1
|
Ghazy MI, El-Naem SA, Hefeina AG, Sallam A, Eltaher S. Genome-Wide Association Study of Rice Diversity Panel Reveals New QTLs for Tolerance to Water Deficit Under the Egyptian Conditions. RICE (NEW YORK, N.Y.) 2024; 17:29. [PMID: 38649523 PMCID: PMC11035518 DOI: 10.1186/s12284-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Drought has a significant impact on rice yield by restricting the crop's ability to grow and develop. Producing rice cultivars adapted to water deficit conditions is still the main interest of rice breeders and geneticists. To address this challenge, a set of 413 highly diverse rice populations were evaluated under normal and water deficit conditions for two growing seasons of 2021 and 2022. High genetic variation was found among genotypes for all studied traits. The heritability estimates ranged from 0.82 (panicle length) to 0.95 (plant height). Sterility percentage (SET%) was the most trait affected by water deficit in two growing seasons. 22 Rice genotypes were classified as drought tolerant in both years. Genome-wide association mapping was performed for all traits in the two growing seasons under both conditions using a total of 700,000 SNPs. The GWAS results revealed important and major SNPs associated with all traits. 26 Significant SNPs with stable allele effects were found to be associated with yield traits under water deficit conditions in both years. The results of this study provided rice genotypes that can be adapted under water deficit conditions and important stable SNP markers that can be used for marker-assisted selection after validation in different genetic backgrounds.
Collapse
Affiliation(s)
- Mohamed I Ghazy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Sabry A El-Naem
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ahmed G Hefeina
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Ahmed Sallam
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, 32897, Egypt.
| | - Shamseldeen Eltaher
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
2
|
Sar P, Gupta S, Behera M, Chakraborty K, Ngangkham U, Verma BC, Banerjee A, Hanjagi PS, Bhaduri D, Shil S, Kumar J, Mandal NP, Kole PC, Purugganan MD, Roy S. Exploring Genetic Diversity within aus Rice Germplasm: Insights into the Variations in Agro-morphological Traits. RICE (NEW YORK, N.Y.) 2024; 17:20. [PMID: 38526679 DOI: 10.1186/s12284-024-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits.Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 genes emerging as key players in yield determination.
Collapse
Affiliation(s)
- Puranjoy Sar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Sonal Gupta
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Motilal Behera
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Umakanta Ngangkham
- Manipur Center, ICAR Research Complex for NEH Region, Imphal, Manipur, 795 004, India
| | - Bibhash Chandra Verma
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Amrita Banerjee
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Prashantkumar S Hanjagi
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Debarati Bhaduri
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Sandip Shil
- Research Centre - Mohitnagar, ICAR-Central Plantation Crops Research Institute, Jalpaiguri, West Bengal, 735 101, India
| | - Jitendra Kumar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Nimai Prasad Mandal
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Paresh Chandra Kole
- Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, Sriniketan, West Bengal, 731236, India
| | | | - Somnath Roy
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India.
| |
Collapse
|
3
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
4
|
Somsri A, Chu SH, Nawade B, Lee CY, Park YJ. Harnessing γ-TMT Genetic Variations and Haplotypes for Vitamin E Diversity in the Korean Rice Collection. Antioxidants (Basel) 2024; 13:234. [PMID: 38397832 PMCID: PMC10886147 DOI: 10.3390/antiox13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Gamma-tocopherol methyltransferase (γ-TMT), a key gene in the vitamin E biosynthesis pathway, significantly influences the accumulation of tocochromanols, thereby determining rice nutritional quality. In our study, we analyzed the γ-TMT gene in 475 Korean rice accessions, uncovering 177 genetic variants, including 138 SNPs and 39 InDels. Notably, two functional SNPs, tmt-E2-28,895,665-G/A and tmt-E4-28,896,689-A/G, were identified, causing substitutions from valine to isoleucine and arginine to glycine, respectively, across 93 accessions. A positive Tajima's D value in the indica group suggests a signature of balancing selection. Haplotype analysis revealed 27 haplotypes, with two shared between cultivated and wild accessions, seven specific to cultivated accessions, and 18 unique to wild types. Further, profiling of vitamin E isomers in 240 accessions and their association with haplotypes revealed that Hap_2, distinguished by an SNP in the 3' UTR (tmt-3UTR-28,897,360-T/A) exhibited significantly lower α-tocopherol (AT), α-tocotrienol (AT3), total tocopherol, and total tocotrienol, but higher γ-tocopherol (GT) in the japonica group. Additionally, in the indica group, Hap_2 showed significantly higher AT, AT3, and total tocopherol, along with lower GT and γ-tocotrienol, compared to Hap_19, Hap_20, and Hap_21. Overall, this study highlights the genetic landscape of γ-TMT and provides a valuable genetic resource for haplotype-based breeding programs aimed at enhancing nutritional profiles.
Collapse
Affiliation(s)
- Aueangporn Somsri
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea; (A.S.); (S.-H.C.); (B.N.)
| | - Sang-Ho Chu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea; (A.S.); (S.-H.C.); (B.N.)
| | - Bhagwat Nawade
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea; (A.S.); (S.-H.C.); (B.N.)
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering, College of Engineering, Kongju National University, Cheonan 31080, Republic of Korea;
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea; (A.S.); (S.-H.C.); (B.N.)
| |
Collapse
|
5
|
Daryani P, Amirbakhtiar N, Soorni J, Loni F, Darzi Ramandi H, Shobbar ZS. Uncovering the Genomic Regions Associated with Yield Maintenance in Rice Under Drought Stress Using an Integrated Meta-Analysis Approach. RICE (NEW YORK, N.Y.) 2024; 17:7. [PMID: 38227151 DOI: 10.1186/s12284-024-00684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The complex trait of yield is controlled by several quantitative trait loci (QTLs). Given the global water deficit issue, the development of rice varieties suitable for non-flooded cultivation holds significant importance in breeding programs. The powerful approach of Meta-QTL (MQTL) analysis can be used for the genetic dissection of complicated quantitative traits. In the current study, a comprehensive MQTL analysis was conducted to identify consistent QTL regions associated with drought tolerance and yield-related traits under water deficit conditions in rice. In total, 1087 QTLs from 134 rice populations, published between 2000 to 2021, were utilized in the analysis. Distinct MQTL analysis of the relevant traits resulted in the identification of 213 stable MQTLs. The confidence interval (CI) for the detected MQTLs was between 0.12 and 19.7 cM. The average CI of the identified MQTLs (4.68 cM) was 2.74 times narrower compared to the average CI of the initial QTLs. Interestingly, 63 MQTLs coincided with SNP peak positions detected by genome-wide association studies for yield and drought tolerance-associated traits under water deficit conditions in rice. Considering the genes located both in the QTL-overview peaks and the SNP peak positions, 19 novel candidate genes were introduced, which are associated with drought response index, plant height, panicle number, biomass, and grain yield. Moreover, an inclusive MQTL analysis was performed on all the traits to obtain "Breeding MQTLs". This analysis resulted in the identification of 96 MQTLs with a CI ranging from 0.01 to 9.0 cM. The mean CI of the obtained MQTLs (2.33 cM) was 4.66 times less than the mean CI of the original QTLs. Thirteen MQTLs fulfilling the criteria of having more than 10 initial QTLs, CI < 1 cM, and an average phenotypic variance explained greater than 10%, were designated as "Breeding MQTLs". These findings hold promise for assisting breeders in enhancing rice yield under drought stress conditions.
Collapse
Affiliation(s)
- Parisa Daryani
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nazanin Amirbakhtiar
- National Plant Gene Bank of Iran, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jahad Soorni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fatemeh Loni
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
6
|
Peringottillam M, Sundaram KT, Manickavelu A. Genetic potential of grain-related traits in rice landraces: phenomics and multi-locus association analyses. Mol Biol Rep 2023; 50:9323-9334. [PMID: 37815669 DOI: 10.1007/s11033-023-08807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Grain length, width, weight, and the number of grains per panicle are crucial determinants contributing to yield in cereal crops. Understanding the genetic basis of grain-related traits has been the main research object in crop science. METHODS AND RESULTS Kerala has a collection of different rice landraces. Characterization of these valuable genetic resources for 39 distinct agro-morphological traits was carried out in two seasons from 2017 to 2019 directly in farmers field. Most characteristics were polymorphic except ligule shape, leaf angle, and panicle axis. The results of principal component analysis implied that leaf length, plant height, culm length, flag leaf length, and grain-related traits were the principal discriminatory characteristics of rice landraces. For identifying the genetic basis of key grain traits of rice, three multi locus GWAS models were performed based on 1,47,994 SNPs in 73 rice accessions. As a result, 48 quantitative trait nucleotides (QTNs) were identified to be associated with these traits. After characterization of their function and expression, 15 significant candidate genes involved in regulating grain width, number of grains per panicle, and yield were identified. CONCLUSIONS The detected QTNs and candidate genes in this study could be further used for marker-assisted high-quality breeding of rice.
Collapse
Affiliation(s)
- Maya Peringottillam
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India
| | - Krishna T Sundaram
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India
- International Rice Research Institute (IRRI), South Asia hub, Patancheru, India
| | - Alagu Manickavelu
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671316, Kerala, India.
| |
Collapse
|
7
|
Wang DR, Kantar MB, Murugaiyan V, Neyhart J. Where the wild things are: genetic associations of environmental adaptation in the Oryza rufipogon species complex. G3 (BETHESDA, MD.) 2023; 13:jkad128. [PMID: 37293846 PMCID: PMC10411557 DOI: 10.1093/g3journal/jkad128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Crop wild relatives host unique adaptation strategies that enable them to thrive across a wide range of habitats. As pressures from a changing climate mount, a more complete understanding of the genetic variation that underlies this adaptation could enable broader utilization of wild materials for crop improvement. Here, we carry out environmental association analyses (EAA) in the Oryza rufipogon species complex (ORSC), the wild progenitor of cultivated Asian rice, to identify genomic regions associated with environmental adaptation characterized by variation in bioclimatic and soil variables. We further examine regions for colocalizations with phenotypic associations within the same collection. EAA results indicate that significant regions tend to associate with single environmental variables, although 2 significant loci on chromosomes 3 and 5 are detected as common across multiple variable types (i.e. precipitation, temperature, and/or soil). Distributions of allele frequencies at significant loci across subpopulations of cultivated Oryza sativa indicate that, in some cases, adaptive variation may already be present among cultivars, although evaluation in cultivated populations is needed to empirically test this. This work has implications for the potential utility of wild genetic resources in pre-breeding efforts for rice improvement.
Collapse
Affiliation(s)
- Diane R Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Manoa, Honolulu, HI 96822, USA
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila 1301, Philippines
| | - Jeffrey Neyhart
- USDA-ARS, Genetic Improvement for Fruits and Vegetables Laboratory, Chatsworth, NJ 08019, USA
| |
Collapse
|
8
|
Vishal MK, Saluja R, Aggrawal D, Banerjee B, Raju D, Kumar S, Chinnusamy V, Sahoo RN, Adinarayana J. Leaf Count Aided Novel Framework for Rice ( Oryza sativa L.) Genotypes Discrimination in Phenomics: Leveraging Computer Vision and Deep Learning Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:2663. [PMID: 36235529 PMCID: PMC9614605 DOI: 10.3390/plants11192663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Drought is a detrimental factor to gaining higher yields in rice (Oryza sativa L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties. Therefore, screening of drought-adaptive genotypes is required with high precision and high throughput. In contemporary emerging science, high throughput plant phenotyping (HTPP) is a crucial technology that attempts to break the bottleneck of traditional phenotyping. In traditional phenotyping, screening significant genotypes is a tedious task and prone to human error while measuring various plant traits. In contrast, owing to the potential advantage of HTPP over traditional phenotyping, image-based traits, also known as i-traits, were used in our study to discriminate 110 genotypes grown for genome-wide association study experiments under controlled (well-watered), and drought-stress (limited water) conditions, under a phenomics experiment in a controlled environment with RGB images. Our proposed framework non-destructively estimated drought-adaptive plant traits from the images, such as the number of leaves, convex hull, plant-aspect ratio (plant spread), and similarly associated geometrical and morphological traits for analyzing and discriminating genotypes. The results showed that a single trait, the number of leaves, can also be used for discriminating genotypes. This critical drought-adaptive trait was associated with plant size, architecture, and biomass. In this work, the number of leaves and other characteristics were estimated non-destructively from top view images of the rice plant for each genotype. The estimation of the number of leaves for each rice plant was conducted with the deep learning model, YOLO (You Only Look Once). The leaves were counted by detecting corresponding visible leaf tips in the rice plant. The detection accuracy was 86-92% for dense to moderate spread large plants, and 98% for sparse spread small plants. With this framework, the susceptible genotypes (MTU1010, PUSA-1121 and similar genotypes) and drought-resistant genotypes (Heera, Anjali, Dular and similar genotypes) were grouped in the core set with a respective group of drought-susceptible and drought-tolerant genotypes based on the number of leaves, and the leaves' emergence during the peak drought-stress period. Moreover, it was found that the number of leaves was significantly associated with other pertinent morphological, physiological and geometrical traits. Other geometrical traits were measured from the RGB images with the help of computer vision.
Collapse
Affiliation(s)
| | - Rohit Saluja
- CSE, Indian Institute of Technology Bombay, Mumbai 400076, India
- Indian Institute of Information Technology, Hyderabad 500032, India
| | | | - Biplab Banerjee
- CSRE, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dhandapani Raju
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Sudhir Kumar
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Viswanathan Chinnusamy
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | |
Collapse
|
9
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
10
|
Zhao H, Savin KW, Li Y, Breen EJ, Maharjan P, Tibbits JF, Kant S, Hayden MJ, Daetwyler HD. Genome-wide association studies dissect the G × E interaction for agronomic traits in a worldwide collection of safflowers ( Carthamus tinctorius L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:24. [PMID: 37309464 PMCID: PMC10248593 DOI: 10.1007/s11032-022-01295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies were conducted using a globally diverse safflower (Carthamus tinctorius L.) Genebank collection for grain yield (YP), days to flowering (DF), plant height (PH), 500 seed weight (SW), seed oil content (OL), and crude protein content (PR) in four environments (sites) that differed in water availability. Phenotypic variation was observed for all traits. YP exhibited low overall genetic correlations (rGoverall) across sites, while SW and OL had high rGoverall and high pairwise genetic correlations (rGij) across all pairwise sites. In total, 92 marker-trait associations (MTAs) were identified using three methods, single locus genome-wide association studies (GWAS) using a mixed linear model (MLM), the Bayesian multi-locus method (BayesR), and meta-GWAS. MTAs with large effects across all sites were detected for OL, SW, and PR, and MTAs specific for the different water stress sites were identified for all traits. Five MTAs were associated with multiple traits; 4 of 5 MTAs were variously associated with the three traits of SW, OL, and PR. This study provided insights into the phenotypic variability and genetic architecture of important safflower agronomic traits under different environments. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01295-8.
Collapse
Affiliation(s)
- Huanhuan Zhao
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Keith W. Savin
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Yongjun Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Edmond J. Breen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Pankaj Maharjan
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400 Australia
| | - Josquin F. Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Surya Kant
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC 3400 Australia
| | - Matthew J. Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Hans D. Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
11
|
Khanna A, Anumalla M, Catolos M, Bartholomé J, Fritsche-Neto R, Platten JD, Pisano DJ, Gulles A, Sta Cruz MT, Ramos J, Faustino G, Bhosale S, Hussain W. Genetic Trends Estimation in IRRIs Rice Drought Breeding Program and Identification of High Yielding Drought-Tolerant Lines. RICE (NEW YORK, N.Y.) 2022; 15:14. [PMID: 35247120 PMCID: PMC8898209 DOI: 10.1186/s12284-022-00559-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Estimating genetic trends using historical data is an important parameter to check the success of the breeding programs. The estimated genetic trends can act as a guideline to target the appropriate breeding strategies and optimize the breeding program for improved genetic gains. In this study, 17 years of historical data from IRRI's rice drought breeding program was used to estimate the genetic trends and assess the breeding program's success. We also identified top-performing lines based on grain yield breeding values as an elite panel for implementing future population improvement-based breeding schemes. A two-stage approach of pedigree-based mixed model analysis was used to analyze the data and extract the breeding values and estimate the genetic trends for grain yield under non-stress, drought, and in combined data of non-stress and drought. Lower grain yield values were observed in all the drought trials. Heritability for grain yield estimates ranged between 0.20 and 0.94 under the drought trials and 0.43-0.83 under non-stress trials. Under non-stress conditions, the genetic gain of 0.21% (10.22 kg/ha/year) for genotypes and 0.17% (7.90 kg/ha/year) for checks was observed. The genetic trend under drought conditions exhibited a positive trend with the genetic gain of 0.13% (2.29 kg/ha/year) for genotypes and 0.55% (9.52 kg/ha/year) for checks. For combined analysis showed a genetic gain of 0.27% (8.32 kg/ha/year) for genotypes and 0.60% (13.69 kg/ha/year) for checks was observed. For elite panel selection, 200 promising lines were selected based on higher breeding values for grain yield and prediction accuracy of > 0.40. The breeding values of the 200 genotypes formulating the core panel ranged between 2366.17 and 4622.59 (kg/ha). A positive genetic rate was observed under all the three conditions; however, the rate of increase was lower than the required rate of 1.5% genetic gain. We propose a recurrent selection breeding strategy within the elite population with the integration of modern tools and technologies to boost the genetic gains in IRRI's drought breeding program. The elite breeding panel identified in this study forms an easily available and highly enriched genetic resource for future recurrent selection programs to boost the genetic gains.
Collapse
Affiliation(s)
- Apurva Khanna
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Margaret Catolos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Jérôme Bartholomé
- AGAP Institute, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Roberto Fritsche-Neto
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - John Damien Platten
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Daniel Joseph Pisano
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Alaine Gulles
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Ma Teresa Sta Cruz
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Joie Ramos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Gem Faustino
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Sankalp Bhosale
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines.
| |
Collapse
|
12
|
Liu S, Qin F. Genome-Wide Association Analyses to Identify SNPs Related to Drought Tolerance. Methods Mol Biol 2022; 2462:201-219. [PMID: 35152391 DOI: 10.1007/978-1-0716-2156-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Drought stress is a serious agronomic problem resulting in significant yield losses globally. Breeding cultivars with drought tolerance is an important strategy that can be used to address this problem. Drought tolerance, however, is a complex multigenic trait, making advancements with conventional breeding approaches very challenging. This emphasizes the importance of dissecting the genetics of this trait and the identification and cloning of genes responsible for drought tolerance. With the rapid development of sequencing technologies and analytic methodologies, genome-wide association study (GWAS) has become an important tool for detecting natural variations underlying complex traits in crops. Identified loci can serve as targets for genomic selection or precise editing that enables the molecular design of new cultivars. This chapter describes the pipeline of statistical methods used in GWAS analysis, and covers field design, quality control, population structure control, association tests, and visualization of data. GWAS methodology used to dissect the genetic basis of drought tolerance is presented, and perspectives for optimizing the design and analysis of GWAS are discussed. The provided information serves as a valuable resource for researchers interested in GWAS technology.
Collapse
Affiliation(s)
- Shengxue Liu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
14
|
Beena R, Kirubakaran S, Nithya N, Manickavelu A, Sah RP, Abida PS, Sreekumar J, Jaslam PM, Rejeth R, Jayalekshmy VG, Roy S, Manju RV, Viji MM, Siddique KHM. Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC PLANT BIOLOGY 2021; 21:484. [PMID: 34686134 PMCID: PMC8539776 DOI: 10.1186/s12870-021-03272-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Asian cultivars were predominantly represented in global rice panel selected for sequencing and to identify novel alleles for drought tolerance. Diverse genetic resources adapted to Indian subcontinent were not represented much in spite harboring useful alleles that could improve agronomic traits, stress resilience and productivity. These rice accessions are valuable genetic resource in developing rice varieties suited to different rice ecosystem that experiences varying drought stress level, and at different crop stages. A core collection of rice germplasm adapted to Southwestern Indian peninsular genotyped using SSR markers and characterized by contrasting water regimes to associate genomic regions for physiological, root traits and yield related traits. Genotyping-By-Sequencing of selected accessions within the diverse panel revealed haplotype variation in genic content within genomic regions mapped for physiological, morphological and root traits. RESULTS Diverse rice panel (99 accessions) were evaluated in field and measurements on plant physiological, root traits and yield related traits were made over five different seasons experiencing varying drought stress intensity at different crop stages. Traits like chlorophyll stability index, leaf rolling, days to 50% flowering, chlorophyll content, root volume and root biomass were identified as best predictors of grain yield under stress. Association mapping revealed genetic variation among accessions and revealed 14 genomic targets associated with different physiological, root and plant production traits. Certain accessions were found to have beneficial allele to improve traits, plant height, root length and spikelet fertility, that contribute to the grain yield under stress. Genomic characterization of eleven accessions revealed haplotype variation within key genomic targets on chromosomes 1, 4, 6 and 11 for potential use as molecular markers to combine drought avoidance and tolerance traits. Genes mined within the genomic QTL intervals identified were prioritized based on tissue specific expression level in publicly available rice transcriptome data. CONCLUSION The genetic and genomic resources identified will enable combining traits with agronomic value to optimize yield under stress and hasten trait introgression into elite cultivars. Alleles associated with plant height, specific leaf area, root length from PTB8 and spikelet fertility and grain weight from PTB26 can be harnessed in future rice breeding program.
Collapse
Affiliation(s)
- Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | | | - Narayanan Nithya
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Alagu Manickavelu
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala India
| | - Rameshwar Prasad Sah
- Indian Council of Agricultural Research (ICAR)-Central Rice Research Institute, currently named National Rice Research Institute (NRRI), Cuttack, Odisha India
| | - Puthenpeedikal Salim Abida
- Regional Agricultural Research Station, Pattambi, Kerala Agricultural University, Palakkad, Kerala India
| | - Janardanan Sreekumar
- Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram, Kerala India
| | | | - Rajendrakumar Rejeth
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Vijayalayam Gengamma Jayalekshmy
- Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Stephen Roy
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Ramakrishnan Vimala Manju
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | - Mariasoosai Mary Viji
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala India
| | | |
Collapse
|
15
|
Peng L, Xie T, Guo Z, Li X, Chang Y, Tu H, Wang S, Wu N, Yao Y, Xiong L. Genome-wide association study revealed genetic variations of ABA sensitivity controlled by multiple stress-related genes in rice. STRESS BIOLOGY 2021; 1:10. [PMID: 37676585 PMCID: PMC10441979 DOI: 10.1007/s44154-021-00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/08/2021] [Indexed: 09/08/2023]
Abstract
Abscisic acid (ABA) is a critical phytohormone that regulates multiple physiological processes including plant growth and stress tolerance. The core ABA signaling pathway has been well established, but genetic variations mediating ABA responses remain largely unknown. In this study, we performed genome-wide association study (GWAS) to identify loci and genes associated with ABA sensitivity (reflected by seed germination inhibition by ABA) in a panel of 425 rice accessions. The seed germination assay revealed that Aus and indica rice had stronger ABA sensitivity than japonica rice. A total of 48 non-redundant association loci were detected in the indica subpopulation and whole population, and 386 genes in these loci were responsive to ABA or abiotic stresses. Eight association loci were overlapped with previously reported loci for yield under drought stress or for drought-indicative image traits. Haplotype analyses of important candidate genes such as OsSAPK6, a key component in the ABA signaling core, were performed to identify key SNPs/InDels that may affect gene functions through promoter activity regulation, amino acid variation, or gene splicing. These results provide insights into the genetic basis of ABA sensitivity related to stress responses.
Collapse
Affiliation(s)
- Lei Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengchang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nai Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Malik P, Kumar J, Sharma S, Sharma R, Sharma S. Multi-locus genome-wide association mapping for spike-related traits in bread wheat (Triticum aestivum L.). BMC Genomics 2021; 22:597. [PMID: 34353288 PMCID: PMC8340506 DOI: 10.1186/s12864-021-07834-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) is one of the most important cereal food crops for the global population. Spike-layer uniformity (the consistency of the spike distribution in the vertical space)-related traits (SLURTs) are quantitative and have been shown to directly affect yield potential by modifying the plant architecture. Therefore, these parameters are important breeding targets for wheat improvement. The present study is the first genome-wide association study (GWAS) targeting SLURTs in wheat. In this study, a set of 225 diverse spring wheat accessions were used for multi-locus GWAS to evaluate SLURTs, including the number of spikes per plant (NSPP), spike length (SL), number of spikelets per spike (NSPS), grain weight per spike (GWPS), lowest tiller height (LTH), spike-layer thickness (SLT), spike-layer number (SLN) and spike-layer uniformity (SLU). RESULTS In total, 136 significant marker trait associations (MTAs) were identified when the analysis was both performed individually and combined for two environments. Twenty-nine MTAs were detected in environment one, 48 MTAs were discovered in environment two and 59 MTAs were detected using combined data from the two environments. Altogether, 15 significant MTAs were found for five traits in one of the two environments, and four significant MTAs were detected for the two traits, LTH and SLU, in both environments i.e. E1, E2 and also in combined data from the two environments. In total, 279 candidate genes (CGs) were identified, including Chaperone DnaJ, ABC transporter-like, AP2/ERF, SWEET sugar transporter, as well as genes that have previously been associated with wheat spike development, seed development and grain yield. CONCLUSIONS The MTAs detected through multi-locus GWAS will be useful for improving SLURTs and thus yield in wheat production through marker-assisted and genomic selection.
Collapse
Affiliation(s)
- Parveen Malik
- Department of Genetics and Plant Breeding, ChaudharyCharan Singh University (CCSU), Meerut, 250 004, India
| | - Jitendra Kumar
- Department of Genetics and Plant Breeding, ChaudharyCharan Singh University (CCSU), Meerut, 250 004, India.,National Agri-Food Biotechnology Institute (NABI), Sector 81(Knowledge City), SahibzadaAjit Singh Nagar, Punjab, 140306, India
| | - Shiveta Sharma
- Department of Genetics and Plant Breeding, ChaudharyCharan Singh University (CCSU), Meerut, 250 004, India
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, ChaudharyCharan Singh University (CCSU), Meerut, 250 004, India.
| |
Collapse
|