reveal distinct inflammatory cytokine responses. Wound Repair Regen 2021; 29:627-636. [PMID: 34212454 DOI: 10.1111/wrr.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
Dupuytren's disease (DD) is a common and heritable fibrosis of the hand. It is characterized by the shortening and thickening of the palmar fascia into myofibroblastic nodules that can progress to palmar-digital contractures and permanent loss of dexterity. Molecular analyses of DD tissues and the presence of inflammatory cell infiltrates suggest a pathogenesis initiated by a proinflammatory fascial milieu that promotes myofibroblast activation and palmar fascia contractures. However, the relative contributions of vascular and/or tissue derived immune system cells and cytokine-sensitive stromal myofibroblasts to the development of this proinflammatory microenvironment are poorly understood. To gain insights into this process, we have developed and tested a collagen-based 3D tissue biomimetic co-culture system to assess paracrine interactions between THP-1-derived pro-inflammatory macrophages and primary human palmar fascia myofibroblasts (PFMs). We observed significant and reproducible impacts of collagen-adherent macrophage and PFM co-cultures on the cytokine gene expression profiles of these cells compared to their respective monocultures, and significant changes to the resulting cytokine milieu in their shared culture media, notably TNF and IL-6. Our findings are consistent with central roles for PFMs in cytokine production and immunoregulation of the pro-inflammatory milieu hypothesized to promote DD development.
Collapse
Affiliation(s)
- Brianna C Gonga-Cavé
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Ana Maria Pena Diaz
- Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, London, Ontario, Canada
| | - David B O'Gorman
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.,Department of Surgery, University of Western Ontario, London, Ontario, Canada.,Roth McFarlane Hand and Upper Limb Centre, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
A Small Molecule Stabilizer of the MYC G4-Quadruplex Induces Endoplasmic Reticulum Stress, Senescence and Pyroptosis in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102952. [PMID: 33066043 PMCID: PMC7650714 DOI: 10.3390/cancers12102952] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The DNA G-quadruplex (G4) present in the promoter of the MYC oncogene, commonly amplified in cancers, including multiple myeloma, represents a potential anti-cancer target. A previously identified MYC G4-stablizer, which demonstrated cytotoxicity and senescence in myeloma cells, was discovered to induce endoplasmic reticulum stress and non-apoptotic cell death, pyroptosis. Cancers including myeloma escape apoptosis through upregulation of anti-apoptotic proteins and drug resistance; therefore, induction of pyroptosis provides an alternate therapeutic option. Thus, our study provides a disease-specific experimental strategy for identifying new investigational drugs in cancer treatment. Abstract New approaches to target MYC include the stabilization of a guanine-rich, G-quadruplex (G4) tertiary DNA structure in the NHE III region of its promoter. Recent screening of a small molecule microarray platform identified a benzofuran, D089, that can stabilize the MYC G4 and inhibit its transcription. D089 induced both dose- and time-dependent multiple myeloma cell death mediated by endoplasmic reticulum induced stress. Unexpectedly, we uncovered two mechanisms of cell death: cellular senescence, as evidenced by increased levels of p16, p21 and γ-H2AX proteins and a caspase 3-independent mechanism consistent with pyroptosis. Cells treated with D089 exhibited high levels of the cleaved form of initiator caspase 8; but failed to show cleavage of executioner caspase 3, a classical apoptotic marker. Cotreatment with the a pan-caspase inhibitor Q-VD-OPh did not affect the cytotoxic effect of D089. In contrast, cleaved caspase 1, an inflammatory caspase downstream of caspases 8/9, was increased by D089 treatment. Cells treated with D089 in addition to either a caspase 1 inhibitor or siRNA-caspase 1 showed increased IC50 values, indicating a contribution of cleaved caspase 1 to cell death. Downstream effects of caspase 1 activation after drug treatment included increases in IL1B, gasdermin D cleavage, and HMGB1 translocation from the nucleus to the cytoplasm. Drug treated cells underwent a ‘ballooning’ morphology characteristic of pyroptosis, rather than ‘blebbing’ typically associated with apoptosis. ASC specks colocalized with NLRP3 in proximity ligation assays after drug treatment, indicating inflammasome activation and further confirming pyroptosis as a contributor to cell death. Thus, the small molecule MYC G4 stabilizer, D089, provides a new tool compound for studying pyroptosis. These studies suggest that inducing both tumor senescence and pyroptosis may have therapeutic potential for cancer treatment.
Collapse
|
7
|
Malo Estepa I, Tinning H, Rosas Vasconcelos EJ, Fernandez-Fuertes B, Sánchez JM, Burns GW, Spencer TE, Lonergan P, Forde N. Protein Synthesis by Day 16 Bovine Conceptuses during the Time of Maternal Recognition of Pregnancy. Int J Mol Sci 2020; 21:ijms21082870. [PMID: 32325999 PMCID: PMC7215316 DOI: 10.3390/ijms21082870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Tau (IFNT), the conceptus-derived pregnancy recognition signal in cattle, significantly modifies the transcriptome of the endometrium. However, the endometrium also responds to IFNT-independent conceptus-derived products. The aim of this study was to determine what proteins are produced by the bovine conceptus that may facilitate the pregnancy recognition process in cattle. We analysed by mass spectrometry the proteins present in conceptus-conditioned media (CCM) after 6 h culture of Day 16 bovine conceptuses (n = 8) in SILAC media (arginine- and lysine-depleted media supplemented with heavy isotopes) and the protein content of extracellular vesicles (EVs) isolated from uterine luminal fluid (ULF) of Day 16 pregnant (n = 7) and cyclic (n = 6) cross-bred heifers on day 16. In total, 11,122 proteins were identified in the CCM. Of these, 5.95% (662) had peptides with heavy labelled amino acids, i.e., de novo synthesised by the conceptuses. None of these proteins were detected in the EVs isolated from ULF. Pregnancy-associated glycoprotein 11, Trophoblast Kunitz domain protein 1 and DExD-Box Helicase 39A were de novo produced and present in the CCM from all conceptuses and in previously published CCM data following 6 and 24 h. A total of 463 proteins were present in the CCM from all the conceptuses in the present study, and after 6 and 24 h culture in a previous study, while expression of their transcripts was not detected in endometrium indicating that they are likely conceptus-derived. Of the proteins present in the EVs, 67 were uniquely identified in ULF from pregnant heifers; 35 of these had been previously reported in CCM from Day 16 conceptuses. This study has narrowed a set of conceptus-derived proteins that may be involved in EV-mediated IFNT-independent embryo–maternal communication during pregnancy recognition in cattle.
Collapse
Affiliation(s)
- Irene Malo Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
| | | | - Beatriz Fernandez-Fuertes
- Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Gregory W. Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (G.W.B.); (T.E.S.)
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (J.M.S.); (P.L.)
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, West Yorkshire LS2 9JT, UK; (I.M.E.); (H.T.)
- Correspondence:
| |
Collapse
|