1
|
Zhang H, Fan Y, Li H, Feng X, Yue D. Genetic association of serum lipids and lipid-modifying targets with endometriosis: Trans-ethnic Mendelian-randomization and mediation analysis. PLoS One 2024; 19:e0301752. [PMID: 38820493 PMCID: PMC11142702 DOI: 10.1371/journal.pone.0301752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Prior observational research identified dyslipidemia as a risk factor for endometriosis (EMS) but the causal relationship remains unestablished due to inherent study limitations. METHODS Genome-wide association study data for high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and total cholesterol (TC) from European (EUR) and East Asian (EAS) ancestries were sourced from the Global Lipids Genetics Consortium. Multi-ancestry EMS data came from various datasets. Univariable Mendelian randomization (MR) examined causal links between serum lipids and EMS. Multivariable and mediation MR explored the influence of seven confounding factors and mediators. Drug-target MR investigates the association between lipid-lowering target genes identified in positive results and EMS. The primary method was inverse-variance weighted (IVW), with replication datasets and meta-analyses reinforcing causal associations. Sensitivity analyses included false discovery rate (FDR) correction, causal analysis using summary effect estimates (CAUSE), and colocalization analysis. RESULTS IVW analysis in EUR ancestry showed a significant causal association between TG and increased EMS risk (OR = 1.112, 95% CI 1.033-1.198, P = 5.03×10-3, PFDR = 0.03), supported by replication and meta-analyses. CAUSE analysis confirmed unbiased results (P < 0.05). Multivariable and mediation MR revealed that systolic blood pressure (Mediation effect: 7.52%, P = 0.02) and total testosterone (Mediation effect: 10.79%, P = 0.01) partly mediated this relationship. No causal links were found between other lipid traits and EMS (P > 0.05 & PFDR > 0.05). In EAS ancestry, no causal relationships with EMS were detected (P > 0.05 & PFDR > 0.05). Drug-target MR indicated suggestive evidence for the influence of ANGPTL3 on EMS mediated through TG (OR = 0.798, 95% CI 0.670-0.951, P = 0.01, PFDR = 0.04, PP.H4 = 0.85%). CONCLUSIONS This MR study in EUR ancestry indicated an increased EMS risk with higher serum TG levels.
Collapse
Affiliation(s)
- Hongling Zhang
- Gynecology Department of Tongji Hospital, Tongji Medical-College, HUST, Wuhan, Hubei, China
| | - Yawei Fan
- General Surgery of Tongji Hospital, Tongji Medical-College, HUST, Wuhan, Hubei, China
| | - Huijun Li
- The Laboratory Medicine Department of Tongji Hospital, Tongji Medical-College, HUST, Wuhan, Hubei, China
| | - Xiaoqing Feng
- Gynecology Department of Tongji Hospital, Tongji Medical-College, HUST, Wuhan, Hubei, China
| | - Daoyuan Yue
- The Laboratory Medicine Department of Tongji Hospital, Tongji Medical-College, HUST, Wuhan, Hubei, China
| |
Collapse
|
2
|
Su X, Xu Q, Li Z, Ren Y, Jiao Q, Wang L, Wang Y. Role of the angiopoietin-like protein family in the progression of NAFLD. Heliyon 2024; 10:e27739. [PMID: 38560164 PMCID: PMC10980950 DOI: 10.1016/j.heliyon.2024.e27739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of chronic liver disease, with a range of conditions including non-alcoholic fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). Currently recognized as the liver component of the metabolic syndrome, NAFLD is intimately linked to metabolic diseases. Angiopoietin-like proteins (ANGPTLs) comprise a class of proteins that resemble angiopoietins structurally. It is closely related to obesity, insulin resistance and lipid metabolism, and may be the critical factor of metabolic syndrome. In recent years, many studies have found that there is a certain correlation between ANGPTLs and the occurrence and progression of NAFLD disease spectrum. This article reviews the possible mechanisms and roles of ANGPTL protein in the pathogenesis and progression of NAFLD.
Collapse
Affiliation(s)
- Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong Province, China
| |
Collapse
|
3
|
He L, Xie Y, Qiu Y, Zhang Y. Pan-Cancer Profiling and Digital Pathology Analysis Reveal Negative Prognostic Biomarker ZPR1 Associated with Immune Infiltration and Treatment Response in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1309-1325. [PMID: 37581094 PMCID: PMC10423584 DOI: 10.2147/jhc.s415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Purpose ZPR1 is a zinc finger-containing protein that plays a crucial role in neurodegenerative diseases, lipid metabolism disorders, and non-alcoholic fatty liver disease. However, the expression pattern, prognostic value, and treatment response of ZPR1 in pan-cancer and hepatocellular carcinoma (HCC) remain unclear. Patients and Methods Pan-cancer expression profiles and relevant clinical data were acquired from UCSC Xena platform. Pan-cancer expression, epigenetic profile, and clinical correlation analysis for ZPR1 were performed. We next explored the prognostic significance and potential biological functions of ZPR1 in HCC. Furthermore, the relationship between ZPR1 and immune infiltration and treatment response was investigated. Finally, quantitative immunohistochemistry (IHC) analysis was applied to assess the correlation of ZPR1 expression and immune microenvironment in HCC tissues using Qupath software. Results ZPR1 was differentially expressed in most tumor types and significantly up-regulated in HCC. ZPR1 showed hypo-methylated status in most tumors. Pan-cancer correlation analysis indicated that ZPR1 was closely associated with clinicopathological factors and TMB, MSI, and stemness index in HCC. High ZPR1 expression could be an independent risk factor for adverse prognosis in HCC. ZPR1 correlated with immune cell infiltration and therapeutic response. Finally, IHC results suggested that ZPR1 correlated with CD4, CD56, CD68, and PD-L1 expression and is a promising pathological diagnostic marker in HCC. Conclusion Immune infiltrate-associated ZPR1 could be considered a novel negative prognostic biomarker for therapeutic response in HCC.
Collapse
Affiliation(s)
- Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| | - Yusai Xie
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, Liaoning, 110016, People’s Republic of China
| | - Yusong Qiu
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, 110042, People’s Republic of China
| |
Collapse
|
4
|
Zong B, Wang Y, Wang J, Zhang P, Kan G, Li M, Feng J, Wang Y, Chen X, Jin R, Ge Q. Effects of long-term simulated microgravity on liver metabolism in rhesus macaques. FASEB J 2022; 36:e22536. [PMID: 36070186 DOI: 10.1096/fj.202200544rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
The liver is an essential multifunctional organ and constantly communicates with nearly all the tissues in the body. Spaceflight or simulated microgravity has a significant impact on the livers of rodent models, including lipid accumulation and inflammatory cell infiltration. Whether similar liver lipotoxicity could occur in humans is not known, even though altered circulating cholesterol profile has been reported in astronauts. Using a 42-day head-down bed rest (HDBR) model in rhesus macaques, the present study investigated whether simulated microgravity alters the liver of non-human primates at the transcriptome and metabolome levels. Its association with stress and intestinal changes was also explored. Compared to the controls, the HDBR monkeys showed mild liver injury, elevated ANGPTL3 level in the plasma, and accumulation of fat vacuoles and inflammatory cells in the liver. Altered transcriptome signatures with up-regulation of genes in lipid metabolisms and down-regulation of genes in innate immune defense were also found in HDBR group-derived liver samples. The metabolic profiling of the liver revealed mildly disturbed fatty acid metabolism in the liver of HDBR monkeys. The intestinal dysbiosis, its associated endotoxemia and changes in the composition of bile acids, and elevated stress hormone in HDBR monkeys may contribute to the altered lipid metabolisms in the liver. These data indicate that liver metabolic functions and gut-liver axis should be closely monitored in prolonged spaceflight to facilitate strategy design to improve and maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Mingyang Li
- Immunology Research Center, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yifan Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China.,National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
5
|
The Association Between rs1748195 and rs11207997 Variants of the ANGPTL3 Gene and Susceptibility to Cardiovascular Disease in the MASHAD Cohort Study. Biochem Genet 2021; 60:738-754. [PMID: 34417926 DOI: 10.1007/s10528-021-10122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
There is a strong genetic predisposition to cardiovascular disease (CVD). Loss-of-function variants of the angiopoietin-like 3 (ANGPTL3) gene have been reported to be associated with several lipid-related CVD risk factors that include serum high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) level, and total cholesterol (TC). We aimed to determine the association of two genetic variants, rs1748195 and rs11207997, of the ANGPTL3 locus and CVD risk in the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) cohort study. The participants were 1002 individuals in the MASHAD cohort, with or without CVD, during the 6 years of follow-up. The subjects were categorized into two groups according to serum HDL concentration. DNA was extracted by the routine salting-out method, and genotyping of rs1748195 and rs11207997 variants of the ANGPTL3 gene was performed using the ARMS PCR method. Univariate and multivariate statistical analysis was used to assess the two gene variants' association with incident CVD and baseline lipid profile. There was a significant relationship between rs1748195 GG genotype and CVD risk in the individuals with a normal serum HDL-C. There was a significant association between the CT genotype of the rs11207997 polymorphism and CVD risk in individuals with a low serum HDL-C. Furthermore, carriers of the GG genotype of the rs1748195 and CT genotype of rs11207997 variant of ANGPTL3 had a higher risk of developing CVD disease. We have shown that the 1748195(GG) and 11207997(CT) gene variants of the ANGPTL3 locus are associated with an increased risk of CVD in an Iranian population sample.
Collapse
|
6
|
Bea AM, Franco-Marín E, Marco-Benedí V, Jarauta E, Gracia-Rubio I, Cenarro A, Civeira F, Lamiquiz-Moneo I. ANGPTL3 gene variants in subjects with familial combined hyperlipidemia. Sci Rep 2021; 11:7002. [PMID: 33772079 PMCID: PMC7997994 DOI: 10.1038/s41598-021-86384-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) plays an important role in lipid metabolism in humans. Loss-of-function variants in ANGPTL3 cause a monogenic disease named familial combined hypolipidemia. However, the potential contribution of ANGPTL3 gene in subjects with familial combined hyperlipidemia (FCHL) has not been studied. For that reason, the aim of this work was to investigate the potential contribution of ANGPTL3 in the aetiology of FCHL by identifying gain-of-function (GOF) genetic variants in the ANGPTL3 gene in FCHL subjects. ANGPTL3 gene was sequenced in 162 unrelated subjects with severe FCHL and 165 normolipemic controls. Pathogenicity of genetic variants was predicted with PredictSNP2 and FruitFly. Frequency of identified variants in FCHL was compared with that of normolipemic controls and that described in the 1000 Genomes Project. No GOF mutations in ANGPTL3 were present in subjects with FCHL. Four variants were identified in FCHL subjects, showing a different frequency from that observed in normolipemic controls: c.607-109T>C, c.607-47_607-46delGT, c.835+41C>A and c.*52_*60del. This last variant, c.*52_*60del, is a microRNA associated sequence in the 3′UTR of ANGPTL3, and it was present 2.7 times more frequently in normolipemic controls than in FCHL subjects. Our research shows that no GOF mutations in ANGPTL3 were found in a large group of unrelated subjects with FCHL.
Collapse
Affiliation(s)
- A M Bea
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - E Franco-Marín
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - V Marco-Benedí
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - E Jarauta
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - I Gracia-Rubio
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain
| | - A Cenarro
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain. .,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain.
| | - F Civeira
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - I Lamiquiz-Moneo
- Unidad de Lípidos, IIS Aragón, CIBERCV, Hospital Universitario Miguel Servet, Avda. Isabel La Católica 1-3, 50009, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Bini S, D’Erasmo L, Di Costanzo A, Minicocci I, Pecce V, Arca M. The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? Int J Mol Sci 2021; 22:ijms22020742. [PMID: 33451033 PMCID: PMC7828552 DOI: 10.3390/ijms22020742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022] Open
Abstract
Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders.
Collapse
|
8
|
Vatannejad A, Salimi F, Moradi N, Fouani FZ, Zandieh Z, Ansaripour S, Sadeghi A, Fadaei R. Evaluation of angiopoietin-like protein 3 (ANGPTL3) levels in polycystic ovary syndrome. Life Sci 2020; 263:118595. [PMID: 33075372 DOI: 10.1016/j.lfs.2020.118595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
AIM Angiopoietin-like protein 3 (ANGPTL3) is recognized as a regulator of lipid metabolism. However, little is known about its association with insulin resistance in polycystic ovary syndrome (PCOS) setting. The present study aimed to investigate the serum levels of ANGPTL3 and adiponectin in PCOS women compared to healthy controls. MAIN METHOD In this study, a total of 175 premenopausal women (117 PCOS and 58 non-PCOS) were enrolled. Serum concentrations of ANGPTL3, adiponectin, fasting insulin, and other hormonal variables were measured using ELISA technique. KEY FINDINGS Results showed that adiponectin levels were significantly lower in PCOS group than those of non-PCOS group. However, serum levels of ANGPTL3, high-sensitivity C-reactive protein (hs-CRP), and homocysteine (Hcy) were found to be higher in PCOS patients, when compared to non-PCOS ones. Moreover, serum ANGPTL3 positively correlated with BMI and serum triglyceride, while it inversely correlated with serum HDL-C in PCOS patients. SIGNIFICANCE Our results demonstrated that increased levels of ANGPTL3 correlated with insulin resistance and dyslipidemia in PCOS patients, highlighting the need for future studies targeting its role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatima Zahraa Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Chan MY, Efthymios M, Tan SH, Pickering JW, Troughton R, Pemberton C, Ho HH, Prabath JF, Drum CL, Ling LH, Soo WM, Chai SC, Fong A, Oon YY, Loh JP, Lee CH, Foo RSY, Ackers-Johnson MA, Pilbrow A, Richards AM. Prioritizing Candidates of Post-Myocardial Infarction Heart Failure Using Plasma Proteomics and Single-Cell Transcriptomics. Circulation 2020; 142:1408-1421. [PMID: 32885678 PMCID: PMC7547904 DOI: 10.1161/circulationaha.119.045158] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Heart failure (HF) is the most common long-term complication of acute myocardial infarction (MI). Understanding plasma proteins associated with post-MI HF and their gene expression may identify new candidates for biomarker and drug target discovery. Methods: We used aptamer-based affinity-capture plasma proteomics to measure 1305 plasma proteins at 1 month post-MI in a New Zealand cohort (CDCS [Coronary Disease Cohort Study]) including 181 patients post-MI who were subsequently hospitalized for HF in comparison with 250 patients post-MI who remained event free over a median follow-up of 4.9 years. We then correlated plasma proteins with left ventricular ejection fraction measured at 4 months post-MI and identified proteins potentially coregulated in post-MI HF using weighted gene co-expression network analysis. A Singapore cohort (IMMACULATE [Improving Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling]) of 223 patients post-MI, of which 33 patients were hospitalized for HF (median follow-up, 2.0 years), was used for further candidate enrichment of plasma proteins by using Fisher meta-analysis, resampling-based statistical testing, and machine learning. We then cross-referenced differentially expressed proteins with their differentially expressed genes from single-cell transcriptomes of nonmyocyte cardiac cells isolated from a murine MI model, and single-cell and single-nucleus transcriptomes of cardiac myocytes from murine HF models and human patients with HF. Results: In the CDCS cohort, 212 differentially expressed plasma proteins were significantly associated with subsequent HF events. Of these, 96 correlated with left ventricular ejection fraction measured at 4 months post-MI. Weighted gene co-expression network analysis prioritized 63 of the 212 proteins that demonstrated significantly higher correlations among patients who developed post-MI HF in comparison with event-free controls (data set 1). Cross-cohort meta-analysis of the IMMACULATE cohort identified 36 plasma proteins associated with post-MI HF (data set 2), whereas single-cell transcriptomes identified 15 gene-protein candidates (data set 3). The majority of prioritized proteins were of matricellular origin. The 6 most highly enriched proteins that were common to all 3 data sets included well-established biomarkers of post-MI HF: N-terminal B-type natriuretic peptide and troponin T, and newly emergent biomarkers, angiopoietin-2, thrombospondin-2, latent transforming growth factor-β binding protein-4, and follistatin-related protein-3, as well. Conclusions: Large-scale human plasma proteomics, cross-referenced to unbiased cardiac transcriptomics at single-cell resolution, prioritized protein candidates associated with post-MI HF for further mechanistic and clinical validation.
Collapse
Affiliation(s)
- Mark Y Chan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | - Motakis Efthymios
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore (M.E., R.S.Y.F., M.A.A.-J.)
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.)
| | - John W Pickering
- Christchurch Heart Institute, Department of Medicine, University of Otago, New Zealand (J.W.P., R.T., C.P., A.P., A.M.R.)
| | - Richard Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago, New Zealand (J.W.P., R.T., C.P., A.P., A.M.R.)
| | - Christopher Pemberton
- Christchurch Heart Institute, Department of Medicine, University of Otago, New Zealand (J.W.P., R.T., C.P., A.P., A.M.R.)
| | - Hee-Hwa Ho
- Tan Tock Seng Hospital, Singapore (H.-H.H., J.-F.P.)
| | | | - Chester L Drum
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | - Lieng Hsi Ling
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | - Wern-Miin Soo
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | | | - Alan Fong
- Sarawak Heart Institute, Kuching, Malaysia (A.F., Y.-Y.O.)
| | - Yen-Yee Oon
- Sarawak Heart Institute, Kuching, Malaysia (A.F., Y.-Y.O.)
| | - Joshua P Loh
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | - Chi-Hang Lee
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.)
| | - Roger S Y Foo
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.).,Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore (M.E., R.S.Y.F., M.A.A.-J.)
| | - Matthew Andrew Ackers-Johnson
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore (M.E., R.S.Y.F., M.A.A.-J.)
| | - Anna Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago, New Zealand (J.W.P., R.T., C.P., A.P., A.M.R.)
| | - A Mark Richards
- Department of Medicine, Yong Loo-Lin School of Medicine, National University of Singapore (M.Y.C., M.E., S.H.T., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., M.A.A.-J., A.M.R.).,National University Heart Centre, National University Health System, Singapore (M.Y.C., C.L.D., L.H.L., W.-M.S., J.P.L., C.-H.L., R.S.Y.F., A.M.R.).,Changi General Hospital, Singapore (S.-C.C.)
| |
Collapse
|
10
|
Ruhanen H, Haridas PAN, Jauhiainen M, Olkkonen VM. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158791. [PMID: 32777482 DOI: 10.1016/j.bbalip.2020.158791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Angiopoietin-like protein-3 (ANGPTL3) is emerging as a key player in lipoprotein transport with an expanding role on fatty acid and glucose metabolism. Its deficiency is associated with a favorable metabolic profile. The present review will highlight the recent understanding of metabolic and cardiovascular consequences of ANGPTL3 inactivation by considering both genetic and pharmacological investigations. RECENT FINDINGS Experimental studies have further illustrated the complex interplay between ANGPTL3 and ANGPTL4-8 in orchestrating lipid transport in different nutritional status. Individuals with familial combined hypolipidemia due to homozygous loss-of-function mutations in ANGPTL3 gene showed improved metabolism of triglyceride-rich lipoproteins during fasting and postprandial state and increased fatty acid oxidation and insulin sensitivity. Moreover, mendelian randomizations studies demonstrated that partial ANGPTL3 deficiency associates with reduced risk of atherosclerotic cardiovascular events and, eventually, diabetes mellitus. Finally, inactivation of ANGPTL3, using either a specific mAb or antisense oligonucleotide, was reported to reduce plasma levels of atherogenic lipoprotein in humans and improve hepatic fat infiltration in animal models. SUMMARY Human and animal studies have further dissected the complex role of ANGPTL3 in the regulation of energy substrate metabolism. Moreover, genetic and pharmacological investigations have convincingly indicated that the inactivation of ANGPTL3 may be a very promising strategy to treat atherogenic metabolic disorders.
Collapse
Affiliation(s)
- Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | | |
Collapse
|
12
|
Li J, Li L, Guo D, Li S, Zeng Y, Liu C, Fu R, Huang M, Xie W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin Chim Acta 2020; 503:19-34. [PMID: 31923423 DOI: 10.1016/j.cca.2019.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Hypertriglyceridemia is a risk factor for a series of diseases, such as cardiovascular disease (CVD), diabetes and nonalcoholic fatty liver disease (NAFLD). Angiopoietin-like proteins (ANGPTLs) family, especially ANGPTL3, ANGPTL4 and ANGPTL8, which regulate lipoprotein lipase (LPL) activity, play pivotal roles in triglyceride (TG) metabolism and related diseases/complications. There are many transcriptional and post-transcriptional factors that participate in physiological and pathological regulation of ANGPTLs to affect triglyceride metabolism. This review is intended to focus on the similarity and difference in the expression, structural features, regulation profile of the three ANGPTLs and inhibitory models for LPL. Description of the regulatory factors of ANGPTLs and the properties in regulating the lipid metabolism involved in the underlying mechanisms in pathological effects on diseases will provide potential therapeutic approaches for the treatment of dyslipidemia related diseases.
Collapse
Affiliation(s)
- Jing Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - DongMing Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - SuYun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - YuXin Zeng
- 2018 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - ChuHao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ru Fu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - MengQian Huang
- 2015 Class of Clinical Medicine, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
13
|
Dai R, Liu H, Han X, Liu J, Zhai Y, Rao J, Shen Q, Xu H. Angiopoietin-like-3 knockout protects against glomerulosclerosis in murine adriamycin-induced nephropathy by attenuating podocyte loss. BMC Nephrol 2019; 20:185. [PMID: 31126248 PMCID: PMC6533758 DOI: 10.1186/s12882-019-1383-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Angiopoietin-like-3 (Angptl3) knockout is known for its protective effects on podocyte injury and proteinuria in the early stage of adriamycin (ADR) nephropathy. The current study re-evaluated the renoprotective effect of Angptl3 knockout in chronic ADR nephropathy and attempted to explore the mechanism underlying the effect associated with Angptl3 knockout in glomerulosclerosis. Methods B6; 129S5 mice were injected with ADR to induce nephropathy. Kidney structure and serum and urine parameters were observed during long-term follow-up. Cultured primary mouse podocytes were exposed to ADR and analyzed for the expression of some relative proteins. Podocyte loss was analyzed in both in vivo and in vitro experiments. Results Angptl3 knockout attenuated proteinuria and hypoproteinemia, protected renal structure and function, and improved the survival of mice over the whole process of ADR nephropathy. Furthermore, Angptl3 knockout reduced the numbers of the detached and apoptotic cells in the renal tissue and alleviated podocyte loss in mice with ADR chronic nephropathy, thereby, delaying the glomerulosclerosis formation. Additional results in vitro showed that Angptl3 knockout attenuated ADR-induced primary podocyte loss, including podocyte detachment and apoptosis. Conclusion In addition to serving a renoprotective role in the early stage of ADR nephropathy, Angptl3 knockout contributed to disease amelioration throughout the ADR nephropathy process. Angptl3 knockout effectively delayed glomerulosclerosis formation by attenuating podocyte loss through rescuing podocytes from detachment and apoptosis. Angptl3 antagonists or inhibitors might have therapeutic potential in the occurrence and progression of nephropathy. Electronic supplementary material The online version of this article (10.1186/s12882-019-1383-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rufeng Dai
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| | - Haimei Liu
- Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China.,Department of Rheumatism, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xinli Han
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| | - Junchao Liu
- Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China.,Department of Chinese Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yihui Zhai
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Shanghai Kidney Development & Pediatric Kidney Disease Research Center, Shanghai, 201102, China.
| |
Collapse
|
14
|
Valsesia A, Kulkarni SS, Marquis J, Leone P, Mironova P, Walter O, Hjorth MF, Descombes P, Hager J, Saris WH, Astrup A, Darimont C, O'Callaghan NJ. Salivary α-amylase copy number is not associated with weight trajectories and glycemic improvements following clinical weight loss: results from a 2-phase dietary intervention study. Am J Clin Nutr 2019; 109:1029-1037. [PMID: 30982860 DOI: 10.1093/ajcn/nqy363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Several studies recently reported contradicting results regarding the link between amylase 1 (AMY1) copy numbers (CNs), obesity, and type 2 diabetes. OBJECTIVE The aim of this study was to assess the impact of AMY1 CN on anthropometrics and glycemic outcomes in obese individuals following a 2-phase dietary weight loss intervention. METHODS Using the paralog ratio test, AMY1 CNs were accurately measured in 761 obese individuals from the DiOGenes study. Subjects first underwent an 8-wk low-calorie diet (LCD, at 800 kcal/d) and then were randomly assigned to a 6-mo weight maintenance dietary (WMD) intervention with arms having different glycemic loads. RESULTS At baseline, a modest association between AMY1 CN and BMI (P = 0.04) was observed. AMY1 CN was not associated with baseline glycemic variables. In addition, AMY1 CN was not associated with anthropometric or glycemic outcomes following either LCD or WMD. Interaction analyses between AMY1 CN and nutrient intake did not reveal any significant association with clinical parameters (at baseline and following LCD or WMD) or when testing gene × WMD interactions during the WMD phase. CONCLUSION In the absence of association with weight trajectories or glycemic improvements, the AMY1 CN cannot be considered as an important biomarker for response to a clinical weight loss and weight maintenance programs in overweight/obese subjects. This trial was registered at www.clinicaltrials.gov as NCT00390637.
Collapse
Affiliation(s)
- Armand Valsesia
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Sameer S Kulkarni
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Julien Marquis
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Patricia Leone
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Polina Mironova
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Ondine Walter
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Mads Fill Hjorth
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Faculty of Science, Copenhagen, Denmark
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Jörg Hager
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Wim H Saris
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arne Astrup
- University of Copenhagen, Department of Nutrition, Exercise and Sports, Faculty of Science, Copenhagen, Denmark
| | - Christian Darimont
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Nathan J O'Callaghan
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.,CSIRO Health & Biosecurity, South Australian Health & Medical Research Institute, Adelaide, Australia
| |
Collapse
|
15
|
Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. DISEASE MARKERS 2019; 2019:6578327. [PMID: 30944669 PMCID: PMC6421734 DOI: 10.1155/2019/6578327] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
Abstract
Angiopoietin-like 3 (ANGPTL3) is a regulator of plasma triglyceride (TRG) levels due to its inhibitory action on the activity of lipoprotein lipase (LPL). ANGPTL3 is proteolytically cleaved by proprotein convertases to generate an active N-terminal domain, which forms a complex with ANGPTL8 orchestrating LPL inhibition. ANGPTL3-4-8 mouse model studies indicate that these three ANGPTL family members play a significant role in partitioning the circulating TRG to specific tissues according to nutritional states. Recent data indicate a positive correlation of ANGPTL3 with plasma glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) in insulin-resistant states. The aim of this review is to critically present the metabolic effects of ANGPTL3, focusing on the possible mechanisms involved in the dysregulation of carbohydrate homeostasis by this protein. Heterozygous and homozygous carriers of ANGPTL3 loss-of-function mutations have reduced risk for type 2 diabetes mellitus. Suggested mechanisms for the implication of ANGPTL3 in carbohydrate metabolism include the (i) increment of free fatty acids (FFAs) owing to the enhancement of lipolysis in adipose tissue, which can induce peripheral as well as hepatic insulin resistance; (ii) promotion of FFA flux to white adipose tissue during feeding, leading to the attenuation of de novo lipogenesis and decreased glucose uptake and insulin sensitivity; (iii) induction of hypothalamic LPL activity in mice, which is highly expressed throughout the brain and is associated with enhanced brain lipid sensing, reduction of food intake, and inhibition of glucose production (however, the effects of ANGPTL3 on hypothalamic LPL in humans need more clarification); and (iv) upregulation of ANGPTL4 expression (owing to the plasma FFA increase), which possibly enhances insulin resistance due to the selective inhibition of LPL in white adipose tissue leading to ectopic lipid accumulation and insulin resistance. Future trials will reveal if ANGPTL3 inhibition could be considered an alternative therapeutic target for dyslipidemia and dysglycemia.
Collapse
|