1
|
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima ST, Furuumi H, Nonomura KI, Sato Y, Ohme-Takagi M, Endo M, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. THE PLANT CELL 2021; 33:85-103. [PMID: 33751094 PMCID: PMC8136911 DOI: 10.1093/plcell/koaa006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/29/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, endosperm development comprises a series of developmental transitions controlled by genetic and epigenetic mechanisms that are initiated after double fertilization. Polycomb repressive complex 2 (PRC2) is a key component of these mechanisms that mediate histone H3 lysine 27 trimethylation (H3K27me3); the action of PRC2 is well described in Arabidopsis thaliana but remains uncertain in cereals. In this study, we demonstrate that mutation of the rice (Oryza sativa) gene EMBRYONIC FLOWER2a (OsEMF2a), encoding a zinc-finger containing component of PRC2, causes an autonomous endosperm phenotype involving proliferation of the central cell nuclei with separate cytoplasmic domains, even in the absence of fertilization. Detailed cytological and transcriptomic analyses revealed that the autonomous endosperm can produce storage compounds, starch granules, and protein bodies specific to the endosperm. These events have not been reported in Arabidopsis. After fertilization, we observed an abnormally delayed developmental transition in the endosperm. Transcriptome and H3K27me3 ChIP-seq analyses using endosperm from the emf2a mutant identified downstream targets of PRC2. These included >100 transcription factor genes such as type-I MADS-box genes, which are likely required for endosperm development. Our results demonstrate that OsEMF2a-containing PRC2 controls endosperm developmental programs before and after fertilization.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Kunisada
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Megumi Nishino
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Saku T Kijima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA 95616, USA
| | - Katsunori Hatakeyama
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Taiji Kawakatsu
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan
- Author for correspondence: (T.Ki.), (K.T.)
| |
Collapse
|
2
|
Liu X, Luo J, Li T, Yang H, Wang P, Su L, Zheng Y, Bao C, Zhou C. SDG711 Is Involved in Rice Seed Development through Regulation of Starch Metabolism Gene Expression in Coordination with Other Histone Modifications. RICE (NEW YORK, N.Y.) 2021; 14:25. [PMID: 33666740 PMCID: PMC7936014 DOI: 10.1186/s12284-021-00467-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 05/22/2023]
Abstract
SDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
| | - Junling Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
3
|
Scheben A, Hojsgaard D. Can We Use Gene-Editing to Induce Apomixis in Sexual Plants? Genes (Basel) 2020; 11:E781. [PMID: 32664641 PMCID: PMC7397034 DOI: 10.3390/genes11070781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Apomixis, the asexual formation of seeds, is a potentially valuable agricultural trait. Inducing apomixis in sexual crop plants would, for example, allow breeders to fix heterosis in hybrid seeds and rapidly generate doubled haploid crop lines. Molecular models explain the emergence of functional apomixis, i.e., apomeiosis + parthenogenesis + endosperm development, as resulting from a combination of genetic or epigenetic changes that coordinate altered molecular and developmental steps to form clonal seeds. Apomixis-like features and synthetic clonal seeds have been induced with limited success in the sexual plants rice and maize by using gene editing to mutate genes related to meiosis and fertility or via egg-cell specific expression of embryogenesis genes. Inducing functional apomixis and increasing the penetrance of apomictic seed production will be important for commercial deployment of the trait. Optimizing the induction of apomixis with gene editing strategies that use known targets as well as identifying alternative targets will be possible by better understanding natural genetic variation in apomictic species. With the growing availability of genomic data and precise gene editing tools, we are making substantial progress towards engineering apomictic crops.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| |
Collapse
|