1
|
Sarkar S, Cabrera-Barjas G, Singh RN, Fabi JP, Breig SJM, Tapia J, Sani RK, Banerjee A. Unveiling a novel exopolysaccharide produced by Pseudomonas alcaligenes Med1 isolated from a Chilean hot spring as biotechnological additive. Sci Rep 2024; 14:25058. [PMID: 39443539 PMCID: PMC11500355 DOI: 10.1038/s41598-024-74830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermotolerant (growth from 34-44 °C) strain Pseudomonas alcaligenes Med1 from Medano hot spring (39.1 °C surface temperature, pH 7.1) located in the Central Andean Mountains of Chile. Bacterial growth was screened for temperature tolerance (10-60 °C) to confirm the thermotolerance behaviour. Physicochemical properties of the EPS were characterized by different techniques: Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). Whole genome of P. alcaligenes Med1 has also been studied in detail to correlate the structural and functional characteristics with genomic insight. The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps composed of mainly carbon and oxygen. The monosaccharide analysis has shown the presence of glucose, galactose, and mannose sugars at different ratios. TGA revealed the high thermal stability (315.3 °C) of the polysaccharide. The GPC has shown that Med1 is a low molecular weight polysaccharide (34.8 kDa) with low PI. The 2D-NMR linkage analysis suggests a diverse array of glycosidic bonds within the exopolysaccharide structure. The functional properties of the EPS were evaluated for food industry applications, specifically for antioxidant (DPPH, FRAP an H2O2). Extracted Med1 EPS revealed significant emulsification activity against different food grade vegetative oils (Coconut oil, Corn oil, Canola oil, Avocado oil, Sunflower oil, Olive oil, and Sesame oil). The highest 33.9% flocculation activity was observed with 60 mg L-1 EPS concentration. It showed water-holding (WHC) of 107.6% and oil-holding (OHC) capacity of 110.8%. The functional EPS produced by Pseudomonas alcaligenes Med1 from Central Andean Chilean hot spring of central Chile can be a useful additive for the food-processing industry.
Collapse
Affiliation(s)
- Shrabana Sarkar
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, 4080871, Concepción, Chile
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID‑FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | | | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000, Talca, Chile
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - Aparna Banerjee
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile.
| |
Collapse
|
2
|
Hofmann H, Margos G, Todorova A, Ringshausen I, Kuleshov K, Fingerle V. Case report of disseminated borrelial lymphocytoma with isolation of Borrelia burgdorferi sensu stricto in chronic lymphatic leukemia stage Binet A-an 11 year follow up. Front Med (Lausanne) 2024; 11:1465630. [PMID: 39493706 PMCID: PMC11527655 DOI: 10.3389/fmed.2024.1465630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
We report a rare manifestation of cutaneous borreliosis in a patient with pre-existing malignant lymphoproliferative disease, in particular chronic lymphocytic B cell leukemia (B-CLL). The patient's cutaneous lesions were initially diagnosed histologically as leukemia cutis. Distribution pattern of the skin lesions were in typical localizations for borrelial lymphocytoma. Borrelia burgdorferi sensu stricto was isolated and cultured from two sites (ear, mammilla). Antibiotic therapy improved the cutaneous lesions and the general condition of the patient. However, a second round of antibiotic therapy was required to resolve the lesions. At eleven years of follow-up the patient's skin was clear and she still had a stable condition of B-CLL without chemotherapy. In conclusion, the patient suffered from Lyme borreliosis (Borrelia lymphocytoma) and the cutaneous symptoms were aggravated by the underlying condition of chronic B-CLL condition.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Antonia Todorova
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Public Health, City of Munich, Munich, Germany
| | - Ingo Ringshausen
- III Medical Department for Hematology and Hematooncology, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- University College London Cancer Institute, London, United Kingdom
| | | | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
3
|
Khazani Asforooshani M, Elikaei A, Abed S, Shafiei M, Barzi SM, Solgi H, Badmasti F, Sohrabi A. A novel Enterococcus faecium phage EF-M80: unveiling the effects of hydrogel-encapsulated phage on wound infection healing. Front Microbiol 2024; 15:1416971. [PMID: 39006751 PMCID: PMC11239553 DOI: 10.3389/fmicb.2024.1416971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecium is one of the members of ESKAPE pathogens. Due to its resistance to antimicrobial agents, treating this bacterium has become challenging. The development of innovative approaches to combat antibiotic resistance is necessary. Phage therapy has emerged as a promising method for curing antibiotic-resistant bacteria. Methods In this study, E. faecium phages were isolated from wastewater. Phage properties were characterized through in vitro assays (e.g. morphological studies, and physicochemical properties). In addition, whole genome sequencing was performed. A hydrogel-based encapsulated phage was obtained and its structure characteristics were evaluated. Wound healing activity of the hydrogel-based phage was assessed in a wound mice model. Results The purified phage showed remarkable properties including broad host range, tolerance to high temperature and pH and biofilm degradation feature as a stable and reliable therapeutic agent. Whole genome sequencing revealed that the genome of the EF-M80 phage had a length of 40,434 bp and harbored 65 open reading frames (ORFs) with a GC content of 34.9% (GenBank accession number is OR767211). Hydrogel-based encapsulated phage represented an optimized structure. Phage-loaded hydrogel-treated mice showed that the counting of neutrophils, fibroblasts, blood vessels, hair follicles and percentage of collagen growth were in favor of the wound healing process in the mice model. Conclusion These findings collectively suggest the promising capability of this phage-based therapeutic strategy for the treatment of infections associated with the antibiotic-resistant E. faecium. In the near future, we hope to expect the presence of bacteriophages in the list of antibacterial compounds used in the clinical settings.
Collapse
Affiliation(s)
- Mahshid Khazani Asforooshani
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Aria Sohrabi
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Beig M, Badmasti F, Solgi H, Nikbin VS, Sholeh M. Carbapenemase genes distribution in clonal lineages of Acinetobacter baumannii: a comprehensive study on plasmids and chromosomes. Front Cell Infect Microbiol 2023; 13:1283583. [PMID: 38106472 PMCID: PMC10722191 DOI: 10.3389/fcimb.2023.1283583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background The global spread of plasmids carrying carbapenemase genes within carbapenem resistant Acinetobacter baumannii (CRAB) strains poses a worldwide public health issue. In this study, we conducted a comprehensive genetic analysis of plasmids and chromosomes harboring the major carbapenemase genes (bla NDM, bla KPC, bla VIM, bla IMP, bla GES, bla OXA-58-like, bla OXA-24/40-like, bla OXA-143-like, and bla OXA-23-like) in CRAB strains using bioinformatic tools. Methods We retrieved plasmids and chromosomes carrying the major carbapenemase genes from GenBank. The size, replicon type, and conjugal apparatus of the plasmids were also determined. Furthermore, allele types, co-existence of other antimicrobial resistance genes alongside carbapenemases in plasmids or chromosomes, co-occurrence of carbapenemase genes, gene repetition, and sequence types (ST) of whole genomes were characterized. Results The database contained 113 plasmids and 38 chromosomes harboring carbapenemase genes. This investigation revealed that bla NDM and bla OXA-58-like were the predominant allele types in both the plasmids and chromosomes. Nine (7.96%) plasmids with bla NDM-1 were potentially conjugative. The most common replicon types of the plasmids were R3-T1, R3-T8, R3-T2, R3-T23, and RP-T1. The analysis revealed that bla NDM-1 and bla OXA-58-like genes possessed the highest variety of co-existence with other antibiotic resistance genes. The co-occurrence of dual carbapenemases was identified in 12 plasmids and 19 chromosomes. Carbapenemase gene repetitions were identified in 10 plasmids and one chromosome. Circular alignment revealed that the plasmids carrying the co-occurrence of bla NDM-1 and bla OXA-58 were more homogeneous. However, there was heterogeneity in certain regions of these plasmids. According to the minimum spanning tree (MST) results, the majority of the plasmids belonged to the genomes of ST2Pas, ST1Pas, ST422Pas, ST622Pas, and ST85Pas. Conclusion A. baumannii appears to have a strong ability for genome plasticity to incorporate carbapenemase genes on its plasmids and chromosomes to develop resistance against carbapenems. Mobilizable plasmids harboring carbapenemases significantly contribute to the dissemination of these genes. The genetic structure of the plasmids revealed a strong associations of class I integrons, ISAba-like structures, Tn4401 elements, and aac (6')-Ib with carbapenemases. Furthermore, gene repetition may also be associated with carbapenem heteroresistance.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Solgi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Dutta B, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Delving into the lifestyle of Sundarban Wetland resident, biofilm producing, halotolerant Salinicoccus roseus: a comparative genomics-based intervention. BMC Genomics 2023; 24:681. [PMID: 37957573 PMCID: PMC10642018 DOI: 10.1186/s12864-023-09764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Microbial community played an essential role in ecosystem processes, be it mangrove wetland or other intertidal ecologies. Several enzymatic activities like hydrolases are effective ecological indicators of soil microbial function. So far, little is known on halophilic bacterial contribution and function on a genomic viewpoint of Indian Sundarban Wetland. Considering the above mentioned issues, the aims of this study was to understand the life style, metabolic functionalities and genomic features of the isolated bacterium, Salinicoccus roseus strain RF1H. A comparative genome-based study of S. roseus has not been reported yet. Henceforth, we have considered the inclusion of the intra-species genome comparison of S. roseus to gain insight into the high degree of variation in the genome of strain RF1H among others. RESULTS Salinicoccus roseus strain RF1H is a pink-red pigmented, Gram-positive and non-motile cocci. The bacterium exhibited high salt tolerance (up to 15% NaCl), antibiotic resistance, biofilm formation and secretion of extracellular hydrolytic enzymes. The circular genome was approximately 2.62978 Mb in size, encoding 574 predicted genes with GC content 49.5%. Presence of genomic elements (prophages, transposable elements, CRISPR-Cas system) represented bacterial virulence and multidrug-resistance. Furthermore, genes associated with salt tolerance, temperature adaptation and DNA repair system were distributed in 17 genomic islands. Genes related to hydrocarbon degradation manifested metabolic capability of the bacterium for potential biotechnological applications. A comparative pangenome analysis revealed two-component response regulator, modified C4-dicarboxylate transport system and osmotic stress regulated ATP-binding proteins. Presence of genes encoding arginine decarboxylase (ADC) enzyme being involved in biofilm formation was reported from the genome. In silico study revealed the protein is thermostable and made up with ~ 415 amino acids, and hydrophilic in nature. Three motifs appeared to be evolutionary conserved in all Salinicoccus sequences. CONCLUSION The first report of whole genome analysis of Salinicoccus roseus strain RF1H provided information of metabolic functionalities, biofilm formation, resistance mechanism and adaptation strategies to thrive in climate-change induced vulnerable spot like Sundarban. Comparative genome analysis highlighted the unique genome content that contributed the strain's adaptability. The biomolecules produced during metabolism are important sources of compounds with potential beneficial applications in pharmaceuticals.
Collapse
Affiliation(s)
- Bhramar Dutta
- Department of Botany, Microbiology Section, The University of Burdwan, Burdwan, West, Bengal-713104, India
| | - Urmi Halder
- Department of Botany, Microbiology Section, The University of Burdwan, Burdwan, West, Bengal-713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Department of Botany, Microbiology Section, The University of Burdwan, Burdwan, West, Bengal-713104, India.
| |
Collapse
|
6
|
Rath G, Nivedita S, Behera SS, Behera HT, Gouda SK, Raina V, Achary KG, Behera SK, Ray L. l-Asparaginase producing novel Streptomyces sp. HB2AG: optimization of process parameters and whole genome sequence analysis. 3 Biotech 2023; 13:201. [PMID: 37215374 PMCID: PMC10195970 DOI: 10.1007/s13205-023-03620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
l-asparaginase (ASNase) is a key enzyme widely used as an anti-cancer drug and is also used in the pharmaceutical and food processing industries. This enzyme's applications are determined by its source and nature. The production of the enzyme through the fermentation process is also crucial for economic feasibility. Searching for a new potent microbial strain is necessary for increased ASNase synthesis. In this work, a potent strain was isolated from the sediment of Chilika Lake and selected for its high ASNase production potential. It was recognized following Bergey's manual of determinative and phylogenetic analysis was carried out by 16S rDNA sequencing. The isolated organism was Streptomyces sp. HB2AG. Additionally, a genome-wide analysis of HB2AG was performed. The result showed that the HB2AG genome possesses a chromosome with 6,099,956 bp and GC content of 74.0%. The whole genome analysis of the strain HB2AG revealed the presence of ASNase (ansA, ansB) and Asparagine synthase (asnB) in the HB2AG genome. Optimization of media composition is crucial for microbial growth and obtaining the desired end product. The current effort focuses on the Taguchi orthogonal design to determine optimum factor combinations that would allow the strain to produce maximum ASNase enzyme. Results showed that compared to unoptimized media, approximately 1.76-fold higher ASNase production was observed in Sea Water Luria Bertani (SWLB) media, pH-5, 0.5% (w/v) of lactose, 0.5% (w/v) of casein, 2.5% (w/v) NaCl, 1 mM Ca2+ and 0.1% Tween 80. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03620-0.
Collapse
Affiliation(s)
- Gupteswar Rath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | - Suchismita Nivedita
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | | | | | - Sudhansu Kumar Gouda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | - Vishakha Raina
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
| | | | | | - Lopamudra Ray
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha India
- School of Law, KIIT Deemed to be University, Bhubaneswar, Odisha India
- School of Biotechnology and School of Law, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha India
| |
Collapse
|
7
|
Saggese A, Giglio R, D’Anzi N, Baccigalupi L, Ricca E. Comparative Genomics and Physiological Characterization of Two Aerobic Spore Formers Isolated from Human Ileal Samples. Int J Mol Sci 2022; 23:14946. [PMID: 36499272 PMCID: PMC9739757 DOI: 10.3390/ijms232314946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80125 Naples, Italy
| |
Collapse
|
8
|
Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol 2022; 13:1023523. [PMID: 36312971 PMCID: PMC9607943 DOI: 10.3389/fmicb.2022.1023523] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous, motile, gram-negative bacterium that has been recently identified as a multi-drug resistant pathogen in critical need of novel therapeutics. Of the approximately 5,000 strains, PAO1 and PA14 are common laboratory reference strains, modeling moderately and hyper-virulent phenotypes, respectively. PAO1 and PA14 have been instrumental in facilitating the discovery of novel drug targets, testing novel therapeutics, and supplying critical genomic information on the bacterium. While the two strains have contributed to a wide breadth of knowledge on the natural behaviors and therapeutic susceptibilities of P. aeruginosa, they have demonstrated significant deviations from observations in human infections. Many of these deviations are related to experimental inconsistencies in laboratory strain environment that complicate and, at times, terminate translation from laboratory results to clinical applications. This review aims to provide a comparative analysis of the two strains and potential methods to improve their clinical relevance.
Collapse
Affiliation(s)
- Amber Grace
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | | | - Vida A. Dennis
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- *Correspondence: Vida A. Dennis,
| |
Collapse
|
9
|
Thapa G, Jayal A, Sikazwe E, Perry T, Mohammed Al Balushi A, Livingstone P. A genome-led study on the pathogenesis of Fusobacterium necrophorum infections. Gene 2022; 840:146770. [PMID: 35905848 DOI: 10.1016/j.gene.2022.146770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Fusobacterium necrophorum causes a range of mild to life threatening infections and there is uncertainty in terms of diagnosis and treatment due to the lack of knowledge on their pathogenic mechanisms. This study characterised genomes of F. necrophorum to compare their virulence factors and investigate potential infection markers. 27 isolates of F. necrophorum from patients with pharyngotonsillitis were subjected to whole genome sequencing and compared with 42 genomes published in the NCBI database. Phylogenomics, pangemome, pan-GWAS and virulome were analysed to study strain variations with reference to virulence factors. Core genome based phylogenomic tree exhibited three clades of which Clade A belonged to F. necrophorum subsp necrophorum, clades B and C were F. necrophorum subsp funduliforme. Pan-GWAS and Pan-Virulome suggest some marker genes associated with clinical sources of isolation that needs further validation. Our study highlights some interesting features of the pathogenesis of F. necrophorum infections. Although the animal isolate genomes had some marker genes, the genomes of human isolates did not exhibit clear correlation to their clinical sources of isolation. This prompts to think of other mechanisms such as co-infections or host factors that can be involved in the pathogenesis.
Collapse
Affiliation(s)
- Gary Thapa
- Public Health Wales Microbiology Aberystwyth, Bronglais General Hospital, Aberystwyth
| | - Ambikesh Jayal
- School of Information Systems and Technology, University of Canberra, Australia
| | - Elvis Sikazwe
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Thomas Perry
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Ali Mohammed Al Balushi
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Paul Livingstone
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.
| |
Collapse
|
10
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
11
|
Pangenomics in Microbial and Crop Research: Progress, Applications, and Perspectives. Genes (Basel) 2022; 13:genes13040598. [PMID: 35456404 PMCID: PMC9031676 DOI: 10.3390/genes13040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Advances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping. To comprehensively capture the genetic diversity for improving plant performance, the pangenome concept is further extended from species to genus level by the inclusion of wild species, constituting a super-pangenome. Characterization of pangenome has implications for both basic and applied research. The concept of pangenome has transformed the way biological questions are addressed. From understanding evolution and adaptation to elucidating host–pathogen interactions, finding novel genes or breeding targets to aid crop improvement to design effective vaccines for human prophylaxis, the increasing availability of the pangenome has revolutionized several aspects of biological research. The future availability of high-resolution pangenomes based on reference-level near-complete genome assemblies would greatly improve our ability to address complex biological problems.
Collapse
|
12
|
Differences in the Accessory Genomes and Methylomes of Strains of Streptococcus equi subsp. equi and of Streptococcus equi subsp. zooepidemicus Obtained from the Respiratory Tract of Horses from Texas. Microbiol Spectr 2022; 10:e0076421. [PMID: 35019696 PMCID: PMC8754150 DOI: 10.1128/spectrum.00764-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi subsp. equi (SEE) is a host-restricted equine pathogen considered to have evolved from Streptococcus equi subsp. zooepidemicus (SEZ). SEZ is promiscuous in host range and is commonly recovered from horses as a commensal. Comparison of a single strain each of SEE and SEZ using whole-genome sequencing, supplemented by PCR of selected genes in additional SEE and SEZ strains, was used to characterize the evolution of SEE. But the known genetic variability of SEZ warrants comparison of the whole genomes of multiple SEE and SEZ strains. To fill this knowledge gap, we utilized whole-genome sequencing to characterize the accessory genome elements (AGEs; i.e., elements present in some SEE strains but absent in SEZ or vice versa) and methylomes of 50 SEE and 50 SEZ isolates from Texas. Consistent with previous findings, AGEs consistently found in all SEE isolates were primarily from mobile genetic elements that might contribute to host restriction or pathogenesis of SEE. Fewer AGEs were identified in SEZ because of the greater genomic variability among these isolates. The global methylation patterns of SEE isolates were more consistent than those of the SEZ isolates. Among homologous genes of SEE and SEZ, differential methylation was identified only in genes of SEE encoding proteins with functions of quorum sensing, exopeptidase activity, and transitional metal ion binding. Our results indicate that effects of genetic mobile elements in SEE and differential methylation of genes shared by SEE and SEZ might contribute to the host specificity of SEE. IMPORTANCE Strangles, caused by the host-specific bacterium Streptococcus equi subsp. equi (SEE), is the most commonly diagnosed infectious disease of horses worldwide. Its ancestor, Streptococcus equi subsp. zooepidemicus (SEZ), is frequently isolated from a wide array of hosts, including horses and humans. A comparison of the genomes of a single strain of SEE and SEZ has been reported, but sequencing of further isolates has revealed variability among SEZ strains. Thus, the importance of this study is that it characterizes genomic and methylomic differences of multiple SEE and SEZ isolates from a common geographic region (viz., Texas). Our results affirm many of the previously described differences between the genomes of SEE and SEZ, including the role of mobile genetic elements in contributing to host restriction. We also provide the first characterization of the global methylome of Streptococcus equi and evidence that differential methylation might contribute to the host restriction of SEE.
Collapse
|
13
|
Genomic Features Associated with the Degree of Phenotypic Resistance to Carbapenems in Carbapenem-Resistant Klebsiella pneumoniae. mSystems 2021; 6:e0019421. [PMID: 34519526 PMCID: PMC8547452 DOI: 10.1128/msystems.00194-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae strains cause severe infections that are difficult to treat. The production of carbapenemases such as the K. pneumoniae carbapenemase (KPC) is a common mechanism by which these strains resist killing by the carbapenems. However, the degree of phenotypic carbapenem resistance (MIC) may differ markedly between isolates with similar carbapenemase genes, suggesting that our understanding of the underlying mechanisms of carbapenem resistance remains incomplete. To address this problem, we determined the whole-genome sequences of 166 K. pneumoniae clinical isolates resistant to meropenem, imipenem, or ertapenem. Multiple linear regression analysis of this collection of largely blaKPC-3-containing sequence type 258 (ST258) isolates indicated that blaKPC copy number and some outer membrane porin gene mutations were associated with higher MICs to carbapenems. A trend toward higher MICs was also observed with those blaKPC genes carried by the d isoform of Tn4401. In contrast, ompK37 mutations were associated with lower carbapenem MICs, and extended spectrum β-lactamase genes were not associated with higher or lower MICs in carbapenem-resistant K. pneumoniae. A machine learning approach based on the whole-genome sequences of these isolates did not result in a substantial improvement in prediction of isolates with high or low MICs. These results build upon previous findings suggesting that multiple factors influence the overall carbapenem resistance levels in carbapenem-resistant K. pneumoniae isolates. IMPORTANCEKlebsiella pneumoniae can cause severe infections in the blood, urinary tract, and lungs. Resistance to carbapenems in K. pneumoniae is an urgent public health threat, since it can make these isolates difficult to treat. While individual contributors to carbapenem resistance in K. pneumoniae have been studied, few reports explore their combined effects in clinical isolates. We sequenced 166 clinical carbapenem-resistant K. pneumoniae isolates to evaluate the contribution of known genes to carbapenem MICs and to try to identify novel genes associated with higher carbapenem MICs. The blaKPC copy number and some outer membrane porin gene mutations were associated with higher carbapenem MICs. In contrast, mutations in one specific porin, ompK37, were associated with lower carbapenem MICs. Machine learning did not result in a substantial improvement in the prediction of carbapenem resistance nor did it identify novel genes associated with carbapenem resistance. These findings enhance our understanding of the many contributors to carbapenem resistance in K. pneumoniae.
Collapse
|
14
|
Zheng Z, Gorden PJ, Xia X, Zheng Y, Li G. Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ Microbiol 2021; 24:1183-1199. [PMID: 34398526 DOI: 10.1111/1462-2920.15721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Dairy cattle mastitis has long been one of the most common and costly diseases in the dairy industry worldwide, due to its significant impact on milk production and animal welfare. Among all mastitis causing bacterial pathogens, Klebsiella pneumoniae causes the largest milk loss. To better understand the genomic features of this population, 180 K. pneumoniae strains isolated from dairy cattle mastitis milk in 11 U.S. states were sequenced. The phylogenetic analysis classified all mastitis-causing K. pneumoniae into two major phylogroups, with exclusive predominance in phylogroup KpI. Analysis of more than 61 sequence types, 51 capsular types and 12 lipopolysaccharide O-antigen types revealed great genomic diversity of this K. pneumoniae population. Approximately 100 gene units in accessory genomes were detected with significantly higher prevalence in bovine mastitis strains, compared to human-sourced or dairy environmental strains. The most notable genes were identified associated with ferric citrate uptake, lactose fermentation and resistance to heavy metals. The acquired antimicrobial resistance genes were identified in sporadic mastitis strains. This comprehensive genomic epidemiological study provides insights for a better understanding of the virulence of mastitis-causing K. pneumoniae strains and may lead to the development of novel diagnostic tools and preventive strategies.
Collapse
Affiliation(s)
- Zhiyi Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Patrick J Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Xiaoqin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
15
|
Draft genome sequence and potential identification of a biosurfactant from Brevibacterium casei strain LS14 an isolate from fresh water Loktak Lake. 3 Biotech 2021; 11:326. [PMID: 34194910 DOI: 10.1007/s13205-021-02867-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/31/2021] [Indexed: 10/21/2022] Open
Abstract
This study reports the whole-genome sequencing and sequence analysis of a bacterial isolate Brevibacterium casei strain LS14, isolated from Loktak Lake, Imphal, India. The de novo assembled genome reported in this paper featured a size of 3,809,532 bp, has GC content of 68% and contains 3602 genomic features, including 3551 protein-coding genes, 46 tRNA and 5rRNA. A biosurfactant biosynthesis gene cluster in the genome of the isolated strain was identified using AntiSMASH online tool V3.0.5 and KAAS (KEGG Automatic Annotation Server). The presence of biosurfactant was demonstrated by drop collapse, oil displacement and emulsification index. Subsequent chemical characterization using FTIR and LC-MS analyses revealed surfactin and terpene containing biosurfactant moieties. Also, the presence of genes involved in terpenoid synthesis pathway in the genome sequence may account for biosurfactant terpenoid backbone, but genes for later-stage conversion of terpenoid to biosurfactant were not ascertained. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02867-9.
Collapse
|
16
|
Differences in the genome, methylome, and transcriptome do not differentiate isolates of Streptococcus equi subsp. equi from horses with acute clinical signs from isolates of inapparent carriers. PLoS One 2021; 16:e0252804. [PMID: 34125848 PMCID: PMC8202921 DOI: 10.1371/journal.pone.0252804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus equi subsp. equi (SEE) is a host-restricted bacterium that causes the common infectious upper respiratory disease known as strangles in horses. Perpetuation of SEE infection appears attributable to inapparent carrier horses because it neither persists long-term in the environment nor infects other host mammals or vectors, and infection results in short-lived immunity. Whether pathogen factors enable SEE to remain in horses without causing clinical signs remains poorly understood. Thus, our objective was to use next-generation sequencing technologies to characterize the genome, methylome, and transcriptome of isolates of SEE from horses with acute clinical strangles and inapparent carrier horses—including isolates recovered from individual horses sampled repeatedly—to assess pathogen-associated changes that might reflect specific adaptions of SEE to the host that contribute to inapparent carriage. The accessory genome elements and methylome of SEE isolates from Sweden and Pennsylvania revealed no significant or consistent differences between acute clinical and inapparent carrier isolates of SEE. RNA sequencing of SEE isolates from Pennsylvania demonstrated no genes that were differentially expressed between acute clinical and inapparent carrier isolates of SEE. The absence of specific, consistent changes in the accessory genomes, methylomes, and transcriptomes of acute clinical and inapparent carrier isolates of SEE indicates that adaptations of SEE to the host are unlikely to explain the carrier state of SEE. Efforts to understand the carrier state of SEE should instead focus on host factors.
Collapse
|
17
|
Aishwarya S, Gunasekaran K, Sagaya Jansi R, Sangeetha G. From genomes to molecular dynamics - A bottom up approach in extrication of SARS CoV-2 main protease inhibitors. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 18:100156. [PMID: 33532671 PMCID: PMC7844360 DOI: 10.1016/j.comtox.2021.100156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The recent pandemic Coronavirus disease-19 outbreak had traumatized global countries since its origin in late December 2019. Though the virus originated in China, it has spread rapidly across the world due its firmly established community transmission. To successfully tackle the spread and further infection, there needs a clear multidimensional understanding of the molecular mechanisms. Henceforth, 942 viral genome sequences were analysed to predict the core genomes crucial in virus life cycle. Additionally, 35 small interfering RNA transcripts were predicted that can target specifically the viral core proteins and reduce pathogenesis. The crystal structure of Covid-19 main protease-6LU7 was chosen as an attractive target due to the factors that there were fewer mutations and whose structure had significant identity to the annotated protein sequence of the core genome. Drug repurposing of both recruiting and non recruiting drugs was carried out through molecular docking procedures to recognize bitolterol as a good inhibitor of Covid-19 protease. The study was extended further to screen antiviral phytocompounds through quantitative structure activity relationship and molecular docking to identify davidigenin, from licorice as the best novel lead with good interactions and binding energy. The docking of the best compounds in all three categories was validated with molecular dynamics simulations which implied stable binding of the drug and lead molecule. Though the studies need clinical evaluations, the results are suggestive of curbing the pandemic.
Collapse
Affiliation(s)
- S Aishwarya
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai 600086, India
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - K Gunasekaran
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai 600086, India
| | - G Sangeetha
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| |
Collapse
|
18
|
Genomic islands and the evolution of livestock-associated Staphylococcus aureus genomes. Biosci Rep 2021; 40:226941. [PMID: 33185245 PMCID: PMC7689654 DOI: 10.1042/bsr20202287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genomic Islands (GIs) are commonly believed to be relics of horizontal transfer and associated with specific metabolic capacities, including virulence of the strain. Horizontal gene transfer (HGT) plays a vital role in the acquisition of GIs and the evolution and adaptation of bacterial genomes. OBJECTIVE The present study was designed to predict the GIs and role of HGT in evolution of livestock-associated Staphylococcus aureus (LA-SA). METHODS GIs were predicted with two methods namely, Ensemble algorithm for Genomic Island Detection (EGID) tool, and Seq word Sniffer script. Functional characterization of GI elements was performed with clustering of orthologs. The putative donor predictions of GIs was done with the aid of the pre_GI database. RESULTS The present study predicted a pan of 46 GIs across the LA-SA genomes. Functional characterization of GI sequences revealed few unique results like the presence of metabolic operons like leuABCD and folPK genes in GIs and showed the importance of GIs in the adaptation to the host niche. The developed framework for GI donor prediction results revealed Rickettsia and Mycoplasma as the major donors of GI elements. CONCLUSIONS The role of GIs during the evolutionary race of LA-SA could be concluded from the present study. Niche adaptation of LA-SA enhanced presumably due to these GIs. Future studies could focus on the evolutionary relationships between Rickettsia and Mycoplasma sp. with S. aureus and also the evolution of Leucine/Isoleucine mosaic operon (leuABCD).
Collapse
|
19
|
Naorem RS, Blom J, Fekete C. Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ 2021; 9:e10185. [PMID: 33520430 PMCID: PMC7811285 DOI: 10.7717/peerj.10185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a drug-resistant pathogen, capable of colonizing diverse ecological niches and causing a broad spectrum of infections related to a community and healthcare. In this study, we choose four methicillin-resistant S. aureus (MRSA) clinical isolates from Germany and Hungary based on our previous polyphasic characterization finding. We assumed that the selected strains have a different genetic background in terms of the presence of resistance and virulence genes, prophages, plasmids, and secondary metabolite biosynthesis genes that may play a crucial role in niche adaptation and pathogenesis. To clarify these assumptions, we performed a comparative genome analysis of these strains and observed many differences in their genomic compositions. The Hungarian isolates (SA H27 and SA H32) with ST22-SCCmec type IVa have fewer genes for multiple-drug resistance, virulence, and prophages reported in Germany isolates. Germany isolate, SA G6 acquires aminoglycoside (ant(6)-Ia and aph(3’)-III) and nucleoside (sat-4) resistance genes via phage transduction and may determine its pathogenic potential. The comparative genome study allowed the segregation of isolates of geographical origin and differentiation of the clinical isolates from the commensal isolates. This study suggested that Germany and Hungarian isolates are genetically diverse and showing variation among them due to the gain or loss of mobile genetic elements (MGEs). An interesting finding is the addition of SA G6 genome responsible for the drastic decline of the core/pan-genome ratio curve and causing the pan-genome to open wider. Functional characterizations revealed that S. aureus isolates survival are maintained by the amino acids catabolism and favor adaptation to growing in a protein-rich medium. The dispersible and singleton genes content of S. aureus genomes allows us to understand the genetic variation among the CC5 and CC22 groups. The strains with the same genetic background were clustered together, which suggests that these strains are highly alike; however, comparative genome analysis exposed that the acquisition of phage elements, and plasmids through the events of MGEs transfer contribute to differences in their phenotypic characters. This comparative genome analysis would improve the knowledge about the pathogenic S. aureus strain’s characterization, and responsible for clinically important phenotypic differences among the S. aureus strains.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Fekete
- Department of General and Environmental Microbiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Gutiérrez-Escobar AJ, Velapatiño B, Borda V, Rabkin CS, Tarazona-Santos E, Cabrera L, Cok J, Hooper CC, Jahuira-Arias H, Herrera P, Noureen M, Wang D, Romero-Gallo J, Tran B, Peek RM, Berg DE, Gilman RH, Camargo MC. Identification of New Helicobacter pylori Subpopulations in Native Americans and Mestizos From Peru. Front Microbiol 2020; 11:601839. [PMID: 33381095 PMCID: PMC7767971 DOI: 10.3389/fmicb.2020.601839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 01/01/2023] Open
Abstract
Region-specific Helicobacter pylori subpopulations have been identified. It is proposed that the hspAmerind subpopulation is being displaced from the Americans by an hpEurope population following the conquest. Our study aimed to describe the genomes and methylomes of H. pylori isolates from distinct Peruvian communities: 23 strains collected from three groups of Native Americans (Asháninkas [ASHA, n = 9], Shimaas [SHIM, n = 5] from Amazonas, and Punos from the Andean highlands [PUNO, n = 9]) and 9 modern mestizos from Lima (LIM). Closed genomes and DNA modification calls were obtained using SMRT/PacBio sequencing. We performed evolutionary analyses and evaluated genomic/epigenomic differences among strain groups. We also evaluated human genome-wide data from 74 individuals from the selected Native communities (including the 23 H. pylori strains donors) to compare host and bacterial backgrounds. There were varying degrees of hspAmerind ancestry in all strains, ranging from 7% in LIM to 99% in SHIM. We identified three H. pylori subpopulations corresponding to each of the Native groups and a novel hspEuropePeru which evolved in the modern mestizos. The divergence of the indigenous H. pylori strains recapitulated the genetic structure of Native Americans. Phylogenetic profiling showed that Orthogroups in the indigenous strains seem to have evolved differentially toward epigenomic regulation and chromosome maintenance, whereas OGs in the modern mestizo (LIM) seem to have evolved toward virulence and adherence. The prevalence of cagA+/vacA s1i1m1 genotype was similar across populations (p = 0.32): 89% in ASHA, 67% in PUNO, 56% in LIM and 40% in SHIM. Both cagA and vacA sequences showed that LIM strains were genetically differentiated (p < 0.001) as compared to indigenous strains. We identified 642 R-M systems with 39% of the associated genes located in the core genome. We found 692 methylation motifs, including 254 population-specific sequences not previously described. In Peru, hspAmerind is not extinct, with traces found even in a heavily admixed mestizo population. Notably, our study identified three new hspAmerind subpopulations, one per Native group; and a new subpopulation among mestizos that we named hspEuropePeru. This subpopulation seems to have more virulence-related elements than hspAmerind. Purifying selection driven by variable host immune response may have shaped the evolution of Peruvian subpopulations, potentially impacting disease outcomes.
Collapse
Affiliation(s)
| | - Billie Velapatiño
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Victor Borda
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC/MCTIC), Petrópolis, Brazil
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Eduardo Tarazona-Santos
- Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Jaime Cok
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Mehwish Noureen
- National Institute of Genetics, Mishima, Japan.,Department of Genetics, Graduate School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bao Tran
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Richard M Peek
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas E Berg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
21
|
Tall M, Lo C, Yimagou EK, Ndongo S, Pham T, Raoult D, Fournier PE, Fenollar F, Levasseur A. Description of Clostridium cagae sp. nov., Clostridium rectalis sp. nov. and Hathewaya massiliensis sp. nov., new anaerobic bacteria isolated from human stool samples. New Microbes New Infect 2020; 37:100719. [PMID: 32944255 PMCID: PMC7481820 DOI: 10.1016/j.nmni.2020.100719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Using culturomics methods, three strains were isolated, identified and characterized following the taxonogenomics concept. Clostridium cagae strain Marseille-P4344T (=CSURP4344), Clostridium rectalis strain Marseille-P4200T (=CSURP4200) and Hathewaya massiliensis strain Marseille-P3545T (=CSURP3545) were isolated from human stool samples. The phylogenetic reconstruction, phenotypic criteria and genomic analyses were carried out and demonstrated that these three bacteria are different from previously known bacterial species with standing in nomenclature and were classified as new members of the Clostridiaceae family.
Collapse
Affiliation(s)
- M.L. Tall
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - C.I. Lo
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - E. Kuete Yimagou
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - S. Ndongo
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - T.P.T. Pham
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - D. Raoult
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - P.-E. Fournier
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
| | - F. Fenollar
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- Aix Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - A. Levasseur
- Aix-Marseille Université, UMR MEPHI (Microbes, Evolution, Phylogeny and Infections), IRD, APHM, Faculté de Médecine, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
22
|
Abstract
Variation in the genome of Pseudomonas aeruginosa, an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of P. aeruginosa isolates based on their genomic content. We applied a machine learning approach to a genetically and phenotypically diverse collection of 115 clinical P. aeruginosa isolates using genomic information and corresponding virulence phenotypes in a mouse model of bacteremia. We defined the accessory genome of these isolates through the presence or absence of accessory genomic elements (AGEs), sequences present in some strains but not others. Machine learning models trained using AGEs were predictive of virulence, with a mean nested cross-validation accuracy of 75% using the random forest algorithm. However, individual AGEs did not have a large influence on the algorithm's performance, suggesting instead that virulence predictions are derived from a diffuse genomic signature. These results were validated with an independent test set of 25 P. aeruginosa isolates whose virulence was predicted with 72% accuracy. Machine learning models trained using core genome single-nucleotide variants and whole-genome k-mers also predicted virulence. Our findings are a proof of concept for the use of bacterial genomes to predict pathogenicity in P. aeruginosa and highlight the potential of this approach for predicting patient outcomes.IMPORTANCE Pseudomonas aeruginosa is a clinically important Gram-negative opportunistic pathogen. P. aeruginosa shows a large degree of genomic heterogeneity both through variation in sequences found throughout the species (core genome) and through the presence or absence of sequences in different isolates (accessory genome). P. aeruginosa isolates also differ markedly in their ability to cause disease. In this study, we used machine learning to predict the virulence level of P. aeruginosa isolates in a mouse bacteremia model based on genomic content. We show that both the accessory and core genomes are predictive of virulence. This study provides a machine learning framework to investigate relationships between bacterial genomes and complex phenotypes such as virulence.
Collapse
|
23
|
Rao RT, Sivakumar N, Jayakumar K. Analyses of Livestock-Associated Staphylococcus aureus Pan-Genomes Suggest Virulence Is Not Primary Interest in Evolution of Its Genome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:224-236. [PMID: 31009331 DOI: 10.1089/omi.2019.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is not only part of normal flora but also an opportunistic pathogen relevant to microbial genomics, public health, and veterinary medicine. In addition to being a well-known human pathogen, S. aureus causes various infections in economically important livestock animals such as cows, sheep, goats, and pigs. There are very few studies that have examined the pan-genome of S. aureus or the host-specific strains' pan-genomes. We report on livestock-associated S. aureus' (LA-SA) pan-genome and suggest that virulence is not the primary interest in evolution of its genome. LA-SA' complete genomes were retrieved from the NCBI and pan-genome was constructed by high-speed Roary pipeline. The pan-genome size was 4637 clusters, whereas 42.46% of the pan-genome was associated with the core genome. We found 1268 genes were associated with the strain-unique genome, and the remaining 1432 cluster with the accessory genome. COG (clusters of orthologous group of proteins) analysis of the core genes revealed 34% of clusters related to metabolism responsible for amino acid and inorganic ion transport (COG categories E and P), followed by carbohydrate metabolism (category G). Virulent gene analysis revealed the core genes responsible for antiphagocytosis and iron uptake. The fluidity of pan-genome was calculated as 0.082 ± 0.025. Importantly, the positive selection analysis suggested a slower rate of evolution among the LA-SA genomes. We call for comparative microbial and pan-genome research between human and LA-SA that can help further understand the evolution of virulence and thus inform future microbial diagnostics and drug discovery.
Collapse
Affiliation(s)
- Relangi Tulasi Rao
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Natesan Sivakumar
- 2 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Kannan Jayakumar
- 1 Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
24
|
A comparative genomics approach identifies contact-dependent growth inhibition as a virulence determinant. Proc Natl Acad Sci U S A 2020; 117:6811-6821. [PMID: 32156726 DOI: 10.1073/pnas.1919198117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence suggests the Pseudomonas aeruginosa accessory genome is enriched with uncharacterized virulence genes. Identification and characterization of such genes may reveal novel pathogenic mechanisms used by particularly virulent isolates. Here, we utilized a mouse bacteremia model to quantify the virulence of 100 individual P. aeruginosa bloodstream isolates and performed whole-genome sequencing to identify accessory genomic elements correlated with increased bacterial virulence. From this work, we identified a specific contact-dependent growth inhibition (CDI) system enriched among highly virulent P. aeruginosa isolates. CDI systems contain a large exoprotein (CdiA) with a C-terminal toxin (CT) domain that can vary between different isolates within a species. Prior work has revealed that delivery of a CdiA-CT domain upon direct cell-to-cell contact can inhibit replication of a susceptible target bacterium. Aside from mediating interbacterial competition, we observed our virulence-associated CdiA-CT domain to promote toxicity against mammalian cells in culture and lethality during mouse bacteremia. Structural and functional studies revealed this CdiA-CT domain to have in vitro tRNase activity, and mutations that abrogated this tRNAse activity in vitro also attenuated virulence. Furthermore, CdiA contributed to virulence in mice even in the absence of contact-dependent signaling. Overall, our findings indicate that this P. aeruginosa CDI system functions as both an interbacterial inhibition system and a bacterial virulence factor against a mammalian host. These findings provide an impetus for continued studies into the complex role of CDI systems in P. aeruginosa pathogenesis.
Collapse
|
25
|
Vuong HQ, McFrederick QS. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol Evol 2020; 11:2151-2161. [PMID: 31243442 PMCID: PMC6685495 DOI: 10.1093/gbe/evz136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/18/2023] Open
Abstract
Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.
Collapse
Affiliation(s)
- Hoang Q Vuong
- Department of Entomology, University California Riverside.,Department of Plant Pathology and Microbiology, University California Riverside
| | | |
Collapse
|
26
|
He Y, Zhou X, Chen Z, Deng X, Gehring A, Ou H, Zhang L, Shi X. PRAP: Pan Resistome analysis pipeline. BMC Bioinformatics 2020; 21:20. [PMID: 31941435 PMCID: PMC6964052 DOI: 10.1186/s12859-019-3335-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Antibiotic resistance genes (ARGs) can spread among pathogens via horizontal gene transfer, resulting in imparities in their distribution even within the same species. Therefore, a pan-genome approach to analyzing resistomes is necessary for thoroughly characterizing patterns of ARGs distribution within particular pathogen populations. Software tools are readily available for either ARGs identification or pan-genome analysis, but few exist to combine the two functions. Results We developed Pan Resistome Analysis Pipeline (PRAP) for the rapid identification of antibiotic resistance genes from various formats of whole genome sequences based on the CARD or ResFinder databases. Detailed annotations were used to analyze pan-resistome features and characterize distributions of ARGs. The contribution of different alleles to antibiotic resistance was predicted by a random forest classifier. Results of analysis were presented in browsable files along with a variety of visualization options. We demonstrated the performance of PRAP by analyzing the genomes of 26 Salmonella enterica isolates from Shanghai, China. Conclusions PRAP was effective for identifying ARGs and visualizing pan-resistome features, therefore facilitating pan-genomic investigation of ARGs. This tool has the ability to further excavate potential relationships between antibiotic resistance genes and their phenotypic traits.
Collapse
Affiliation(s)
- Yichen He
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiujuan Zhou
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ziyan Chen
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangyu Deng
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, 30223, USA
| | - Andrew Gehring
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Hongyu Ou
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lida Zhang
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xianming Shi
- Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
27
|
Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780-1796. [PMID: 31173069 PMCID: PMC6690169 DOI: 10.1093/gbe/evz119] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intragroup but limited intergroup recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly overrepresented in Group A compared with Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly overrepresented in Group B compared with Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts.
Collapse
Affiliation(s)
- Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Ekpeno Nnah
- Lurie Children's Hospital, Chicago, Illinois
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Rachel J Whitaker
- Department of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign
| | - Alan R Hauser
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
28
|
Clostridioides difficile Whole-Genome Sequencing Reveals Limited Within-Host Genetic Diversity in a Pediatric Cohort. J Clin Microbiol 2019; 57:JCM.00559-19. [PMID: 31315950 DOI: 10.1128/jcm.00559-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/04/2019] [Indexed: 02/04/2023] Open
Abstract
Whole-genome sequencing (WGS) is a highly sensitive method for identifying genetic relatedness and transmission of Clostridioides difficile strains. Previous studies suggest that as few as 3 core genome single-nucleotide variants (SNVs) discriminate between genetically distinct isolates. Because a single C. difficile colony is selected from culture for WGS, significant within-host genetic diversity could preclude identification of transmission events. To evaluate the likelihood of missed transmission events using WGS of single colonies from culture, we examined within-host genetic diversity among C. difficile isolates collected from children. We performed WGS using an Illumina MiSeq instrument on 8 C. difficile colonies randomly selected from each culture performed on stool collected from 10 children (8 children diagnosed with C. difficile infection and 2 children with asymptomatic carriage); 77/80 (96%) isolate sequences were successfully assembled. Among 8/10 (80%) children, all isolates were the same sequence type (ST). The other 2 children each had mixed infection with two STs, although one ST predominated. Among 9/10 (90%) children, isotypic isolates differed by ≤2 SNVs; an isotypic isolate in the remaining child differed by 3 to SNVs relative to the other isolates from that child. Overall, among the 77 isolates collected from 10 stool cultures, 74/77 (96%) were clonal (i.e., same ST and ≤2 core genome SNVs) to other isolates in stool culture. In summary, we identified rare C. difficile within-host genetic diversity in children, suggesting that WGS of a single colony from stool is likely to appropriately characterize isolate clonality and putative transmission events in the majority of cases.
Collapse
|
29
|
Stenotrophomonas maltophilia Differential Gene Expression in Synthetic Cystic Fibrosis Sputum Reveals Shared and Cystic Fibrosis Strain-Specific Responses to the Sputum Environment. J Bacteriol 2019; 201:JB.00074-19. [PMID: 31109991 DOI: 10.1128/jb.00074-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCE Stenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.
Collapse
|
30
|
Wu X, Siehnel RJ, Garudathri J, Staudinger BJ, Hisert KB, Ozer EA, Hauser AR, Eng JK, Manoil C, Singh PK, Bruce JE. In Vivo Proteome of Pseudomonas aeruginosa in Airways of Cystic Fibrosis Patients. J Proteome Res 2019; 18:2601-2612. [PMID: 31060355 DOI: 10.1021/acs.jproteome.9b00122] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic airway infection with P. aeruginosa (PA) is a hallmark of cystic fibrosis (CF) disease. The mechanisms producing PA persistence in CF therapies remain poorly understood. To gain insight on PA physiology in patient airways and better understand how in vivo bacterial functioning differs from in vitro conditions, we investigated the in vivo proteomes of PA in 35 sputum samples from 11 CF patients. We developed a novel bacterial-enrichment method that relies on differential centrifugation and detergent treatment to enrich for bacteria to improve identification of PA proteome with CF sputum samples. Using two nonredundant peptides as a cutoff, a total of 1304 PA proteins were identified directly from CF sputum samples. The in vivo PA proteomes were compared with the proteomes of ex vivo-grown PA populations from the same patient sample. Label-free quantitation and proteome comparison revealed the in vivo up-regulation of siderophore TonB-dependent receptors, remodeling in central carbon metabolism including glyoxylate cycle and lactate utilization, and alginate overproduction. Knowledge of these in vivo proteome differences or others derived using the presented methodology could lead to future treatment strategies aimed at altering PA physiology in vivo to compromise infectivity or improve antibiotic efficacy.
Collapse
|
31
|
A Genomic Approach To Identify Klebsiella pneumoniae and Acinetobacter baumannii Strains with Enhanced Competitive Fitness in the Lungs during Multistrain Pneumonia. Infect Immun 2019; 87:IAI.00871-18. [PMID: 30936161 DOI: 10.1128/iai.00871-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial competition is most often studied at the genus or species level, but interstrain competition has been less thoroughly examined. Klebsiella pneumoniae is an important pathogen in the context of hospital-acquired pneumonia, and a better understanding of strain competition in the lungs could explain why some strains of this bacterium are more frequently isolated from pneumonia patients than others. We developed a barcode-free method called "StrainSeq" to simultaneously track the abundances of 10 K. pneumoniae strains in a murine pneumonia model. We demonstrate that one strain (KPPR1) repeatedly achieved a marked numerical dominance at 20 h postinoculation during pneumonia but did not exhibit a similar level of dominance in in vitro mixed-growth experiments. The emergence of a single dominant strain was also observed with a second respiratory pathogen, Acinetobacter baumannii, indicating that the phenomenon was not unique to K. pneumoniae When KPPR1 was removed from the inoculum, a second strain emerged to achieve high numbers in the lungs, and when KPPR1 was introduced into the lungs 1 h after the other nine strains, it no longer exhibited a dominant phenotype. Our findings indicate that certain strains of K. pneumoniae have the ability to outcompete others in the pulmonary environment and cause severe pneumonia and that a similar phenomenon occurs with A. baumannii In the context of the pulmonary microbiome, interstrain competitive fitness may be another factor that influences the success and spread of certain lineages of these hospital-acquired respiratory pathogens.
Collapse
|