1
|
Zhang M, Wang Y, Chen Q, Wang D, Zhang X, Huang X, Xu L. Genome-Wide Association Study on Body Conformation Traits in Xinjiang Brown Cattle. Int J Mol Sci 2024; 25:10557. [PMID: 39408884 PMCID: PMC11476655 DOI: 10.3390/ijms251910557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 10/20/2024] Open
Abstract
Body conformation traits are linked to the health, longevity, reproductivity, and production performance of cattle. These traits are also crucial for herd selection and developing new breeds. This study utilized pedigree information and phenotypic (1185 records) and genomic (The resequencing of 496 Xinjiang Brown cattle generated approximately 74.9 billion reads.) data of Xinjiang Brown cattle to estimate the genetic parameters, perform factor analysis, and conduct a genome-wide association study (GWAS) for these traits. Our results indicated that most traits exhibit moderate to high heritability. The principal factors, which explained 59.12% of the total variance, effectively represented body frame, muscularity, rump, feet and legs, and mammary system traits. Their heritability estimates range from 0.17 to 0.73, with genetic correlations ranging from -0.53 to 0.33. The GWAS identified 102 significant SNPs associated with 12 body conformation traits. A few of the SNPs were located near previously reported genes and quantitative trait loci (QTLs), while others were novel. The key candidate genes such as LCORL, NCAPG, and FAM184B were annotated within 500 Kb upstream and downstream of the significant SNPs. Therefore, factor analysis can be used to simplify multidimensional conformation traits into new variables, thus reducing the computational burden. The identified candidate genes from GWAS can be incorporated into the genomic selection of Xinjiang Brown cattle, enhancing the reliability of breeding programs.
Collapse
Affiliation(s)
- Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Dan Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Xiaoxue Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| | - Lei Xu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (M.Z.); (Q.C.); (D.W.); (X.Z.)
| |
Collapse
|
2
|
Chitneedi PK, Hadlich F, Moreira GCM, Espinosa-Carrasco J, Li C, Plastow G, Fischer D, Charlier C, Rocha D, Chamberlain AJ, Kuehn C. eQTL-Detect: nextflow-based pipeline for eQTL detection in modular format with sharable and parallelizable scripts. NAR Genom Bioinform 2024; 6:lqae122. [PMID: 39318506 PMCID: PMC11420669 DOI: 10.1093/nargab/lqae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Bioinformatic pipelines are becoming increasingly complex with the ever-accumulating amount of Next-generation sequencing (NGS) data. Their orchestration is difficult with a simple Bash script, but bioinformatics workflow managers such as Nextflow provide a framework to overcome respective problems. This study used Nextflow to develop a bioinformatic pipeline for detecting expression quantitative trait loci (eQTL) using a DSL2 Nextflow modular syntax, to enable sharing the huge demand for computing power as well as data access limitation across different partners often associated with eQTL studies. Based on the results from a test run with pilot data by measuring the required runtime and computational resources, the new pipeline should be suitable for eQTL studies in large scale analyses.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Gabriel C M Moreira
- Unit of Animal Genomics, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jose Espinosa-Carrasco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, T4L 1W1 Lacombe, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Daniel Fischer
- Natural Resources Institute Finland (Luke), Green Technology, Animal and Plant Genomics and Breeding, FI-31600 Jokioinen, Finland
| | - Carole Charlier
- Unit of Animal Genomics, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio, Centre for AgriBiosciences, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Christa Kuehn
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Science, University Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Wirth A, Duda J, Emmerling R, Götz KU, Birkenmaier F, Distl O. Analyzing Runs of Homozygosity Reveals Patterns of Selection in German Brown Cattle. Genes (Basel) 2024; 15:1051. [PMID: 39202411 PMCID: PMC11354284 DOI: 10.3390/genes15081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
An increasing trend in ancestral and classical inbreeding coefficients as well as inbreeding depression for longevity were found in the German Brown population. In addition, the proportion of US Brown Swiss genes is steadily increasing in German Browns. Therefore, the aim of the present study was to analyze the presence and genomic localization of runs of homozygosity (ROH) in order to evaluate their associations with the proportion of US Brown Swiss genes and survival rates of cows to higher lactations. Genotype data were sampled in 2364 German Browns from 258 herds. The final data set included 49,693 autosomal SNPs. We identified on average 35.996 ± 7.498 ROH per individual with a mean length of 8.323 ± 1.181 Mb. The genomic inbreeding coefficient FROH was 0.122 ± 0.032 and it decreased to 0.074, 0.031 and 0.006, when genomic homozygous segments > 8 Mb (FROH>8), >16 Mb (FROH>16) and >32 Mb (FROH>32) were considered. New inbreeding showed the highest correlation with FROH>32, whereas ancestral inbreeding coefficients had the lowest correlations with FROH>32. The correlation between the classical inbreeding coefficient and FROH was 0.572. We found significantly lower FROH, FROH>4, FROH>8 and FIS for US Brown Swiss proportions <60% compared to >80%. Cows surviving to the 2nd, 4th, 6th, 8th, and 10th lactation had lower genomic inbreeding for FROH and up to FROH>32, which was due to a lower number of ROH and a shorter average length of ROH. The strongest ROH island and consensus ROH shared by 50% of the animals was found on BTA 6 at 85-88 Mb. The genes located in this genomic region were associated with longevity (NPFFR2 and ADAMTS3), udder health and morphology (SLC4A4, NPFFR2, GC and RASSF6), milk production, milk protein percentage, coagulation properties of milk and milking speed (CSN3). On BTA 2, a ROH island was detected only in animals with <60% US Brown Swiss genes. Genes within this region are predominantly important for dual-purpose cattle breeds including Original Browns. For cows reaching more than 9 lactations, an exclusive ROH island was identified on BTA 7 with genes assumed to be associated with longevity. The analysis indicated that genomic homozygous regions important for Original Browns are still present and also ROH containing genes affecting longevity may have been identified. The breeding of German Browns should prevent any further increase in genomic inbreeding and run a breeding program with balanced weights on production, robustness and longevity.
Collapse
Affiliation(s)
- Anna Wirth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jürgen Duda
- Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. (LKV), 80687 München, Germany;
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Franz Birkenmaier
- Amt für Ernährung, Landwirtschaft und Forsten, 87439 Kempten, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
4
|
van den Berg I, Chamberlain AJ, MacLeod IM, Nguyen TV, Goddard ME, Xiang R, Mason B, Meier S, Phyn CVC, Burke CR, Pryce JE. Using expression data to fine map QTL associated with fertility in dairy cattle. Genet Sel Evol 2024; 56:42. [PMID: 38844868 PMCID: PMC11154999 DOI: 10.1186/s12711-024-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to combine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated with fertility in both Australia and New Zealand dairy cattle populations. RESULTS Variants that were significantly associated with calving interval (CI) were strongly enriched for variants associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial overlap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read sequencing may be useful. CONCLUSIONS Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped with eQTL, providing candidate genes for fertility in dairy cattle.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | - Mike E Goddard
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brett Mason
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
| | | | | | | | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre of AgriBioscience, 5 Ring Road, Bundoora, VIC, 3082, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
5
|
Li X, Liu Q, Fu C, Li M, Li C, Li X, Zhao S, Zheng Z. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption. J Genet Genomics 2024; 51:394-406. [PMID: 38056526 DOI: 10.1016/j.jgg.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Structural variants (SVs), such as deletions (DELs) and insertions (INSs), contribute substantially to pig genetic diversity and phenotypic variation. Using a library of SVs discovered from long-read primary assemblies and short-read sequenced genomes, we map pig genomic SVs with a graph-based method for re-genotyping SVs in 402 genomes. Our results demonstrate that those SVs harboring specific trait-associated genes may greatly shape pig domestication and local adaptation. Further characterization of SVs reveals that some population-stratified SVs may alter the transcription of genes by affecting regulatory elements. We identify that the genotypes of two DELs (296-bp DEL, chr7: 52,172,101-52,172,397; 278-bp DEL, chr18: 23,840,143-23,840,421) located in muscle-specific enhancers are associated with the expression of target genes related to meat quality (FSD2) and muscle fiber hypertrophy (LMOD2 and WASL) in pigs. Our results highlight the role of SVs in domestic porcine evolution, and the identified candidate functional genes and SVs are valuable resources for future genomic research and breeding programs in pigs.
Collapse
Affiliation(s)
- Xin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Quan Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changchun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei 448000, China.
| |
Collapse
|
6
|
Qiu Z, Cai W, Liu Q, Liu K, Liu C, Yang H, Huang R, Li P, Zhao Q. Unravelling novel and pleiotropic genes for cannon bone circumference and bone mineral density in Yorkshire pigs. J Anim Sci 2024; 102:skae036. [PMID: 38330300 PMCID: PMC10914368 DOI: 10.1093/jas/skae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.
Collapse
Affiliation(s)
- Zijian Qiu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Cai
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilong Yang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Zhou KZ, Wu PF, Ling XZ, Zhang J, Wang QF, Zhang XC, Xue Q, Zhang T, Han W, Zhang GX. miR-460b-5p promotes proliferation and differentiation of chicken myoblasts and targets RBM19 gene. Poult Sci 2024; 103:103231. [PMID: 37980764 PMCID: PMC10685028 DOI: 10.1016/j.psj.2023.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
The meat production of broilers is crucial to economic benefits of broiler industries, while the slaughter performance of broilers is directly determined by skeletal muscle development. Hence, the broiler breeding for growth traits shows a great importance. As a kind of small noncoding RNA, microRNA (miRNA) can regulate the expression of multiple genes and perform a wide range of regulation in organisms. Currently, more and more studies have confirmed that miRNAs are closely associated with skeletal muscle development of chickens. Based on our previous miR-seq analysis (accession number: PRJNA668199), miR-460b-5p was screened as one of the key miRNAs probably involved in the growth regulation of chickens. However, the regulatory effect of miR-460b-5p on the development of chicken skeletal muscles is still unclear. Therefore, miR-460b-5p was further used for functional validation at the cellular level in this study. The expression pattern of miR-460b-5p was investigated in proliferation and differentiation stages of chicken primary myoblasts. It was showed that the expression level of miR-460b-5p gradually decreased from the proliferation stage (GM 50%) to the lowest at 24 h of differentiation. As differentiation proceeded, miR-460b-5p expression increased significantly, reaching the highest and stabilizing at 72 h and 96 h of differentiation. Through mRNA quantitative analysis of proliferation marker genes, CCK-8 and Edu assays, miR-460b-5p was found to significantly facilitate the transition of myoblasts from G1 to S phase and promote chicken myoblast proliferation. mRNA and protein quantitative analysis of differentiation marker genes, as well as the indirect immunofluorescence results of myotubes, revealed that miR-460b-5p significantly stimulated myotube development and promote chicken myoblast differentiation. In addition, the target relationship was validated for miR-460b-5p according to the dual-luciferase reporter assay and mRNA quantitative analysis, which indicates that miR-460b-5p was able to regulate RBM19 expression by specifically binding to the 3' UTR of RBM19. In summary, miR-460b-5p has positive regulatory effects on the proliferation and differentiation of chicken myoblasts, and RBM19 is a target gene of miR-460b-5p.
Collapse
Affiliation(s)
- Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Peng-Fei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi-Fan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xin-Chao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qian Xue
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
8
|
Sinha R, Sinha B, Kumari R, M R V, Sharma N, Verma A, Gupta ID. Association of udder type traits with single nucleotide polymorphisms in Sahiwal (Bos indicus) and Karan Fries ( Bos taurus × Bos indicus) cattle. Anim Biotechnol 2023; 34:2745-2756. [PMID: 36001402 DOI: 10.1080/10495398.2022.2114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Udder structure of milking cows is not merely vital to display the visual characteristics, but also important for high milk output and low mastitis risk incidence as well. The present study measured different udder type traits in Sahiwal (Bos indicus) and Karan Fries (Bos taurus × Bos indicus) and investigated their association with single nucleotide polymorphisms in Vitamin D Receptor and Protein Tyrosine Phosphatase, Receptor Type, R genes. GG genotype of SNP rs454303072 was found to have wider rear udder, larger udder circumference, longer distance between fore-rear teats and left-right teats in Karan Fries cattle. Whereas, in Sahiwal cattle, AA genotype of this SNP was found to be associated with the higher and wider rear udder, larger udder circumference and wider udder. AA genotype of SNP rs382671389 was found to be associated with longer fore teat in Karan Fries cattle. The TT and CC genotype of SNP rs435289107 was associated with udder type traits in Karan Fries and Sahiwal cattle respectively. These results suggest that BTA 5 harbors genomic regions associated with udder traits in Bos indicus and Bos indicus x Bos taurus cattle.
Collapse
Affiliation(s)
- Rebeka Sinha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Beena Sinha
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ragini Kumari
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vineeth M R
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nisha Sharma
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
9
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals (Basel) 2023; 13:ani13101588. [PMID: 37238017 DOI: 10.3390/ani13101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi (UTC), Latacunga 0501491, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina "One-Health", Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
10
|
Nosková A, Mehrotra A, Kadri NK, Lloret-Villas A, Neuenschwander S, Hofer A, Pausch H. Comparison of two multi-trait association testing methods and sequence-based fine mapping of six additive QTL in Swiss Large White pigs. BMC Genomics 2023; 24:192. [PMID: 37038103 PMCID: PMC10084639 DOI: 10.1186/s12864-023-09295-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Genetic correlations between complex traits suggest that pleiotropic variants contribute to trait variation. Genome-wide association studies (GWAS) aim to uncover the genetic underpinnings of traits. Multivariate association testing and the meta-analysis of summary statistics from single-trait GWAS enable detecting variants associated with multiple phenotypes. In this study, we used array-derived genotypes and phenotypes for 24 reproduction, production, and conformation traits to explore differences between the two methods and used imputed sequence variant genotypes to fine-map six quantitative trait loci (QTL). RESULTS We considered genotypes at 44,733 SNPs for 5,753 pigs from the Swiss Large White breed that had deregressed breeding values for 24 traits. Single-trait association analyses revealed eleven QTL that affected 15 traits. Multi-trait association testing and the meta-analysis of the single-trait GWAS revealed between 3 and 6 QTL, respectively, in three groups of traits. The multi-trait methods revealed three loci that were not detected in the single-trait GWAS. Four QTL that were identified in the single-trait GWAS, remained undetected in the multi-trait analyses. To pinpoint candidate causal variants for the QTL, we imputed the array-derived genotypes to the sequence level using a sequenced reference panel consisting of 421 pigs. This approach provided genotypes at 16 million imputed sequence variants with a mean accuracy of imputation of 0.94. The fine-mapping of six QTL with imputed sequence variant genotypes revealed four previously proposed causal mutations among the top variants. CONCLUSIONS Our findings in a medium-size cohort of pigs suggest that multivariate association testing and the meta-analysis of summary statistics from single-trait GWAS provide very similar results. Although multi-trait association methods provide a useful overview of pleiotropic loci segregating in mapping populations, the investigation of single-trait association studies is still advised, as multi-trait methods may miss QTL that are uncovered in single-trait GWAS.
Collapse
Affiliation(s)
- A Nosková
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland.
| | - A Mehrotra
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - N K Kadri
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | | | | | - A Hofer
- SUISAG, Allmend 10, 6204, Sempach, Switzerland
| | - H Pausch
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| |
Collapse
|
11
|
Korkuć P, Neumann GB, Hesse D, Arends D, Reißmann M, Rahmatalla S, May K, Wolf MJ, König S, Brockmann GA. Whole-Genome Sequencing Data Reveal New Loci Affecting Milk Production in German Black Pied Cattle (DSN). Genes (Basel) 2023; 14:581. [PMID: 36980854 PMCID: PMC10048491 DOI: 10.3390/genes14030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
German Black Pied (DSN) is considered an ancestral population of the Holstein breed. The goal of the current study was to fine-map genomic loci for milk production traits and to provide sequence variants for selection. We studied genome-wide associations for milk-production traits in 2160 DSN cows. Using 11.7 million variants from whole-genome sequencing of 304 representative DSN cattle, we identified 1980 associated variants (-log10(p) ≥ 7.1) in 13 genomic loci on 9 chromosomes. The highest significance was found for the MGST1 region affecting milk fat content (-log10(p) = 11.93, MAF = 0.23, substitution effect of the minor allele (ßMA) = -0.151%). Different from Holstein, DGAT1 was fixed (0.97) for the alanine protein variant for high milk and protein yield. A key gene affecting protein content was CSN1S1 (-log10(p) = 8.47, MAF = 049, ßMA = -0.055%) and the GNG2 region (-log10(p) = 10.48, MAF = 0.34, ßMA = 0.054%). Additionally, we suggest the importance of FGF12 for protein and fat yield, HTR3C for milk yield, TLE4 for milk and protein yield, and TNKS for milk and fat yield. Selection for favored alleles can improve milk yield and composition. With respect to maintaining the dual-purpose type of DSN, unfavored linkage to genes affecting muscularity has to be investigated carefully, before the milk-associated variants can be applied for selection in the small population.
Collapse
Affiliation(s)
- Paula Korkuć
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Guilherme B. Neumann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Danny Arends
- Department of Applied Sciences, Northumbria University, Ellison PI, Newcastle upon Tyne NE1 8ST, UK
| | - Monika Reißmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Siham Rahmatalla
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Ludwigstr. 21, 35390 Gießen, Germany
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Ludwigstr. 21, 35390 Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Ludwigstr. 21, 35390 Gießen, Germany
| | - Gudrun A. Brockmann
- Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Animal Breeding and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
12
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
13
|
Schmidtmann C, Segelke D, Bennewitz J, Tetens J, Thaller G. Genetic analysis of production traits and body size measurements and their relationships with metabolic diseases in German Holstein cattle. J Dairy Sci 2023; 106:421-438. [PMID: 36424319 DOI: 10.3168/jds.2022-22363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
This study sheds light on the genetic complexity and interplay of production, body size, and metabolic health in dairy cattle. Phenotypes for body size-related traits from conformation classification (130,166 animals) and production (101,562 animals) of primiparous German Holstein cows were available. Additionally, 21,992, 16,641, and 7,096 animals were from herds with recordings of the metabolic diseases ketosis, displaced abomasum, and milk fever in first, second, and third lactation. Moreover, all animals were genotyped. Heritabilities of traits and genetic correlations between all traits were estimated and GWAS were performed. Heritability was between 0.240 and 0.333 for production and between 0.149 and 0.368 for body size traits. Metabolic diseases were lowly heritable, with estimates ranging from 0.011 to 0.029 in primiparous cows, from 0.008 to 0.031 in second lactation, and from 0.037 to 0.052 in third lactation. Production was found to have negative genetic correlations with body condition score (BCS; -0.279 to -0.343) and udder depth (-0.348 to -0.419). Positive correlations were observed for production and body depth (0.138-0.228), dairy character (DCH) (0.334-0.422), and stature (STAT) (0.084-0.158). In first parity cows, metabolic disease traits were unfavorably correlated with production, with genetic correlations varying from 0.111 to 0.224, implying that higher yielding cows have more metabolic problems. Genetic correlations of disease traits in second and third lactation with production in primiparous cows were low to moderate and in most cases unfavorable. While BCS was negatively correlated with metabolic diseases (-0.255 to -0.470), positive correlations were found between disease traits and DCH (0.269-0.469) as well as STAT (0.172-0.242). Thus, the results indicate that larger and sharper animals with low BCS are more susceptible to metabolic disorders. Genome-wide association studies revealed several significantly associated SNPs for production and conformation traits, confirming previous findings from literature. Moreover, for production and conformation traits, shared significant signals on Bos taurus autosome (BTA) 5 (88.36 Mb) and BTA 6 (86.40 to 87.27 Mb) were found, implying pleiotropy. Additionally, significant SNPs were observed for metabolic diseases on BTA 3, 10, 14, 17, and 26 in first lactation and on BTA 2, 6, 8, 17, and 23 in third lactation. Overall, this study provides important insights into the genetic basis and interrelations of relevant traits in today's Holstein cattle breeding programs, and findings may help to improve selection decisions.
Collapse
Affiliation(s)
- Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany.
| | - Dierck Segelke
- Vereinigte Informationssysteme Tierhaltung w.V. (vit), Heinrich-Schröder-Weg 1, 27283 Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Garbenstraße 17, 70599 Stuttgart, Germany
| | - Jens Tetens
- Georg-August-University Göttingen, Division of Functional Breeding, Department of Animal Sciences, Burckhardtweg 2, 37077 Göttingen, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| |
Collapse
|
14
|
KUMARI RAGINI, KUMAR RAKESH, SINHA BEENA, SINHA REBEKA, GUPTA ISHWARDAYAL, VERMA ARCHANA. Novel polymorphisms of the KCNB1 gene and their association with production traits in Indian Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i12.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mastitis in cattle is a prevalent mammary gland disease that contributes significantly to the increase in veterinary expenditures in the dairy sector. KCNB1 (Potassium voltage-gated channel, subfamily B member 1) gene is involved in regulating apoptosis, cell proliferation and differentiation, udder epithelial tissue maintenance and repair, mammary gland development and recommended as a candidate gene for production related traits in cattle. The purpose of this research was to detect the genetic variants of KCNB1 gene in Sahiwal cattle and to analyze the association between polymorphisms with milk production traits, udder traits, and teat traits in Sahiwal cattle. A total of 87 cattle were genotyped by polymerase chain reaction-restriction fragment length polymorphism technique. Two single nucleotide polymorphisms within the non-coding sequence of KCNB1 gene were identified (g.78216220G>A and g.78216335A>G). Analysis of productivity traits within the genotyped animals revealed that the SNP1-Msp1 locus (g.78216220G>A) located at intron 1 was associated with milk production traits, but the SNP2-BspHI locus (g.78216335A>G) had no association with milk production. Significant associations were also observed between SNP1-Msp1 and SNP2-BspHI loci with both udder and teat traits. Our results demonstrate that polymorphisms in the cattle KCNB1 gene were associated with milk production, udder and teat traits and might be utilized as a genetic marker for marker-assisted selection in cattle breeding programs.
Collapse
|
15
|
Ribeiro G, Baldi F, Cesar ASM, Alexandre PA, Peripolli E, Ferraz JBS, Fukumasu H. Detection of potential functional variants based on systems-biology: the case of feed efficiency in beef cattle. BMC Genomics 2022; 23:774. [PMID: 36434498 PMCID: PMC9700932 DOI: 10.1186/s12864-022-08958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Potential functional variants (PFVs) can be defined as genetic variants responsible for a given phenotype. Ultimately, these are the best DNA markers for animal breeding and selection, especially for polygenic and complex phenotypes. Herein, we described the identification of PFVs for complex phenotypes (in this case, Feed Efficiency in beef cattle) using a systems-biology driven approach based on RNA-seq data from physiologically relevant organs. RESULTS The systems-biology coupled with deep molecular phenotyping by RNA-seq of liver, muscle, hypothalamus, pituitary, and adrenal glands of animals with high and low feed efficiency (FE) measured by residual feed intake (RFI) identified 2,000,936 uniquely variants. Among them, 9986 variants were significantly associated with FE and only 78 had a high impact on protein expression and were considered as PFVs. A set of 169 significant uniquely variants were expressed in all five organs, however, only 27 variants had a moderate impact and none of them a had high impact on protein expression. These results provide evidence of tissue-specific effects of high-impact PFVs. The PFVs were enriched (FDR < 0.05) for processing and presentation of MHC Class I and II mediated antigens, which are an important part of the adaptive immune response. The experimental validation of these PFVs was demonstrated by the increased prediction accuracy for RFI using the weighted G matrix (ssGBLUP+wG; Acc = 0.10 and b = 0.48) obtained in the ssGWAS in comparison to the unweighted G matrix (ssGBLUP; Acc = 0.29 and b = 1.10). CONCLUSION Here we identified PFVs for FE in beef cattle using a strategy based on systems-biology and deep molecular phenotyping. This approach has great potential to be used in genetic prediction programs, especially for polygenic phenotypes.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- grid.11899.380000 0004 1937 0722Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, 13635-900 Brazil
| | - Fernando Baldi
- grid.410543.70000 0001 2188 478XDepartment of Animal Science, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Aline S. M. Cesar
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Pâmela A. Alexandre
- grid.11899.380000 0004 1937 0722Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, 13635-900 Brazil ,CSIRO Agriculture & Food, 306 Carmody Rd., St. Lucia, Brisbane, QLD 4067 Australia
| | - Elisa Peripolli
- grid.11899.380000 0004 1937 0722Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, 13635-900 Brazil ,grid.410543.70000 0001 2188 478XDepartment of Animal Science, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - José B. S. Ferraz
- grid.11899.380000 0004 1937 0722Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, 13635-900 Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Sao Paulo, 13635-900 Brazil
| |
Collapse
|
16
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Zhao X, Sirard MA, Ibeagha-Awemu EM. Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis. J Anim Sci Biotechnol 2022; 13:136. [PMCID: PMC9639328 DOI: 10.1186/s40104-022-00779-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Mastitis caused by different pathogens including Streptococcus uberis (S. uberis) is responsible for huge economic losses to the dairy industry. In order to investigate the potential genetic and epigenetic regulatory mechanisms of subclinical mastitis due to S. uberis, the DNA methylome (whole genome DNA methylation sequencing) and transcriptome (RNA sequencing) of milk somatic cells from cows with naturally occurring S. uberis subclinical mastitis and healthy control cows (n = 3/group) were studied.
Results
Globally, the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns. The DNA methylation levels at the promoter, first exon and first intron regions were negatively correlated with the expression level of genes at a whole-genome-wide scale. In general, DNA methylation level was lower in S. uberis-positive group (SUG) than in the control group (CTG). A total of 174,342 differentially methylated cytosines (DMCs) (FDR < 0.05) were identified between SUG and CTG, including 132,237, 7412 and 34,693 DMCs in the context of CpG, CHG and CHH (H = A or T or C), respectively. Besides, 101,612 methylation haplotype blocks (MHBs) were identified, including 451 MHBs that were significantly different (dMHB) between the two groups. A total of 2130 differentially expressed (DE) genes (1378 with up-regulated and 752 with down-regulated expression) were found in SUG. Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with significant changes in their methylation levels and/or gene expression changes (MetGDE genes, MethGET P-value < 0.001). Functional enrichment of genes harboring ≥ 15 DMCs, DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S. uberis infection, especially cytokine activities. Furthermore, discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers, including 6 DE genes, 15 CpG-DMCs and 5 dMHBs that discriminated between SUG and CTG.
Conclusion
The integration of methylome and transcriptome of milk somatic cells suggests the possible involvement of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S. uberis. The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.
Collapse
|
17
|
Yan XR, Shi T, Xiao JY, Liu YF, Zheng HL. In vitro transdifferentiated signatures of goat preadipocytes into mammary epithelial cells revealed by DNA methylation and transcriptome profiling. J Biol Chem 2022; 298:102604. [PMID: 36257406 PMCID: PMC9668736 DOI: 10.1016/j.jbc.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
During mammary development, the transdifferentiation of mammary preadipocytes is one of the important sources for lactating mammary epithelial cells (MECs). However, there is limited knowledge about the mechanisms of dynamic regulation of transcriptome and genome-wide DNA methylation in the preadipocyte transdifferentiation process. Here, to gain more insight into these mechanisms, preadipocytes were isolated from adipose tissues from around the goat mammary gland (GM-preadipocytes). The GM-preadipocytes were cultured on Matrigel in conditioned media made from goat MECs to induce GM-preadipocyte-to-MEC transdifferentiation. The transdifferentiated GM-preadipocytes showed high abundance of keratin 18, which is a marker protein of MECs, and formed mammary acinar-like structures after 8 days of induction. Then, we performed transcriptome and DNA methylome profiling of the GM-preadipocytes and transdifferentiated GM-preadipocytes, respectively, and the differentially expressed genes and differentially methylated genes that play underlying roles in the process of transdifferentiation were obtained. Subsequently, we identified the candidate transcription factors in regulating the GM-preadipocyte-to-MEC transdifferentiation by transcription factor-binding motif enrichment analysis of differentially expressed genes and differentially methylated genes. Meanwhile, the secretory proteome of GM-preadipocytes cultured in conditioned media was also detected. By integrating the transcriptome, DNA methylome, and proteome, three candidate genes, four proteins, and several epigenetic regulatory axes were further identified, which are involved in regulation of the cell cycle, cell polarity establishment, cell adhesion, cell reprogramming, and adipocyte plasticity. These findings provide novel insights into the molecular mechanism of preadipocyte transdifferentiation and mammary development.
Collapse
|
18
|
Nazar M, Abdalla IM, Chen Z, Ullah N, Liang Y, Chu S, Xu T, Mao Y, Yang Z, Lu X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2022; 12:2542. [PMID: 36230283 PMCID: PMC9559277 DOI: 10.3390/ani12192542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.
Collapse
Affiliation(s)
- Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Jiang Y, Song H, Gao H, Zhang Q, Ding X. Exploring the optimal strategy of imputation from SNP array to whole-genome sequencing data in farm animals. Front Genet 2022; 13:963654. [PMID: 36092888 PMCID: PMC9459117 DOI: 10.3389/fgene.2022.963654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Genotype imputation from BeadChip to whole-genome sequencing (WGS) data is a cost-effective method of obtaining genotypes of WGS variants. Beagle, one of the most popular imputation software programs, has been widely used for genotype inference in humans and non-human species. A few studies have systematically and comprehensively compared the performance of beagle versions and parameter settings of farm animals. Here, we investigated the imputation performance of three representative versions of Beagle (Beagle 4.1, Beagle 5.0, and Beagle 5.4), and the effective population size (Ne) parameter setting for three species (cattle, pig, and chicken). Six scenarios were investigated to explore the impact of certain key factors on imputation performance. The results showed that the default Ne (1,000,000) is not suitable for livestock and poultry in small reference or low-density arrays of target panels, with 2.47%–10.45% drops in accuracy. Beagle 5 significantly reduced the computation time (4.66-fold–13.24-fold) without an accuracy loss. In addition, using a large combined-reference panel or high-density chip provides greater imputation accuracy, especially for low minor allele frequency (MAF) variants. Finally, a highly significant correlation in the measures of imputation accuracy can be obtained with an MAF equal to or greater than 0.05.
Collapse
Affiliation(s)
- Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailiang Song
- Beijing Key Laboratory of Fisheries Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongding Gao
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|
20
|
Honerlagen H, Reyer H, Oster M, Ponsuksili S, Trakooljul N, Kuhla B, Reinsch N, Wimmers K. Identification of Genomic Regions Influencing N-Metabolism and N-Excretion in Lactating Holstein- Friesians. Front Genet 2021; 12:699550. [PMID: 34335696 PMCID: PMC8318802 DOI: 10.3389/fgene.2021.699550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 12/03/2022] Open
Abstract
Excreted nitrogen (N) of dairy cows contribute to environmental eutrophication. The main N-excretory metabolite of dairy cows is urea, which is synthesized as a result of N-metabolization in the liver and is excreted via milk and urine. Genetic variation in milk urea (MU) has been postulated but the complex physiology behind the trait as well as the tremendous diversity of processes regulating the N-metabolism impede the consistent determination of causal regions in the bovine genome. In order to map the genetic determinants affecting N-excretion, MU and eight other N-excretory metabolites in milk and urine were assessed in a genome-wide association study. Therefore phenotypes of 371 Holstein- Friesians were obtained in a trial on a dairy farm under near commercial conditions. Genotype data comprised SNP information of the Bovine 50K MD Genome chip (45,613 SNPs). Significantly associated genomic regions for MU concentration revealed GJA1 (BTA 9), RXFP1, and FRY1 (both BTA 12) as putative candidates. For milk urea yield (MUY) a promising QTL on BTA 17 including SH3D19 emerged, whereas RCAN2, CLIC5, ENPP4, and ENPP5 (BTA 23) are suggested to influence urinary urea concentration. Minor N-fractions in milk (MN) may be regulated by ELF2 and SLC7A11 (BTA 17), whilst ITPR2 and MYBPC1 (BTA 5), STIM2 (BTA 6), SGCD (BTA 7), SLC6A2 (BTA 18), TMCC2 and MFSD4A (BTA 16) are suggested to have an impact on various non-urea-N (NUN) fractions excreted via urine. Our results highlight genomic regions and candidate genes for N-excretory metabolites and provide a deeper insight into the predisposed component to regulate the N-metabolism in dairy cows.
Collapse
Affiliation(s)
- Hanne Honerlagen
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Björn Kuhla
- Metabolism Efficiency Unit, Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Livestock Genetics and Breeding Unit, Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Genomics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
21
|
Lee YL, Takeda H, Costa Monteiro Moreira G, Karim L, Mullaart E, Coppieters W, Appeltant R, Veerkamp RF, Groenen MAM, Georges M, Bosse M, Druet T, Bouwman AC, Charlier C. A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genet 2021; 17:e1009331. [PMID: 34288907 PMCID: PMC8328317 DOI: 10.1371/journal.pgen.1009331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/02/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.
Collapse
Affiliation(s)
- Young-Lim Lee
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Wouter Coppieters
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | | | - Ruth Appeltant
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Roel F. Veerkamp
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Martien A. M. Groenen
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mirte Bosse
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Aniek C. Bouwman
- Wageningen University & Research, Animal Breeding and Genomics, Wageningen, the Netherlands
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Direct Phenotyping and Principal Component Analysis of Type Traits Implicate Novel QTL in Bovine Mastitis through Genome-Wide Association. Animals (Basel) 2021; 11:ani11041147. [PMID: 33920522 PMCID: PMC8072530 DOI: 10.3390/ani11041147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary It is well established that the physical conformation of a cow’s udder and teats may influence her susceptibility to mastitis, an inflammatory condition of the udder, which has 25% prevalence in the United States. Our aim was to improve the biological understanding of the genetics underlying mastitis by intensively characterizing cows for udder and teat conformation, including the novel traits of teat width and end shape, and directly associating those phenotypes with high-density genotypes for those exact same cows. We also generated a composite measure that accounts for multiple high-mastitis-risk udder and teat conformations in a single index for risk phenotypes. Using this approach, we identified novel genetic markers associated with udder and teat conformation, which may be good candidates for inclusion in national genetic evaluations for selection of mastitis-resistant cows. Mastitis is the costliest disease facing US dairy producers, and integrating genetic information regarding disease susceptibility into breeding programs may be an efficient way to mitigate economic loss, support the judicious use of antimicrobials, and improve animal welfare. Abstract Our objectives were to robustly characterize a cohort of Holstein cows for udder and teat type traits and perform high-density genome-wide association studies for those traits within the same group of animals, thereby improving the accuracy of the phenotypic measurements and genomic association study. Additionally, we sought to identify a novel udder and teat trait composite risk index to determine loci with potential pleiotropic effects related to mastitis. This approach was aimed at improving the biological understanding of the genetic factors influencing mastitis. Cows (N = 471) were genotyped on the Illumina BovineHD777k beadchip and scored for front and rear teat length, width, end shape, and placement; fore udder attachment; udder cleft; udder depth; rear udder height; and rear udder width. We used principal component analysis to create a single composite measure describing type traits previously linked to high odds of developing mastitis within our cohort of cows. Genome-wide associations were performed, and 28 genomic regions were significantly associated (Bonferroni-corrected p < 0.05). Interrogation of these genomic regions revealed a number of biologically plausible genes whicht may contribute to the development of mastitis and whose functions range from regulating cell proliferation to immune system signaling, including ZNF683, DHX9, CUX1, TNNT1, and SPRY1. Genetic investigation of the risk composite trait implicated a novel locus and candidate genes that have potentially pleiotropic effects related to mastitis.
Collapse
|
23
|
Abstract
This research communication describes a genome-wide association study for Italian buffalo mammary gland morphology. Three single nucleotide polymorphisms (AX-85117983, AX-8509475 and AX-85117518) were identified to be significantly associated with buffalo anterior teat length, posterior teat length and distance between anterior and posterior teat, respectively. Two significant signals for buffalo mammary gland morphology were observed in two genomic regions on the chromosome 10, and chromosome 20. One of the regions located on the chromosome 10 has the most likely candidate genes ACTC1 and GJD2, both of which have putative roles in the regulation of mammary gland development. This study provides new insights into the genetic variants of buffalo mammary gland morphology and may be beneficial for understanding of the genetic regulation of mammary growth.
Collapse
|
24
|
Tribout T, Croiseau P, Lefebvre R, Barbat A, Boussaha M, Fritz S, Boichard D, Hoze C, Sanchez MP. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genet Sel Evol 2020; 52:55. [PMID: 32998688 PMCID: PMC7529513 DOI: 10.1186/s12711-020-00575-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background Over the last years, genome-wide association studies (GWAS) based on imputed whole-genome sequences (WGS) have been used to detect quantitative trait loci (QTL) and highlight candidate genes for important traits. However, in general this approach does not allow to validate the effects of candidate mutations or determine if they are truly causative for the trait(s) in question. To address these questions, we applied a two-step, within-breed GWAS approach on 15 traits (5 linked with milk production, 2 with udder health, and 8 with udder morphology) in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cattle. We detected the most-promising candidate variants (CV) using imputed WGS of 2515 MON, 2203 NOR, and 6321 HOL bulls, and validated their effects in three younger populations of 23,926 MON, 9400 NOR, and 51,977 HOL cows. Results Bull sequence-based GWAS detected 84 QTL: 13, 10, and 30 for milk production traits; 3, 0, and 2 for somatic cell score (SCS); and 8, 2 and 16 for udder morphology traits, in MON, NOR, and HOL respectively. Five genomic regions with effects on milk production traits were shared among the three breeds whereas six (2 for production and 4 for udder morphology and health traits) had effects in two breeds. In 80 of these QTL, 855 CV were highlighted based on the significance of their effects and functional annotation. The subsequent GWAS on MON, NOR, and HOL cows validated 8, 9, and 23 QTL for production traits; 0, 0, and 1 for SCS; and 4, 1, and 8 for udder morphology traits, respectively. In 47 of the 54 confirmed QTL, the CV identified in bulls had more significant effects than single nucleotide polymorphisms (SNPs) from the standard 50K chip. The best CV for each validated QTL was located in a gene that was functionally related to production (36 QTL) or udder (9 QTL) traits. Conclusions Using this two-step GWAS approach, we identified and validated 54 QTL that included CV mostly located within functional candidate genes and explained up to 6.3% (udder traits) and 37% (production traits) of the genetic variance of economically important dairy traits. These CV are now included in the chip used to evaluate French dairy cattle and can be integrated into routine genomic evaluation.
Collapse
Affiliation(s)
- Thierry Tribout
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pascal Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Rachel Lefebvre
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Chris Hoze
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,Allice, 75012, Paris, France
| | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Devani K, Plastow G, Orsel K, Valente TS. Genome-wide association study for mammary structure in Canadian Angus cows. PLoS One 2020; 15:e0237818. [PMID: 32853245 PMCID: PMC7451565 DOI: 10.1371/journal.pone.0237818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Functional and enduring mammary structure is pivotal for producer profitability, and animal health and welfare in beef production. Genetic evaluations for teat and udder score in Canadian Angus cattle have previously been developed. The aim of this study was to identify genomic regions associated with teat and udder structure in Canadian Angus cows thereby enhancing knowledge of the biological architecture of these traits. Thus, we performed a weighted single-step genome wide association study (WssGWAS) to identify candidate genes for teat and udder score in 1,582 Canadian Angus cows typed with the GeneSeek® Genomic Profiler Bovine 130K SNP array. Genomically enhanced estimated breeding values (GEBVs) were converted to SNP marker effects using unequal variances for markers to calculate weights for each SNP over three iterations. At the genome wide level, we detected windows of 20 consecutive SNPs that explained more than 0.5% of the variance observed in these traits. A total of 35 and 28 windows were identified for teat and udder score, respectively, with two SNP windows in common for both traits. Using Ensembl, the SNP windows were used to search for candidate genes and quantitative trait loci (QTL). A total of 94 and 71 characterized genes were identified in the regions for teat and udder score, respectively. Of these, 7 genes were common for both traits. Gene network and enrichment analysis, using Ingenuity Pathway Analysis (IPA), signified key pathways unique to each trait. Genes of interest were associated with immune response and wound healing, adipose tissue development and morphology, and epithelial and vascular development and morphology. Genetic architecture from this GWAS confirms that teat and udder score are distinct, polygenic traits involving varying and complex biological pathways, and that genetic selection for improved teat and udder score is possible.
Collapse
Affiliation(s)
- Kajal Devani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Karin Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiago S. Valente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
26
|
Reverter A, Vitezica ZG, Naval-Sánchez M, Henshall J, Raidan FSS, Li Y, Meyer K, Hudson NJ, Porto-Neto LR, Legarra A. Association analysis of loci implied in "buffering" epistasis. J Anim Sci 2020; 98:5734278. [PMID: 32047922 DOI: 10.1093/jas/skaa045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
The existence of buffering mechanisms is an emerging property of biological networks, and this results in the buildup of robustness through evolution. So far, there are no explicit methods to find loci implied in buffering mechanisms. However, buffering can be seen as interaction with genetic background. Here we develop this idea into a tractable model for quantitative genetics, in which the buffering effect of one locus with many other loci is condensed into a single statistical effect, multiplicative on the total additive genetic effect. This allows easier interpretation of the results and simplifies the problem of detecting epistasis from quadratic to linear in the number of loci. Using this formulation, we construct a linear model for genome-wide association studies that estimates and declares the significance of multiplicative epistatic effects at single loci. The model has the form of a variance components, norm reaction model and likelihood ratio tests are used for significance. This model is a generalization and explanation of previous ones. We test our model using bovine data: Brahman and Tropical Composite animals, phenotyped for body weight at yearling and genotyped at high density. After association analysis, we find a number of loci with buffering action in one, the other, or both breeds; these loci do not have a significant statistical additive effect. Most of these loci have been reported in previous studies, either with an additive effect or as footprints of selection. We identify buffering epistatic SNPs present in or near genes reported in the context of signatures of selection in multi-breed cattle population studies. Prominent among these genes are those associated with fertility (INHBA, TSHR, ESRRG, PRLR, and PPARG), growth (MSTN, GHR), coat characteristics (KIT, MITF, PRLR), and heat resistance (HSPA6 and HSPA1A). In these populations, we found loci that have a nonsignificant statistical additive effect but a significant epistatic effect. We argue that the discovery and study of loci associated with buffering effects allow attacking the difficult problems, among others, of the release of maintenance variance in artificial and natural selection, of quick adaptation to the environment, and of opposite signs of marker effects in different backgrounds. We conclude that our method and our results generate promising new perspectives for research in evolutionary and quantitative genetics based on the study of loci that buffer effect of other loci.
Collapse
Affiliation(s)
| | | | | | | | | | - Yutao Li
- CSIRO Agriculture & Food, St. Lucia, Brisbane, QLD, Australia
| | - Karin Meyer
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| | | | | |
Collapse
|
27
|
van den Berg I, Xiang R, Jenko J, Pausch H, Boussaha M, Schrooten C, Tribout T, Gjuvsland AB, Boichard D, Nordbø Ø, Sanchez MP, Goddard ME. Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genet Sel Evol 2020; 52:37. [PMID: 32635893 PMCID: PMC7339598 DOI: 10.1186/s12711-020-00556-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Sequence-based genome-wide association studies (GWAS) provide high statistical power to identify candidate causal mutations when a large number of individuals with both sequence variant genotypes and phenotypes is available. A meta-analysis combines summary statistics from multiple GWAS and increases the power to detect trait-associated variants without requiring access to data at the individual level of the GWAS mapping cohorts. Because linkage disequilibrium between adjacent markers is conserved only over short distances across breeds, a multi-breed meta-analysis can improve mapping precision. Results To maximise the power to identify quantitative trait loci (QTL), we combined the results of nine within-population GWAS that used imputed sequence variant genotypes of 94,321 cattle from eight breeds, to perform a large-scale meta-analysis for fat and protein percentage in cattle. The meta-analysis detected (p ≤ 10−8) 138 QTL for fat percentage and 176 QTL for protein percentage. This was more than the number of QTL detected in all within-population GWAS together (124 QTL for fat percentage and 104 QTL for protein percentage). Among all the lead variants, 100 QTL for fat percentage and 114 QTL for protein percentage had the same direction of effect in all within-population GWAS. This indicates either persistence of the linkage phase between the causal variant and the lead variant across breeds or that some of the lead variants might indeed be causal or tightly linked with causal variants. The percentage of intergenic variants was substantially lower for significant variants than for non-significant variants, and significant variants had mostly moderate to high minor allele frequencies. Significant variants were also clustered in genes that are known to be relevant for fat and protein percentages in milk. Conclusions Our study identified a large number of QTL associated with fat and protein percentage in dairy cattle. We demonstrated that large-scale multi-breed meta-analysis reveals more QTL at the nucleotide resolution than within-population GWAS. Significant variants were more often located in genic regions than non-significant variants and a large part of them was located in potentially regulatory regions.
Collapse
Affiliation(s)
- Irene van den Berg
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Ruidong Xiang
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Janez Jenko
- GENO SA, Storhamargata 44, 2317, Hamar, Norway
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Thierry Tribout
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Mike E Goddard
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
28
|
Butty AM, Chud TCS, Miglior F, Schenkel FS, Kommadath A, Krivushin K, Grant JR, Häfliger IM, Drögemüller C, Cánovas A, Stothard P, Baes CF. High confidence copy number variants identified in Holstein dairy cattle from whole genome sequence and genotype array data. Sci Rep 2020; 10:8044. [PMID: 32415111 PMCID: PMC7229195 DOI: 10.1038/s41598-020-64680-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple methods to detect copy number variants (CNV) relying on different types of data have been developed and CNV have been shown to have an impact on phenotypes of numerous traits of economic importance in cattle, such as reproduction and immunity. Further improvements in CNV detection are still needed in regard to the trade-off between high-true and low-false positive variant identification rates. Instead of improving single CNV detection methods, variants can be identified in silico with high confidence when multiple methods and datasets are combined. Here, CNV were identified from whole-genome sequences (WGS) and genotype array (GEN) data on 96 Holstein animals. After CNV detection, two sets of high confidence CNV regions (CNVR) were created that contained variants found in both WGS and GEN data following an animal-based (n = 52) and a population-based (n = 36) pipeline. Furthermore, the change in false positive CNV identification rates using different GEN marker densities was evaluated. The population-based approach characterized CNVR, which were more often shared among animals (average 40% more samples per CNVR) and were more often linked to putative functions (48 vs 56% of CNVR) than CNV identified with the animal-based approach. Moreover, false positive identification rates up to 22% were estimated on GEN information. Further research using larger datasets should use a population-wide approach to identify high confidence CNVR.
Collapse
Affiliation(s)
- Adrien M Butty
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Tatiane C S Chud
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Arun Kommadath
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kirill Krivushin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jason R Grant
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Irene M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, BE, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, BE, Switzerland
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada. .,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, BE, Switzerland.
| |
Collapse
|
29
|
Tiplady KM, Lopdell TJ, Littlejohn MD, Garrick DJ. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J Anim Sci Biotechnol 2020; 11:39. [PMID: 32322393 PMCID: PMC7164258 DOI: 10.1186/s40104-020-00445-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
Over the last 100 years, significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs. Technological progress has enabled a shift from labour intensive, on-farm collection and processing of samples that assess yield and fat levels in milk, to large-scale processing of samples through centralised laboratories, with the scope extended to include quantification of other traits. Fourier-transform mid-infrared (FT-MIR) spectroscopy has had a significant role in the transformation of milk composition phenotyping, with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs. This includes traits related to the nutritional value of milk, the processability of milk into products such as cheese, and traits relevant to animal health and the environment. The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations between the FT-MIR predicted and actual trait values. Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis. The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes. Additionally, there are other molecular phenotypes such as those related to the metabolome, chromatin accessibility, and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest. Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets, and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.
Collapse
Affiliation(s)
- K M Tiplady
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - T J Lopdell
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - M D Littlejohn
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - D J Garrick
- 2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
30
|
Rowan TN, Hoff JL, Crum TE, Taylor JF, Schnabel RD, Decker JE. A multi-breed reference panel and additional rare variants maximize imputation accuracy in cattle. Genet Sel Evol 2019; 51:77. [PMID: 31878893 PMCID: PMC6933688 DOI: 10.1186/s12711-019-0519-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background During the last decade, the use of common-variant array-based single nucleotide polymorphism (SNP) genotyping in the beef and dairy industries has produced an astounding amount of medium-to-low density genomic data. Although low-density assays work well in the context of genomic prediction, they are less useful for detecting and mapping causal variants and the effects of rare variants are not captured. The objective of this project was to maximize the accuracies of genotype imputation from medium- and low-density assays to the marker set obtained by combining two high-density research assays (~ 850,000 SNPs), the Illumina BovineHD and the GGP-F250 assays, which contains a large proportion of rare and potentially functional variants and for which the assay design is described here. This 850 K SNP set is useful for both imputation to sequence-level genotypes and direct downstream analysis. Results We found that a large multi-breed composite imputation reference panel that includes 36,131 samples with either BovineHD and/or GGP-F250 genotypes significantly increased imputation accuracy compared with a within-breed reference panel, particularly at variants with low minor allele frequencies. Individual animal imputation accuracies were maximized when more genetically similar animals were represented in the composite reference panel, particularly with complete 850 K genotypes. The addition of rare variants from the GGP-F250 assay to our composite reference panel significantly increased the imputation accuracy of rare variants that are exclusively present on the BovineHD assay. In addition, we show that an assay marker density of 50 K SNPs balances cost and accuracy for imputation to 850 K. Conclusions Using high-density genotypes on all available individuals in a multi-breed reference panel maximized imputation accuracy for tested cattle populations. Admixed animals or those from breeds with a limited representation in the composite reference panel were still imputed at high accuracy, which is expected to further increase as the reference panel expands. We anticipate that the addition of rare variants from the GGP-F250 assay will increase the accuracy of imputation to sequence level.
Collapse
Affiliation(s)
- Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
31
|
Wu P, Wang K, Zhou J, Chen D, Yang Q, Yang X, Liu Y, Feng B, Jiang A, Shen L, Xiao W, Jiang Y, Zhu L, Zeng Y, Xu X, Li X, Tang G. GWAS on Imputed Whole-Genome Resequencing From Genotyping-by-Sequencing Data for Farrowing Interval of Different Parities in Pigs. Front Genet 2019; 10:1012. [PMID: 31681435 PMCID: PMC6813215 DOI: 10.3389/fgene.2019.01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022] Open
Abstract
The whole-genome sequencing (WGS) data can potentially discover all genetic variants. Studies have shown the power of WGS for genome-wide association study (GWAS) lies in the ability to identify quantitative trait loci and nucleotides (QTNs). However, the resequencing of thousands of target individuals is expensive. Genotype imputation is a powerful approach for WGS and to identify causal mutations. This study aimed to evaluate the imputation accuracy from genotyping-by-sequencing (GBS) to WGS in two pig breeds using a resequencing reference population and to detect single-nucleotide polymorphisms (SNPs) and candidate genes for farrowing interval (FI) of different parities using the data before and after imputation for GWAS. Six hundred target pigs, 300 Landrace and 300 Large White pigs, were genotyped by GBS, and 60 reference pigs, 20 Landrace and 40 Large White pigs, were sequenced by whole-genome resequencing. Imputation for pigs was conducted using Beagle software. The average imputation accuracy (allelic R 2) from GBS to WGS was 0.42 for Landrace pigs and 0.45 for Large White pigs. For Landrace pigs (Large White pigs), 4,514,934 (5,533,290) SNPs had an accuracy >0.3, resulting an average accuracy of 0.73 (0.72), and 2,093,778 (2,468,645) SNPs had an accuracy >0.8, resulting an average accuracy of 0.94 (0.93). Association studies with data before and after imputation were performed for FI of different parities in two populations. Before imputation, 18 and 128 significant SNPs were detected for FI in Landrace and Large White pigs, respectively. After imputation, 125 and 27 significant SNPs were identified for dataset with an accuracy >0.3 and 0.8 in Large White pigs, and 113 and 18 SNPs were found among imputed sequence variants. Among these significant SNPs, six top SNPs were detected in both GBS data and imputed WGS data, namely, SSC2: 136127645, SSC5: 103426443, SSC6: 27811226, SSC10: 3609429, SSC14: 15199253, and SSC15: 150297519. Overall, many candidate genes could be involved in FI of different parities in pigs. Although imputation from GBS to WGS data resulted in a low imputation accuracy, association analyses with imputed WGS data were optimized to detect QTNs for complex trait. The obtained results provide new insight into genotype imputation, genetic architecture, and candidate genes for FI of different parities in Landrace and Large White pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiang Yang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yihui Liu
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Bo Feng
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangshuang Zeng
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Xu Xu
- Sichuan Province Department of Agriculture and Rural Affairs, Sichuan Animal Husbandry Station, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Fang ZH, Pausch H. Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle. BMC Genomics 2019; 20:695. [PMID: 31481029 PMCID: PMC6724290 DOI: 10.1186/s12864-019-6066-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/27/2019] [Indexed: 01/02/2023] Open
Abstract
Background Little is known about the genetic architecture of economically important traits in Brown Swiss cattle because only few genome-wide association studies (GWAS) have been carried out in this breed. Moreover, most GWAS have been performed for single traits, thus not providing detailed insights into potentially existing pleiotropic effects of trait-associated loci. Results To compile a comprehensive catalogue of large-effect quantitative trait loci (QTL) segregating in Brown Swiss cattle, we carried out association tests between partially imputed genotypes at 598,016 SNPs and daughter-derived phenotypes for more than 50 economically important traits, including milk production, growth and carcass quality, body conformation, reproduction and calving traits in 4578 artificial insemination bulls from two cohorts of Brown Swiss cattle (Austrian-German and Swiss populations). Across-cohort multi-trait meta-analyses of the results from the single-trait GWAS revealed 25 quantitative trait loci (QTL; P < 8.36 × 10− 8) for economically relevant traits on 17 Bos taurus autosomes (BTA). Evidence of pleiotropy was detected at five QTL located on BTA5, 6, 17, 21 and 25. Of these, two QTL at BTA6:90,486,780 and BTA25:1,455,150 affect a diverse range of economically important traits, including traits related to body conformation, calving, longevity and milking speed. Furthermore, the QTL at BTA6:90,486,780 seems to be a target of ongoing selection as evidenced by an integrated haplotype score of 2.49 and significant changes in allele frequency over the past 25 years, whereas either no or only weak evidence of selection was detected at all other QTL. Conclusions Our findings provide a comprehensive overview of QTL segregating in Brown Swiss cattle. Detected QTL explain between 2 and 10% of the variation in the estimated breeding values and thus may be considered as the most important QTL segregating in the Brown Swiss cattle breed. Multi-trait association testing boosts the power to detect pleiotropic QTL and assesses the full spectrum of phenotypes that are affected by trait-associated variants. Electronic supplementary material The online version of this article (10.1186/s12864-019-6066-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zih-Hua Fang
- Animal Genomics, Institute of Agricultural Science, ETH Zürich, 8092, Zürich, Switzerland.
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
33
|
Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, Penasa M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102:10088-10099. [PMID: 31447150 DOI: 10.3168/jds.2019-16663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.
Collapse
Affiliation(s)
- Angela Costa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria.
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Christian Fuerst
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Strasse 89/19, A-1200 Vienna, Austria
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
34
|
Sardar S, Kerr A, Vaartjes D, Moltved ER, Karosiene E, Gupta R, Andersson Å. The oncoprotein TBX3 is controlling severity in experimental arthritis. Arthritis Res Ther 2019; 21:16. [PMID: 30630509 PMCID: PMC6329118 DOI: 10.1186/s13075-018-1797-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Development of autoimmune diseases is the result of a complex interplay between hereditary and environmental factors, with multiple genes contributing to the pathogenesis in human disease and in experimental models for disease. The T-box protein 3 is a transcriptional repressor essential during early embryonic development, in the formation of bone and additional organ systems, and in tumorigenesis. METHODS With the aim to find novel genes important for autoimmune inflammation, we have performed genetic studies of collagen-induced arthritis (CIA), a mouse experimental model for rheumatoid arthritis. RESULTS We showed that a small genetic fragment on mouse chromosome 5, including Tbx3 and three additional protein-coding genes, is linked to severe arthritis and high titers of anti-collagen antibodies. Gene expression studies have revealed differential expression of Tbx3 in B cells, where low expression was accompanied by a higher B cell response upon B cell receptor stimulation in vitro. Furthermore, we showed that serum TBX3 levels rise concomitantly with increasing severity of CIA. CONCLUSIONS From these results, we suggest that TBX3 is a novel factor important for the regulation of gene transcription in the immune system and that genetic polymorphisms, resulting in lower expression of Tbx3, are contributing to a more severe form of CIA and high titers of autoantibodies. We also propose TBX3 as a putative diagnostic biomarker for rheumatoid arthritis.
Collapse
Affiliation(s)
- Samra Sardar
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nordic Bioscience A/S, Copenhagen, Denmark
| | - Alish Kerr
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nuritas, Dublin, Ireland
| | - Daniëlle Vaartjes
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Riis Moltved
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: IQVIA, Copenhagen, Denmark Denmark
| | - Edita Karosiene
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
- Present address: Novo Nordisk A/S, Copenhagen, Denmark
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
| | - Åsa Andersson
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Rydberg Laboratory of Applied Sciences, ETN, Halmstad University, Halmstad, Sweden
| |
Collapse
|
35
|
Marete AG, Guldbrandtsen B, Lund MS, Fritz S, Sahana G, Boichard D. A Meta-Analysis Including Pre-selected Sequence Variants Associated With Seven Traits in Three French Dairy Cattle Populations. Front Genet 2018; 9:522. [PMID: 30459810 PMCID: PMC6232291 DOI: 10.3389/fgene.2018.00522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
A within-breed genome-wide association study (GWAS) is useful when identifying the QTL that segregates in a breed. However, an across-breed meta-analysis can be used to increase the power of identification and precise localization of QTL that segregate in multiple breeds. Precise localization will allow including QTL information from other breeds in genomic prediction due to the persistence of the linkage phase between the causal variant and the marker. This study aimed to identify and confirm QTL detected in within-breed GWAS through a meta-analysis in three French dairy cattle breeds. A set of sequence variants selected based on their functional annotations were imputed into 50 k genotypes for 46,732 Holstein, 20,096 Montbeliarde, and 11,944 Normande cows to identify QTL for milk production, the success rate at insemination of cows (fertility) and stature. We conducted within-breed GWAS followed by across-breed meta-analysis using a weighted Z-scores model on the GWAS summary data (i.e., P-values, effect direction, and sample size). After Bonferroni correction, the GWAS result identified 21,956 significantly associated SNP (P FWER < 0.05), while meta-analysis result identified 9,604 significant SNP (P FWER < 0.05) associated with the phenotypes. The meta-analysis identified 36 QTL for milk yield, 48 QTL for fat yield and percentage, 29 QTL for protein yield and percentage, 13 QTL for fertility, and 16 QTL for stature. Some of these QTL were not significant in the within-breed GWAS. Some previously identified causal variants were confirmed, e.g., BTA14:1802265 (fat percentage, P = 1.5 × 10-760; protein percentage, P = 7.61 × 10-348) both mapping the DGAT1-K232A mutation and BTA14:25006125 (P = 8.58 × 10-140) mapping PLAG1 gene was confirmed for stature in Montbeliarde. New QTL lead SNP shared between breeds included the intronic variant rs109205829 (NFIB gene), and the intergenic variant rs41592357 (1.38 Mb upstream of the CNTN6 gene and 0.65 Mb downstream of the CNTN4 gene). Rs110425867 (ZFAT gene) was the top variant associated with fertility, and new QTL lead SNP included rs109483390 (0.1 Mb upstream of the TNFAIP3 gene and 0.07 Mb downstream of PERP gene), and rs42412333 (0.45 Mb downstream of the RPL10L gene). An across-breed meta-analysis had greater power to detect QTL as opposed to a within breed GWAS. The QTL detected here can be incorporated in routine genomic predictions.
Collapse
Affiliation(s)
- Andrew G Marete
- UMR GABI, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy en Josas, France.,Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Sébastien Fritz
- UMR GABI, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy en Josas, France.,ALLICE, Paris, France
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Didier Boichard
- UMR GABI, INRA, AgroParisTech, Université Paris Saclay, 78350 Jouy en Josas, France
| |
Collapse
|
36
|
Marete A, Lund MS, Boichard D, Ramayo-Caldas Y. A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS One 2018; 13:e0199931. [PMID: 29965995 PMCID: PMC6028091 DOI: 10.1371/journal.pone.0199931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
Using GWAS to identify candidate genes associated with cattle morphology traits at a functional level is challenging. The main difficulty of identifying candidate genes and gene interactions associated with such complex traits is the long-range linkage disequilibrium (LD) phenomenon reported widely in dairy cattle. Systems biology approaches, such as combining the Association Weight Matrix (AWM) with a Partial Correlation in an Information Theory (PCIT) algorithm, can assist in overcoming this LD. Used in a multi-breed and multi-phenotype context, the AWM-PCIT could aid in identifying udder traits candidate genes and gene networks with regulatory and functional significance. This study aims to use the AWM-PCIT algorithm as a post-GWAS analysis tool with the goal of identifying candidate genes underlying udder morphology. We used data from 78,440 dairy cows from three breeds and with own phenotypes for five udder morphology traits, five production traits, somatic cell score and clinical mastitis. Cows were genotyped with medium (50k) or low-density (7 to 10k) chips and imputed to 50k. We performed a within breed and trait GWAS. The GWAS showed 9,830 significant SNP across the genome (p < 0.05). Five thousand and ten SNP did not map a gene, and 4,820 SNP were within 10-kb of a gene. After accounting for 1SNP:1gene, 3,651 SNP were within 10-kb of a gene (set1), and 2,673 significant SNP were further than 10-kb of a gene (set2). The two SNP sets formed 6,324 SNP matrix, which was fitted in an AWM-PCIT considering udder depth/ development as the key trait resulting in 1,013 genes associated with udder morphology, mastitis and production phenotypes. The AWM-PCIT detected ten potential candidate genes for udder related traits: ESR1, FGF2, FGFR2, GLI2, IQGAP3, PGR, PRLR, RREB1, BTRC, and TGFBR2.
Collapse
Affiliation(s)
- Andrew Marete
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Didier Boichard
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yuliaxis Ramayo-Caldas
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
37
|
Davis SR. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Mammary growth during pregnancy and lactation and its relationship with milk yield. J Anim Sci 2018; 95:5675-5688. [PMID: 29293774 DOI: 10.2527/jas2017.1733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The number of secretory cells in the mammary gland is often cited as a major determinant of milk production. However, literature data for proxy measures of secretory cell number do not fully support such a claim. In particular, measurements of total mammary DNA in livestock explain only <25% of variation in milk yield, probably because of tissue heterogeneity for DNA concentration. Relative to BW, measurements of udder size in dairy cattle, as total DNA or udder weight, are approximately double those seen in most other livestock classes. Therefore, selection for dairy production, not surprisingly, has resulted in cows with greater secretory capacity. There is limited evidence that genetic selection is still increasing udder size in some cattle populations, but more recent data are needed. It is contended that the most important period of mammary growth for determination of milk yield is that occurring in pregnancy and early lactation. Mammary development is largely complete, at term, in sheep, goats, and cattle, but in pigs, the udder continues to grow during the first 3 wk of lactation, depending, in part, on litter size. Increased litter size in sheep and goats will enhance the extent of mammary development at the end of gestation (and milk yield) by 20 to 25%. However, twinning in dairy cattle does not affect milk production and, by inference only, is not likely to affect numbers of secretory cells at term. Milking frequency and suckling intensity in very early lactation will increase milk yield in cows and increase mammogenesis and milk yield in sheep, indicating that even at term, the ruminant gland retains some capacity for further development, if demand requires it. There is limited understanding of the hormonal signals in pregnancy that regulate mammary development relative to the number of young carried. Furthermore, the genetic differences between dairy and beef cattle that lead to substantially greater udder size in the dairy breeds have not been identified. During lactation, the drivers for secretory cell loss in relation to milking frequency and nutritional status are still not known. Measurement of mammary development and using this phenotype in genomewide association studies to identify key genetic variants for mammogenesis will provide knowledge that is fundamental to understanding the quantitative regulation of milk production.
Collapse
|
38
|
Martin P, Palhière I, Maroteau C, Clément V, David I, Klopp GT, Rupp R. Genome-wide association mapping for type and mammary health traits in French dairy goats identifies a pleiotropic region on chromosome 19 in the Saanen breed. J Dairy Sci 2018; 101:5214-5226. [PMID: 29573797 DOI: 10.3168/jds.2017-13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
Abstract
Type traits and mammary health traits are important to dairy ruminant breeding because they influence animal health, milking ability, and longevity, as well as the economic sustainability of farms. The availability of the genomic sequence and a single nucleotide polymorphism chip in goats has opened up new fields of investigation to better understand the genes and mechanisms that underlie such complex traits and to be able to select them. Our objective was to perform a genome-wide association study in dairy goats for 11 type traits and somatic cell count (SCC) as proxies for mastitis resistance. A genome-wide association study was implemented using a daughter design composed of 1,941 Alpine and Saanen goats sired by 20 artificial insemination bucks, genotyped with the Illumina GoatSNP50 BeadChip (Illumina Inc., San Diego, CA). This association study was based on both linkage analyses and linkage disequilibrium using QTLmap software (http://dga7.jouy.inra.fr/qtlmap/) interval mapping was performed with the likelihood ratio test using linear regressions. Breeds were analyzed together and separately. The study highlighted 37 chromosome-wide significant quantitative trait loci (QTL) with linkage analyses and 222 genome-wide significant QTL for linkage disequilibrium, for type and SCC traits in dairy goats. Genomic control of those traits was mostly polygenic and breed-specific, suggesting that within-breed selection would be favored for those traits. Of note, Capra hircus autosome (CHI) 19 appeared to be highly enriched in single nucleotide polymorphisms associated with type and SCC, with 2 highly significant regions in the Saanen breed. One region (33-42 Mb) was significantly associated with SCC and includes candidate genes associated with response to intramammary infections (RARA, STAT3, STAT5A, and STAT5B). Another region of the CHI 19 (24.5-27 Mb) exhibited an adverse pleiotropic effect on milk production (milk, fat yield, and protein yield) and udder traits (udder floor position and rear udder attachment) that agreed with the negative genetic correlations that exist between those 2 groups of traits. These QTL were not found in the Alpine breed. In Alpine, the 2 most significant regions were associated with chest depth on CHI 6 (45.8-46.0 Mb) and CHI 8 (80.7-81.1 Mb). These results will be helpful for goat selection in the future and could lead to identification of causal mutations.
Collapse
Affiliation(s)
- Pauline Martin
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326 France
| | - Isabelle Palhière
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326 France
| | - Cyrielle Maroteau
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326 France
| | - Virginie Clément
- Institut de l'Elevage, Chemin de Borde Rouge, Castanet Tolosan, F-31326 France
| | - Ingrid David
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326 France
| | | | - Rachel Rupp
- GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, F-31326 France.
| |
Collapse
|
39
|
Ye S, Yuan X, Lin X, Gao N, Luo Y, Chen Z, Li J, Zhang X, Zhang Z. Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population. J Anim Sci Biotechnol 2018; 9:30. [PMID: 29581880 PMCID: PMC5861640 DOI: 10.1186/s40104-018-0241-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/26/2018] [Indexed: 11/24/2022] Open
Abstract
Background Genome-wide association studies and genomic predictions are thought to be optimized by using whole-genome sequence (WGS) data. However, sequencing thousands of individuals of interest is expensive. Imputation from SNP panels to WGS data is an attractive and less expensive approach to obtain WGS data. The aims of this study were to investigate the accuracy of imputation and to provide insight into the design and execution of genotype imputation. Results We genotyped 450 chickens with a 600 K SNP array, and sequenced 24 key individuals by whole genome re-sequencing. Accuracy of imputation from putative 60 K and 600 K array data to WGS data was 0.620 and 0.812 for Beagle, and 0.810 and 0.914 for FImpute, respectively. By increasing the sequencing cost from 24X to 144X, the imputation accuracy increased from 0.525 to 0.698 for Beagle and from 0.654 to 0.823 for FImpute. With fixed sequence depth (12X), increasing the number of sequenced animals from 1 to 24, improved accuracy from 0.421 to 0.897 for FImpute and from 0.396 to 0.777 for Beagle. Using optimally selected key individuals resulted in a higher imputation accuracy compared with using randomly selected individuals as a reference population for re-sequencing. With fixed reference population size (24), imputation accuracy increased from 0.654 to 0.875 for FImpute and from 0.512 to 0.762 for Beagle as the sequencing depth increased from 1X to 12X. With a given total cost of genotyping, accuracy increased with the size of the reference population for FImpute, but the pattern was not valid for Beagle, which showed the highest accuracy at six fold coverage for the scenarios used in this study. Conclusions In conclusion, we comprehensively investigated the impacts of several key factors on genotype imputation. Generally, increasing sequencing cost gave a higher imputation accuracy. But with a fixed sequencing cost, the optimal imputation enhance the performance of WGP and GWAS. An optimal imputation strategy should take size of reference population, imputation algorithms, marker density, and population structure of the target population and methods to select key individuals into consideration comprehensively. This work sheds additional light on how to design and execute genotype imputation for livestock populations. Electronic supplementary material The online version of this article (10.1186/s40104-018-0241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Xiran Lin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Ning Gao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Yuanyu Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| |
Collapse
|
40
|
Tolleson MW, Gill CA, Herring AD, Riggs PK, Sawyer JE, Sanders JO, Riley DG. Association of udder traits with single nucleotide polymorphisms in crossbred Bos indicus- Bos taurus cows. J Anim Sci 2018; 95:2399-2407. [PMID: 28727049 DOI: 10.2527/jas.2017.1475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The size, support, and health of udders limit the productive life of beef cows, especially those with background, because, in general, such cows have a reputation for problems with udders. Genomic association studies of bovine udder traits have been conducted in dairy cattle and recently in Continental European beef breeds but not in cows with background. The objective of this study was to determine associations of SNP and udder support scores, teat length, and teat diameter in half (Nellore), half (Angus) cows. Udders of cows ( = 295) born from 2003 to 2007 were evaluated for udder support and teat length and diameter ( = 1,746 records) from 2005 through 2014. These included a subjective score representing udder support (values of 1 indicated poorly supported, pendulous udders and values of 9 indicated very well-supported udders) and lengths and diameters of individual teats in the 4 udder quarters as well as the average. Cows were in full-sibling or half-sibling families. Residuals for each trait were produced from repeated records models with cow age category nested within birth year of cows. Those residuals were averaged to become the dependent variables for genomewide association analyses. Regression analyses of those dependent variables included genotypic values as explanatory variables for 34,980 SNP from a commercially available array and included the genomic relationship matrix. Fifteen SNP loci on BTA 5 were associated (false discovery rate controlled at 0.05) with udder support score. One of those was also detected as associated with average teat diameter. Three of those 15 SNP were located within genes, including one each in (), (), and (). These are notable for their functional role in some aspect of mammary gland formation or health. Other candidate genes for these traits in the vicinity of the SNP loci include () and (). Because these were detected in Nellore-Angus crossbred cows, which typically have very well-formed udders with excellent support across their productive lives, similar efforts in other breeds should be completed, because that may facilitate further refinement of genomic regions responsible for variation in udder traits important in multiple breeds.
Collapse
|
41
|
Frischknecht M, Pausch H, Bapst B, Signer-Hasler H, Flury C, Garrick D, Stricker C, Fries R, Gredler-Grandl B. Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss cattle. BMC Genomics 2017; 18:999. [PMID: 29284405 PMCID: PMC5747239 DOI: 10.1186/s12864-017-4390-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. Results In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. Conclusions Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection. Electronic supplementary material The online version of this article (10.1186/s12864-017-4390-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mirjam Frischknecht
- Qualitas AG, Chamerstrasse 56a, 6300, Zug, Switzerland. .,Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland.
| | - Hubert Pausch
- Chair of Animal Breeding, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - Beat Bapst
- Qualitas AG, Chamerstrasse 56a, 6300, Zug, Switzerland
| | - Heidi Signer-Hasler
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Christine Flury
- Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Dorian Garrick
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, 4442, Palmerston North, New Zealand
| | | | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | | |
Collapse
|
42
|
Jardim JG, Guldbrandtsen B, Lund MS, Sahana G. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle. J Dairy Sci 2017; 101:2199-2212. [PMID: 29274975 DOI: 10.3168/jds.2017-12982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation.
Collapse
Affiliation(s)
- Júlia Gazzoni Jardim
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; Laboratory of Reproduction and Animal Breeding, State University of North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 Parque California, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.
| |
Collapse
|
43
|
Ray D, Boehnke M. Methods for meta-analysis of multiple traits using GWAS summary statistics. Genet Epidemiol 2017; 42:134-145. [PMID: 29226385 DOI: 10.1002/gepi.22105] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) for complex diseases have focused primarily on single-trait analyses for disease status and disease-related quantitative traits. For example, GWAS on risk factors for coronary artery disease analyze genetic associations of plasma lipids such as total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides (TGs) separately. However, traits are often correlated and a joint analysis may yield increased statistical power for association over multiple univariate analyses. Recently several multivariate methods have been proposed that require individual-level data. Here, we develop metaUSAT (where USAT is unified score-based association test), a novel unified association test of a single genetic variant with multiple traits that uses only summary statistics from existing GWAS. Although the existing methods either perform well when most correlated traits are affected by the genetic variant in the same direction or are powerful when only a few of the correlated traits are associated, metaUSAT is designed to be robust to the association structure of correlated traits. metaUSAT does not require individual-level data and can test genetic associations of categorical and/or continuous traits. One can also use metaUSAT to analyze a single trait over multiple studies, appropriately accounting for overlapping samples, if any. metaUSAT provides an approximate asymptotic P-value for association and is computationally efficient for implementation at a genome-wide level. Simulation experiments show that metaUSAT maintains proper type-I error at low error levels. It has similar and sometimes greater power to detect association across a wide array of scenarios compared to existing methods, which are usually powerful for some specific association scenarios only. When applied to plasma lipids summary data from the METSIM and the T2D-GENES studies, metaUSAT detected genome-wide significant loci beyond the ones identified by univariate analyses. Evidence from larger studies suggest that the variants additionally detected by our test are, indeed, associated with lipid levels in humans. In summary, metaUSAT can provide novel insights into the genetic architecture of a common disease or traits.
Collapse
Affiliation(s)
- Debashree Ray
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
44
|
Genome-wide association studies of fertility and calving traits in Brown Swiss cattle using imputed whole-genome sequences. BMC Genomics 2017; 18:910. [PMID: 29178833 PMCID: PMC5702100 DOI: 10.1186/s12864-017-4308-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Background The detection of quantitative trait loci has accelerated with recent developments in genomics. The introduction of genomic selection in combination with sequencing efforts has made a large amount of genotypic data available. Functional traits such as fertility and calving traits have been included in routine genomic estimation of breeding values making large quantities of phenotypic data available for these traits. This data was used to investigate the genetics underlying fertility and calving traits and to identify potentially causative genomic regions and variants. We performed genome-wide association studies for 13 functional traits related to female fertility as well as for direct and maternal calving ease based on imputed whole-genome sequences. Deregressed breeding values from ~1000–5000 bulls per trait were used to test for associations with approximately 10 million imputed sequence SNPs. Results We identified a QTL on BTA17 associated with non-return rate at 56 days and with interval from first to last insemination. We found two significantly associated non-synonymous SNPs within this QTL region. Two more QTL for fertility traits were identified on BTA25 and 29. A single QTL was identified for maternal calving traits on BTA13 whereas three QTL on BTA19, 21 and 25 were identified for direct calving traits. The QTL on BTA19 co-localizes with the reported BH2 haplotype. The QTL on BTA25 is concordant for fertility and calving traits and co-localizes with a QTL previously reported to influence stature and related traits in Brown Swiss dairy cattle. Conclusion The detection of QTL and their causative variants remains challenging. Combining comprehensive phenotypic data with imputed whole genome sequences seems promising. We present a QTL on BTA17 for female fertility in dairy cattle with two significantly associated non-synonymous SNPs, along with five additional QTL for fertility traits and calving traits. For all of these we fine mapped the regions and suggest candidate genes and candidate variants. Electronic supplementary material The online version of this article (10.1186/s12864-017-4308-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Pausch H, Emmerling R, Gredler-Grandl B, Fries R, Daetwyler HD, Goddard ME. Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution. BMC Genomics 2017; 18:853. [PMID: 29121857 PMCID: PMC5680815 DOI: 10.1186/s12864-017-4263-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
Background Genotyping and whole-genome sequencing data have been generated for hundreds of thousands of cattle. International consortia used these data to compile imputation reference panels that facilitate the imputation of sequence variant genotypes for animals that have been genotyped using dense microarrays. Association studies with imputed sequence variant genotypes allow for the characterization of quantitative trait loci (QTL) at nucleotide resolution particularly when individuals from several breeds are included in the mapping populations. Results We imputed genotypes for 28 million sequence variants in 17,229 cattle of the Braunvieh, Fleckvieh and Holstein breeds in order to compile large mapping populations that provide high power to identify QTL for milk production traits. Association tests between imputed sequence variant genotypes and fat and protein percentages in milk uncovered between six and thirteen QTL (P < 1e-8) per breed. Eight of the detected QTL were significant in more than one breed. We combined the results across breeds using meta-analysis and identified a total of 25 QTL including six that were not significant in the within-breed association studies. Two missense mutations in the ABCG2 (p.Y581S, rs43702337, P = 4.3e-34) and GHR (p.F279Y, rs385640152, P = 1.6e-74) genes were the top variants at QTL on chromosomes 6 and 20. Another known causal missense mutation in the DGAT1 gene (p.A232K, rs109326954, P = 8.4e-1436) was the second top variant at a QTL on chromosome 14 but its allelic substitution effects were inconsistent across breeds. It turned out that the conflicting allelic substitution effects resulted from flaws in the imputed genotypes due to the use of a multi-breed reference population for genotype imputation. Conclusions Many QTL for milk production traits segregate across breeds and across-breed meta-analysis has greater power to detect such QTL than within-breed association testing. Association testing between imputed sequence variant genotypes and phenotypes of interest facilitates identifying causal mutations provided the accuracy of imputation is high. However, true causal mutations may remain undetected when the imputed sequence variant genotypes contain flaws. It is highly recommended to validate the effect of known causal variants in order to assess the ability to detect true causal mutations in association studies with imputed sequence variants. Electronic supplementary material The online version of this article (10.1186/s12864-017-4263-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland. .,Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.
| | - Reiner Emmerling
- Institute of Animal Breeding, Bavarian State Research Center for Agriculture, 85586, Grub, Germany
| | | | - Ruedi Fries
- Animal Breeding, Technische Universitaet Muenchen, 85354, Freising, Germany
| | - Hans D Daetwyler
- Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.,School of Applied Systems Biology, LaTrobe University, Bundoora, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Research Division, Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources, AgriBio, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
46
|
Signer-Hasler H, Burren A, Neuditschko M, Frischknecht M, Garrick D, Stricker C, Gredler B, Bapst B, Flury C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet Sel Evol 2017; 49:83. [PMID: 29115934 PMCID: PMC5674839 DOI: 10.1186/s12711-017-0358-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). RESULTS The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH: 0.027), OB (F ROH: 0.029), and SI (F ROH: 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH: 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. CONCLUSIONS The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.
Collapse
Affiliation(s)
- Heidi Signer-Hasler
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Alexander Burren
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | - Mirjam Frischknecht
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
- Qualitas AG, Zug, Switzerland
| | | | | | | | | | - Christine Flury
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| |
Collapse
|
47
|
Amills M, Capote J, Tosser-Klopp G. Goat domestication and breeding: a jigsaw of historical, biological and molecular data with missing pieces. Anim Genet 2017; 48:631-644. [PMID: 28872195 DOI: 10.1111/age.12598] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
Abstract
Domestic goats (Capra hircus) are spread across the five continents with a census of 1 billion individuals. The worldwide population of goats descends from a limited number of bezoars (Capra aegagrus) domesticated 10 000 YBP (years before the present) in the Fertile Crescent. The extraordinary adaptability and hardiness of goats favoured their rapid spread over the Old World, reaching the Iberian Peninsula and Southern Africa 7000 YBP and 2000 YBP respectively. Molecular studies have revealed one major mitochondrial haplogroup A and five less frequent haplogroups B, C, D, F and G. Moreover, the analysis of autosomal and Y-chromosome markers has evidenced an appreciable geographic differentiation. The implementation of new molecular technologies, such as whole-genome sequencing and genome-wide genotyping, allows for the exploration of caprine diversity at an unprecedented scale, thus providing new insights into the evolutionary history of goats. In spite of a number of pitfalls, the characterization of the functional elements of the goat genome is expected to play a key role in understanding the genetic determination of economically relevant traits. Genomic selection and genome editing also hold great potential, particularly for improving traits that cannot be modified easily by traditional selection.
Collapse
Affiliation(s)
- M Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - J Capote
- Instituto Canario de Investigaciones Agrarias, La Laguna, 38108, Tenerife, Spain
| | - G Tosser-Klopp
- INRA-GenPhySE-Génétique, Physiologie et Systèmes d'Elevage-UMR1388, 24 Chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| |
Collapse
|
48
|
Liu A, Wang Y, Sahana G, Zhang Q, Liu L, Lund MS, Su G. Genome-wide Association Studies for Female Fertility Traits in Chinese and Nordic Holsteins. Sci Rep 2017; 7:8487. [PMID: 28814769 PMCID: PMC5559619 DOI: 10.1038/s41598-017-09170-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
Reduced female fertility could cause considerable economic loss and has become a worldwide problem in the modern dairy industry. The objective of this study was to detect quantitative trait loci (QTL) for female fertility traits in Chinese and Nordic Holsteins using various strategies. First, single-trait association analyses were performed for female fertility traits in Chinese and Nordic Holsteins. Second, the SNPs with P-value < 0.005 discovered in Chinese Holsteins were validated in Nordic Holsteins. Third, the summary statistics from single-trait association analyses were combined into meta-analyses to: (1) identify common QTL for multiple fertility traits within each Holstein population; (2) detect SNPs which were associated with a female fertility trait across two Holstein populations. A large numbers of QTL were discovered or confirmed for female fertility traits. The QTL segregating at 31.4~34.1 Mb on BTA13, 48.3~51.9 Mb on BTA23 and 34.0~37.6 Mb on BTA28 shared between Chinese and Nordic Holsteins were further ascertained using a validation approach and meta-analyses. Furthermore, multiple novel variants identified in Chinese Holsteins were validated with Nordic data as well as meta-analyses. The genes IL6R, SLC39A12, CACNB2, ZEB1, ZMIZ1 and FAM213A were concluded to be strong candidate genes for female fertility in Holsteins.
Collapse
Affiliation(s)
- Aoxing Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Yachun Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Qin Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|
49
|
Suravajhala P, Benso A. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis. Adv Appl Bioinform Chem 2017; 10:57-64. [PMID: 28652783 PMCID: PMC5473491 DOI: 10.2147/aabc.s123604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs) and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities.
Collapse
Affiliation(s)
- Prashanth Suravajhala
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Alfredo Benso
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
50
|
Selecting sequence variants to improve genomic predictions for dairy cattle. Genet Sel Evol 2017; 49:32. [PMID: 28270096 PMCID: PMC5339980 DOI: 10.1186/s12711-017-0307-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/27/2017] [Indexed: 01/26/2023] Open
Abstract
Background Millions of genetic variants have been identified by population-scale sequencing projects, but subsets of these variants are needed for routine genomic predictions or genotyping arrays. Methods for selecting sequence variants were compared using simulated sequence genotypes and real July 2015 data from the 1000 Bull Genomes Project. Methods Candidate sequence variants for 444 Holstein animals were combined with high-density (HD) imputed genotypes for 26,970 progeny-tested Holstein bulls. Test 1 included single nucleotide polymorphisms (SNPs) for 481,904 candidate sequence variants. Test 2 also included 249,966 insertions-deletions (InDels). After merging sequence variants with 312,614 HD SNPs and editing steps, Tests 1 and 2 included 762,588 and 1,003,453 variants, respectively. Imputation quality from findhap software was assessed with 404 of the sequenced animals in the reference population and 40 randomly chosen animals for validation. Their sequence genotypes were reduced to the subset of genotypes that were in common with HD genotypes and then imputed back to sequence. Predictions were tested for 33 traits using 2015 data of 3983 US validation bulls with daughters that were first phenotyped after August 2011. Results The average percentage of correctly imputed variants across all chromosomes was 97.2 for Test 1 and 97.0 for Test 2. Total time required to prepare, edit, impute, and estimate the effects of sequence variants for 27,235 bulls was about 1 week using less than 33 threads. Many sequence variants had larger estimated effects than nearby HD SNPs, but prediction reliability improved only by 0.6 percentage points in Test 1 when sequence SNPs were added to HD SNPs and by 0.4 percentage points in Test 2 when sequence SNPs and InDels were included. However, selecting the 16,648 candidate SNPs with the largest estimated effects and adding them to the 60,671 SNPs used in routine evaluations improved reliabilities by 2.7 percentage points. Conclusions Reliabilities for genomic predictions improved when selected sequence variants were added; gains were similar for simulated and real data for the same population, and larger than previous gains obtained by adding HD SNPs. With many genotyped animals, many data sources, and millions of variants, computing strategies must efficiently balance costs of imputation, selection, and prediction to obtain subsets of markers that provide the highest accuracy. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0307-4) contains supplementary material, which is available to authorized users.
Collapse
|