1
|
Shiu RF, Lee HJ, Hsu HT, Gong GC. Suspended particulate matter-bound per- and polyfluoroalkyl substances (PFASs) in a river-coastal system: Possible correlation with transparent exopolymer particles. MARINE POLLUTION BULLETIN 2023; 191:114975. [PMID: 37121184 DOI: 10.1016/j.marpolbul.2023.114975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The transport and ultimate fate of per- and polyfluoroalkyl substances (PFASs) are generally considered to be influenced by partitioning behavior between water, suspended particulate matters (SPM), and sediments. This study examined the distribution and partitioning of the PFASs in the water, SPM, and sediments in a densely populated urban river-coastal system. The total concentrations of eight PFASs (∑8 PFASs) in the water phase, SPM, and sediments varied from 0.59 to 7.40 ng/L, 0.54 to 9.08 ng/g, and 0.05 to 0.13 ng/g, respectively. The PFAS concentrations in the water and SPM phase decreased as the salinity increased, confirming contaminant inputs from the upstream of the river to the estuary zone. Notably, the positive correlation between SPM-bound PFASs and transparent exopolymer particles (TEPs) content, providing first evidence that TEPs may accumulate and concentrate more PFASs on the SPM. Collectively, this results offers useful information about roles of TEPs in determining environmental fate of PFASs.
Collapse
Affiliation(s)
- Ruei-Feng Shiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Hui-Ju Lee
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Hung-Te Hsu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gwo-Ching Gong
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
2
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
3
|
Nganda A, Kumar M, Uday V, Srivastava P, Deka BJ, Zitouni F, Mahlknecht J. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals. ENVIRONMENTAL RESEARCH 2023; 218:114707. [PMID: 36436554 DOI: 10.1016/j.envres.2022.114707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Various studies have been conducted on the perfluorochemicals (PFCs) family over the years. These compounds have been sought in various industrial aspects involving the synthesis of everyday utilities due to their broad range of applications. As a result, PFCs have built up in the environment, causing concern. The presence of PFCs in various environmental media, such as terrestrial and marine settings, as well as the mechanisms of transport, bioaccumulation, and physio-chemical interactions of PFCs within plants, aquatic organisms, microplastics, and, ultimately, the human body, are discussed in this review, which draws on a variety of research publications. The interaction of PFCs with proteins, translocation, and adsorption by hydrophobic interactions were observed, and this had an impact on the natural functioning of biological processes, resulting in events such as phylogenic clustering, competitive inhibition, and many others, posing potential hazards to human health and other relevant organisms in the ecosystem. However, further research is needed to have a better knowledge of PFCs and their interactions so that low-cost treatments can be developed to eliminate them. It is therefore, future research should focus on the role of soil matrix as a defensive mechanism for PFCs, as well as the impact of PFC chain length rejection.
Collapse
Affiliation(s)
- Armel Nganda
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| | - Vismaya Uday
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Pankaj Srivastava
- Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, India 247667
| | - Faiza Zitouni
- College of Engineering, Applied Science University (ASU), Bahrain
| | - Jurgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| |
Collapse
|
4
|
Johnson GR, Brusseau ML, Carroll KC, Tick GR, Duncan CM. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156602. [PMID: 35690215 PMCID: PMC9653090 DOI: 10.1016/j.scitotenv.2022.156602] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 04/13/2023]
Abstract
A meta-analysis was conducted of published literature reporting concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater for sites distributed in 20 countries across the globe. Data for >35 PFAS were aggregated from 96 reports published from 1999 to 2021. The final data set comprises approximately 21,000 data points after removal of time-series and duplicate samples as well as non-detects. The reported concentrations range over many orders of magnitude, from ng/L to mg/L levels. Distinct differences in concentration ranges are observed between sites located within or near sources versus those that are not. Perfluorooctanoic acid (PFOA), ranging from <0.03 ng/L to ~7 mg/L, and perfluorooctanesulfonic acid (PFOS), ranging from 0.01 ng/L to ~5 mg/L, were the two most reported PFAS. The highest PFAS concentration in groundwater is ~15 mg/L reported for the replacement-PFAS 6:2 fluorotelomer sulfonate (6:2 FTS). Maximum reported groundwater concentrations for PFOA and PFOS were compared to concentrations reported for soils, surface waters, marine waters, and precipitation. Soil concentrations are generally significantly higher than those reported for the other media. This accrues to soil being the primary entry point for PFAS release into the environment for many sites, as well as the generally significantly greater retention capacity of soil compared to the other media. The presence of PFAS has been reported for all media in all regions tested, including areas that are far removed from specific PFAS sources. This gives rise to the existence of a "background" concentration of PFAS that must be accounted for in both regional and site-specific risk assessments. The presence of this background is a reflection of the large-scale use of PFAS, their general recalcitrance, and the action of long-range transport processes that distribute PFAS across regional and global scales. This ubiquitous distribution has the potential to significantly impact the quality and availability of water resources in many regions. In addition, the pervasive presence of PFAS in the environment engenders concerns for impacts to ecosystem and human health.
Collapse
|
5
|
Xu R, Tao W, Lin H, Huang D, Su P, Gao P, Sun X, Yang Z, Sun W. Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) on Soil Microbial Community. MICROBIAL ECOLOGY 2022; 83:929-941. [PMID: 34283261 DOI: 10.1007/s00248-021-01808-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes their frequent detection in various environments. In this work, two typical PFASs, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are selected to investigate their effects on soil microorganisms. Microbial community structure and microbe-microbe relationships were investigated by high-throughput sequencing and co-occurrence network analysis. Under 90 days of exposure, the alpha-diversity of soil microbial communities was increased with the PFOS treatment, followed by the PFOA treatment. The exposure of PFASs substantially changed the compositions of soil microbial communities, leading to the enrichment of more PFASs-tolerant bacteria, such as Proteobacteria, Burkholderiales, and Rhodocyclales. Comparative co-occurrence networks were constructed to investigate the microbe-microbe interactions under different PFASs treatments. The majority of nodes in the PFOA and PFOS networks were associated with the genus Azospirillum and Hydrogenophaga, respectively. The LEfSe analysis further identified a set of biomarkers in the soil microbial communities, such as Azospirillum, Methyloversatilis, Hydrogenophaga, Pseudoxanthomonas, and Fusibacter. The relative abundances of these biomarkers were also changed by different PFASs treatments. Functional gene prediction suggested that the microbial metabolism processes, such as nucleotide transport and metabolism, cell motility, carbohydrate transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis transport and catabolism, might be inhibited under PFAS exposure, which may further affect soil ecological services.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Wan Tao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Pingzhou Su
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- School of Environment, Henan Normal University, Xinxiang, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, 808 Tianyuan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Lei SN, Cong H. Fluorescence detection of perfluorooctane sulfonate in water employing a tetraphenylethylene-derived dual macrocycle BowtieCyclophane. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front Bioeng Biotechnol 2021; 8:602040. [PMID: 33490051 PMCID: PMC7817812 DOI: 10.3389/fbioe.2020.602040] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are Synthetic Organic Compounds (SOCs) which are of current concern as they are linked to a myriad of adverse health effects in mammals. They can be found in drinking water, rivers, groundwater, wastewater, household dust, and soils. In this review, the current challenge and status of bioremediation of PFAs in soils was examined. While several technologies to remove PFAS from soil have been developed, including adsorption, filtration, thermal treatment, chemical oxidation/reduction and soil washing, these methods are expensive, impractical for in situ treatment, use high pressures and temperatures, with most resulting in toxic waste. Biodegradation has the potential to form the basis of a cost-effective, large scale in situ remediation strategy for PFAS removal from soils. Both fungal and bacterial strains have been isolated that are capable of degrading PFAS; however, to date, information regarding the mechanisms of degradation of PFAS is limited. Through the application of new technologies in microbial ecology, such as stable isotope probing, metagenomics, transcriptomics, and metabolomics there is the potential to examine and identify the biodegradation of PFAS, a process which will underpin the development of any robust PFAS bioremediation technology.
Collapse
Affiliation(s)
| | - Duncan Rouch
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Leadin S Khudur
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Duncan Thomas
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | | - Andrew S Ball
- School of Science, RMIT University, Bundoora, VIC, Australia.,ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
8
|
Gałęzowska G, Rogowska J, Olkowska E, Ratajczyk W, Wolska L. Environmental Risk Assessment Resulting from Sediment Contamination with Perfluoroalkyl Substances. Molecules 2020; 26:E116. [PMID: 33383779 PMCID: PMC7795547 DOI: 10.3390/molecules26010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Due to wide use of perfluoroalkyl substances (PFASs) (e.g., in metal-plating, in fire-fighting foam, lubricants) and their resistance to degradation, they occur widely in the environment. The aim of this study was to estimate the environmental risk resulting from the presence of PFASs in the Gulf of Gdansk. Therefore, 17 PFASs concentrations were determined using ultra performance liquid chromatography with tandem mass spectrometry detection (UPLC-MS/MS). Additionally, sediment ecotoxicity was investigated. The results of the chemical analysis were used to asses environmental risk of PFASs. In samples collected around discharge collectors from a wastewater treatment plant and the Vistula mouth, Σ17PFASs values were 0.00403 ÷ 40.6 and 0.509 ÷ 614 ng/g d.w., respectively. In samples collected around discharge collectors, PFHxA, PFPeA, PFHpA, and PFOA were dominating, while at the Vistula River mouth, PFHxS, PFDS, and PFBS were prevalent. For most sediments, no toxic effect was observed in the toxicity tests with Heterocypris inconguens and Aliivibrio ficsheri. There was no observed correlation between the PFASs level and their ecotoxicity. Generally, the results of environmental risk assessment indicate that the PFASs would not generate high impact on the aquatic life (five water samples have shown medium risk related to PFBS and PFDoA).
Collapse
Affiliation(s)
| | - Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland; (G.G.); (E.O.); (W.R.); (L.W.)
| | | | | | | |
Collapse
|
9
|
Campos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, Gustafsson JP. The Adsorption of Per- and Polyfluoroalkyl Substances (PFASs) onto Ferrihydrite Is Governed by Surface Charge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15722-15730. [PMID: 33244971 PMCID: PMC7745537 DOI: 10.1021/acs.est.0c01646] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.
Collapse
Affiliation(s)
- Hugo Campos-Pereira
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Dan B. Kleja
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Swedish
Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden
| | - Carin Sjöstedt
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - Wantana Klysubun
- Synchrotron
Light Research Institute, 111 Moo 6, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jon Petter Gustafsson
- Department
of Soil and Environment, Swedish University
of Agricultural Sciences (SLU), P.O. Box 7014, SE-750 07 Uppsala, Sweden
- Department
of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| |
Collapse
|
10
|
Kurwadkar S. Occurrence and distribution of organic and inorganic pollutants in groundwater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1001-1008. [PMID: 31230394 DOI: 10.1002/wer.1166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Depletion of groundwater resources and continued decline in overall groundwater quality is a cause of concern because large human population around the world uses groundwater as a source of drinking water. This paper presents a comprehensive review of studies published in the year 2018 that documented issues of groundwater pollution, sources, and distribution reported from across the world due to anthropogenic, hydroclimatogical, and natural processes. Groundwater pollution due to organic contaminants focuses particularly on pesticides, herbicides, and contaminants of emerging concern. Pollution due to inorganic pollutants such as arsenic and other heavy metals is also reviewed with particular emphasis on regions that have reported a significantly higher incidence of these pollutants in groundwater. A compilation of various studies is also included in the review paper that showed increased incidences of waterborne illnesses due to fecal and microbial contamination due to poor sanitary practices. Reviews of groundwater contaminants such as fluoride and nitrate are included to provide readers a holistic understanding of groundwater pollution problem around the world. PRACTITIONER POINTS: Groundwater pollution issues during 2018 are reviewed and documented. Occurrence of organic and inorganic pollutants in groundwater is reported. Groundwater pollution vulnerability remains a critical issue.
Collapse
Affiliation(s)
- Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, Fullerton, California, USA
| |
Collapse
|
11
|
Anderson JK, Luz AL, Goodrum P, Durda J. Perfluorohexanoic acid toxicity, part II: Application of human health toxicity value for risk characterization. Regul Toxicol Pharmacol 2019; 103:10-20. [DOI: 10.1016/j.yrtph.2019.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/09/2023]
|
12
|
Xu CP, Qi Y, Cui Z, Yang YJ, Wang J, Hu YJ, Yu B, Wang FZ, Yang QP, Sun HT. Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance. RSC Adv 2019; 9:1696-1704. [PMID: 35518050 PMCID: PMC9059734 DOI: 10.1039/c8ra09640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tumour necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states, including slowing down osteogenic differentiation, which leads to bone dysplasia in long-term inflammatory microenvironments. The elongator complex plays a role in gene regulation and association with various cellular activities, including the downstream signal transduction of TNF-α in osteogenic cells. To find an inhibitor of Elongator Protein 2 (Elp2), we performed a compound library screen and verified the pharmaceutical effects of candidate compounds on the mouse myoblast cell (C2C12) and mouse osteoblastic cells (MC3T3-E1). The commercial FDA-approved drug (FD) library and the bioactive compound (BC) library were used as candidate libraries. After a label-free, high-throughput affinity measurement with surface plasmon resonance (SPRi), seven kinds of compounds showed binding affinity with mouse Elp2 protein. The seven candidates were then used to perform an inhibition test with TNF-α-induced C2C12 and MC3T3-E1 cell lines. One candidate compound reduced the differentiation suppression caused by TNF-α with resuscitated alkaline phosphatase (ALP) activity, mineralization intensity and expression of osteogenic differentiation marker genes. The results of our study provide a competitive candidate to mitigate the TNF-α-induced osteogenic differentia.
Collapse
Affiliation(s)
- Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Ya-Jun Yang
- Department of Pharmacology, Guangdong Medical College Zhanjiang Guangdong P. R. China
| | - Jian Wang
- Department of Orthopaedics, The Inner Mongolia People's Hospital Hohhot Inner Mongolia P. R. China
| | - Yan-Jun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Fa-Zheng Wang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture Kashgar Xinjiang P. R. China
| | - Qing-Po Yang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture Kashgar Xinjiang P. R. China
| | - Hong-Tao Sun
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| |
Collapse
|