1
|
Huang D, Xia R, Chen C, Liao J, Chen L, Wang D, Alvarez PJJ, Yu P. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol 2024; 32:902-916. [PMID: 38433027 DOI: 10.1016/j.tim.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China.
| |
Collapse
|
2
|
Rahimian M, Panahi B. Metagenome sequence data mining for viral interaction studies: Review on progress and prospects. Virus Res 2024; 349:199450. [PMID: 39151562 PMCID: PMC11388672 DOI: 10.1016/j.virusres.2024.199450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Metagenomics has been greatly accelerated by the development of next-generation sequencing (NGS) technologies, which allow scientists to discover and describe novel microorganisms without the need for conventional culture techniques. Examining integrative bioinformatics methods used in viral interaction research, this study highlights metagenomic data from various contexts. Accurate viral identification depends on high-purity genetic material extraction, appropriate NGS platform selection, and sophisticated bioinformatics tools like VirPipe and VirFinder. The efficiency and precision of metagenomic analysis are further improved with the advent of AI-based techniques. The diversity and dynamics of viral communities are demonstrated by case studies from a variety of environments, emphasizing the seasonal and geographical variations that influence viral populations. In addition to speeding up the discovery of new viruses, metagenomics offers thorough understanding of virus-host interactions and their ecological effects. This review provides a promising framework for comprehending the complexity of viral communities and their interactions with hosts, highlighting the transformational potential of metagenomics and bioinformatics in viral research.
Collapse
Affiliation(s)
- Mohammadreza Rahimian
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
3
|
Nie W, Qiu T, Wei Y, Ding H, Guo Z, Qiu J. Advances in phage-host interaction prediction: in silico method enhances the development of phage therapies. Brief Bioinform 2024; 25:bbae117. [PMID: 38555471 PMCID: PMC10981677 DOI: 10.1093/bib/bbae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024] Open
Abstract
Phages can specifically recognize and kill bacteria, which lead to important application value of bacteriophage in bacterial identification and typing, livestock aquaculture and treatment of human bacterial infection. Considering the variety of human-infected bacteria and the continuous discovery of numerous pathogenic bacteria, screening suitable therapeutic phages that are capable of infecting pathogens from massive phage databases has been a principal step in phage therapy design. Experimental methods to identify phage-host interaction (PHI) are time-consuming and expensive; high-throughput computational method to predict PHI is therefore a potential substitute. Here, we systemically review bioinformatic methods for predicting PHI, introduce reference databases and in silico models applied in these methods and highlight the strengths and challenges of current tools. Finally, we discuss the application scope and future research direction of computational prediction methods, which contribute to the performance improvement of prediction models and the development of personalized phage therapy.
Collapse
Affiliation(s)
- Wanchun Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital; Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yiwen Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hao Ding
- Institute of Clinical Science, Zhongshan Hospital; Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Zhixiang Guo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
4
|
Pan J, Zhang Z, Li Y, Yu J, You Z, Li C, Wang S, Zhu M, Ren F, Zhang X, Sun Y, Wang S. A microbial knowledge graph-based deep learning model for predicting candidate microbes for target hosts. Brief Bioinform 2024; 25:bbae119. [PMID: 38555472 PMCID: PMC10981679 DOI: 10.1093/bib/bbae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024] Open
Abstract
Predicting interactions between microbes and hosts plays critical roles in microbiome population genetics and microbial ecology and evolution. How to systematically characterize the sophisticated mechanisms and signal interplay between microbes and hosts is a significant challenge for global health risks. Identifying microbe-host interactions (MHIs) can not only provide helpful insights into their fundamental regulatory mechanisms, but also facilitate the development of targeted therapies for microbial infections. In recent years, computational methods have become an appealing alternative due to the high risk and cost of wet-lab experiments. Therefore, in this study, we utilized rich microbial metagenomic information to construct a novel heterogeneous microbial network (HMN)-based model named KGVHI to predict candidate microbes for target hosts. Specifically, KGVHI first built a HMN by integrating human proteins, viruses and pathogenic bacteria with their biological attributes. Then KGVHI adopted a knowledge graph embedding strategy to capture the global topological structure information of the whole network. A natural language processing algorithm is used to extract the local biological attribute information from the nodes in HMN. Finally, we combined the local and global information and fed it into a blended deep neural network (DNN) for training and prediction. Compared to state-of-the-art methods, the comprehensive experimental results show that our model can obtain excellent results on the corresponding three MHI datasets. Furthermore, we also conducted two pathogenic bacteria case studies to further indicate that KGVHI has excellent predictive capabilities for potential MHI pairs.
Collapse
Affiliation(s)
- Jie Pan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhen Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Ying Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chenyu Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shixu Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Minghui Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fengzhi Ren
- North China Pharmaceutical Group, Shijiazhuang 050015, Hebei, China
- National Microbial Medicine Engineering & Research Center, Shijiazhuang 050015, Hebei, China
| | - Xuexia Zhang
- North China Pharmaceutical Group, Shijiazhuang 050015, Hebei, China
- National Microbial Medicine Engineering & Research Center, Shijiazhuang 050015, Hebei, China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
5
|
Qiu J, Nie W, Ding H, Dai J, Wei Y, Li D, Zhang Y, Xie J, Tian X, Wu N, Qiu T. PB-LKS: a python package for predicting phage-bacteria interaction through local K-mer strategy. Brief Bioinform 2024; 25:bbae010. [PMID: 38344864 PMCID: PMC10859729 DOI: 10.1093/bib/bbae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024] Open
Abstract
Bacteriophages can help the treatment of bacterial infections yet require in-silico models to deal with the great genetic diversity between phages and bacteria. Despite the tolerable prediction performance, the application scope of current approaches is limited to the prediction at the species level, which cannot accurately predict the relationship of phages across strain mutants. This has hindered the development of phage therapeutics based on the prediction of phage-bacteria relationships. In this paper, we present, PB-LKS, to predict the phage-bacteria interaction based on local K-mer strategy with higher performance and wider applicability. The utility of PB-LKS is rigorously validated through (i) large-scale historical screening, (ii) case study at the class level and (iii) in vitro simulation of bacterial antiphage resistance at the strain mutant level. The PB-LKS approach could outperform the current state-of-the-art methods and illustrate potential clinical utility in pre-optimized phage therapy design.
Collapse
Affiliation(s)
- Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wanchun Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hao Ding
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Jia Dai
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yiwen Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuxi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junting Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xinxin Tian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| |
Collapse
|
6
|
Bajiya N, Dhall A, Aggarwal S, Raghava GPS. Advances in the field of phage-based therapy with special emphasis on computational resources. Brief Bioinform 2023; 24:6961791. [PMID: 36575815 DOI: 10.1093/bib/bbac574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the current era, one of the major challenges is to manage the treatment of drug/antibiotic-resistant strains of bacteria. Phage therapy, a century-old technique, may serve as an alternative to antibiotics in treating bacterial infections caused by drug-resistant strains of bacteria. In this review, a systematic attempt has been made to summarize phage-based therapy in depth. This review has been divided into the following two sections: general information and computer-aided phage therapy (CAPT). In the case of general information, we cover the history of phage therapy, the mechanism of action, the status of phage-based products (approved and clinical trials) and the challenges. This review emphasizes CAPT, where we have covered primary phage-associated resources, phage prediction methods and pipelines. This review covers a wide range of databases and resources, including viral genomes and proteins, phage receptors, host genomes of phages, phage-host interactions and lytic proteins. In the post-genomic era, identifying the most suitable phage for lysing a drug-resistant strain of bacterium is crucial for developing alternate treatments for drug-resistant bacteria and this remains a challenging problem. Thus, we compile all phage-associated prediction methods that include the prediction of phages for a bacterial strain, the host for a phage and the identification of interacting phage-host pairs. Most of these methods have been developed using machine learning and deep learning techniques. This review also discussed recent advances in the field of CAPT, where we briefly describe computational tools available for predicting phage virions, the life cycle of phages and prophage identification. Finally, we describe phage-based therapy's advantages, challenges and opportunities.
Collapse
Affiliation(s)
- Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Suchet Aggarwal
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| |
Collapse
|
7
|
Iuchi H, Kawasaki J, Kubo K, Fukunaga T, Hokao K, Yokoyama G, Ichinose A, Suga K, Hamada M. Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 2023; 21:1774-1784. [PMID: 36874163 PMCID: PMC9969756 DOI: 10.1016/j.csbj.2023.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Koki Hokao
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Gentaro Yokoyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akiko Ichinose
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kanta Suga
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host Microbe 2022; 30:908-916. [PMID: 35834962 DOI: 10.1016/j.chom.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
The human gut virome, which is often referred to as the "dark matter" of the gut microbiome, remains understudied. A better understanding of the composition and variations of the gut virome across populations is critical for exploring its impact on diseases and health. A series of advances in the characterization of human gut virome have unveiled high genetic diversity and various functional potentials of gut viruses. Here, we summarize the recently available human gut virome databases and discuss their features, procedures, and challenges with the intention to provide a reference to researchers to use while choosing a profiling database. We also propose a "best practice" for cataloging the viral population.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | - Aixin Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
9
|
Andrade-Martínez JS, Camelo Valera LC, Chica Cárdenas LA, Forero-Junco L, López-Leal G, Moreno-Gallego JL, Rangel-Pineros G, Reyes A. Computational Tools for the Analysis of Uncultivated Phage Genomes. Microbiol Mol Biol Rev 2022; 86:e0000421. [PMID: 35311574 PMCID: PMC9199400 DOI: 10.1128/mmbr.00004-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.
Collapse
Affiliation(s)
- Juan Sebastián Andrade-Martínez
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Carolina Camelo Valera
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica Cárdenas
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Forero-Junco
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Gamaliel López-Leal
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - J. Leonardo Moreno-Gallego
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Guillermo Rangel-Pineros
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Lood C, Boeckaerts D, Stock M, De Baets B, Lavigne R, van Noort V, Briers Y. Digital phagograms: predicting phage infectivity through a multilayer machine learning approach. Curr Opin Virol 2021; 52:174-181. [PMID: 34952265 DOI: 10.1016/j.coviro.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
Machine learning has been broadly implemented to investigate biological systems. In this regard, the field of phage biology has embraced machine learning to elucidate and predict phage-host interactions, based on receptor-binding proteins, (anti-)defense systems, prophage detection, and life cycle recognition. Here, we highlight the enormous potential of integrating information from omics data with insights from systems biology to better understand phage-host interactions. We conceptualize and discuss the potential of a multilayer model that mirrors the phage infection process, integrating adsorption, bacterial pan-immune components and hijacking of the bacterial metabolism to predict phage infectivity. In the future, this model can offer insights into the underlying mechanisms of the infection process, and digital phagograms can support phage cocktail design and phage engineering.
Collapse
Affiliation(s)
- Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium; Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Dimitri Boeckaerts
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium; BIOBIX, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium; Institute of Biology, Leiden University, Leiden, The Netherlands.
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Dong TN, Brogden G, Gerold G, Khosla M. A multitask transfer learning framework for the prediction of virus-human protein-protein interactions. BMC Bioinformatics 2021; 22:572. [PMID: 34837942 PMCID: PMC8626732 DOI: 10.1186/s12859-021-04484-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein-protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses. RESULTS We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein-protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein-protein interaction prediction model. CONCLUSIONS Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-COV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein-protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer .
Collapse
Affiliation(s)
- Thi Ngan Dong
- L3S Research Center, Leibniz University Hannover, Hannover, Germany.
| | - Graham Brogden
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Gisa Gerold
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Megha Khosla
- L3S Research Center, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
12
|
Shang J, Sun Y. Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning. BMC Biol 2021; 19:250. [PMID: 34819064 PMCID: PMC8611875 DOI: 10.1186/s12915-021-01180-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of bacteriophages for use in therapy, more knowledge of viral-host relationships is required. High-throughput sequencing and its application to the microbiome have offered new opportunities for computational approaches for predicting which hosts particular viruses can infect. However, there are two main challenges for computational host prediction. First, the empirically known virus-host relationships are very limited. Second, although sequence similarity between viruses and their prokaryote hosts have been used as a major feature for host prediction, the alignment is either missing or ambiguous in many cases. Thus, there is still a need to improve the accuracy of host prediction. Results In this work, we present a semi-supervised learning model, named HostG, to conduct host prediction for novel viruses. We construct a knowledge graph by utilizing both virus-virus protein similarity and virus-host DNA sequence similarity. Then graph convolutional network (GCN) is adopted to exploit viruses with or without known hosts in training to enhance the learning ability. During the GCN training, we minimize the expected calibrated error (ECE) to ensure the confidence of the predictions. We tested HostG on both simulated and real sequencing data and compared its performance with other state-of-the-art methods specifically designed for virus host classification (VHM-net, WIsH, PHP, HoPhage, RaFAH, vHULK, and VPF-Class). Conclusion HostG outperforms other popular methods, demonstrating the efficacy of using a GCN-based semi-supervised learning approach. A particular advantage of HostG is its ability to predict hosts from new taxa. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-021-01180-4).
Collapse
Affiliation(s)
- Jiayu Shang
- Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yanni Sun
- Electrical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Li M, Wang Y, Li F, Zhao Y, Liu M, Zhang S, Bin Y, Smith AI, Webb GI, Li J, Song J, Xia J. A Deep Learning-Based Method for Identification of Bacteriophage-Host Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1801-1810. [PMID: 32813660 PMCID: PMC8703204 DOI: 10.1109/tcbb.2020.3017386] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-drug resistance (MDR) has become one of the greatest threats to human health worldwide, and novel treatment methods of infections caused by MDR bacteria are urgently needed. Phage therapy is a promising alternative to solve this problem, to which the key is correctly matching target pathogenic bacteria with the corresponding therapeutic phage. Deep learning is powerful for mining complex patterns to generate accurate predictions. In this study, we develop PredPHI (Predicting Phage-Host Interactions), a deep learning-based tool capable of predicting the host of phages from sequence data. We collect >3000 phage-host pairs along with their protein sequences from PhagesDB and GenBank databases and extract a set of features. Then we select high-quality negative samples based on the K-Means clustering method and construct a balanced training set. Finally, we employ a deep convolutional neural network to build the predictive model. The results indicate that PredPHI can achieve a predictive performance of 81 percent in terms of the area under the receiver operating characteristic curve on the test set, and the clustering-based method is significantly more robust than that based on randomly selecting negative samples. These results highlight that PredPHI is a useful and accurate tool for identifying phage-host interactions from sequence data.
Collapse
|
14
|
Li M, Zhang W. PHIAF: prediction of phage-host interactions with GAN-based data augmentation and sequence-based feature fusion. Brief Bioinform 2021; 23:6362109. [PMID: 34472593 DOI: 10.1093/bib/bbab348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023] Open
Abstract
Phage therapy has become one of the most promising alternatives to antibiotics in the treatment of bacterial diseases, and identifying phage-host interactions (PHIs) helps to understand the possible mechanism through which a phage infects bacteria to guide the development of phage therapy. Compared with wet experiments, computational methods of identifying PHIs can reduce costs and save time and are more effective and economic. In this paper, we propose a PHI prediction method with a generative adversarial network (GAN)-based data augmentation and sequence-based feature fusion (PHIAF). First, PHIAF applies a GAN-based data augmentation module, which generates pseudo PHIs to alleviate the data scarcity. Second, PHIAF fuses the features originated from DNA and protein sequences for better performance. Third, PHIAF utilizes an attention mechanism to consider different contributions of DNA/protein sequence-derived features, which also provides interpretability of the prediction model. In computational experiments, PHIAF outperforms other state-of-the-art PHI prediction methods when evaluated via 5-fold cross-validation (AUC and AUPR are 0.88 and 0.86, respectively). An ablation study shows that data augmentation, feature fusion and an attention mechanism are all beneficial to improve the prediction performance of PHIAF. Additionally, four new PHIs with the highest PHIAF score in the case study were verified by recent literature. In conclusion, PHIAF is a promising tool to accelerate the exploration of phage therapy.
Collapse
Affiliation(s)
- Menglu Li
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Narayana JK, Mac Aogáin M, Ali NABM, Tsaneva-Atanasova K, Chotirmall SH. Similarity network fusion for the integration of multi-omics and microbiomes in respiratory disease. Eur Respir J 2021; 58:13993003.01016-2021. [PMID: 34140302 DOI: 10.1183/13993003.01016-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | | | - Krasimira Tsaneva-Atanasova
- Dept of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
16
|
Global overview and major challenges of host prediction methods for uncultivated phages. Curr Opin Virol 2021; 49:117-126. [PMID: 34126465 DOI: 10.1016/j.coviro.2021.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022]
Abstract
Bacterial communities play critical roles across all of Earth's biomes, affecting human health and global ecosystem functioning. They do so under strong constraints exerted by viruses, that is, bacteriophages or 'phages'. Phages can reshape bacterial communities' structure, influence long-term evolution of bacterial populations, and alter host cell metabolism during infection. Metagenomics approaches, that is, shotgun sequencing of environmental DNA or RNA, recently enabled large-scale exploration of phage genomic diversity, yielding several millions of phage genomes now to be further analyzed and characterized. One major challenge however is the lack of direct host information for these phages. Several methods and tools have been proposed to bioinformatically predict the potential host(s) of uncultivated phages based only on genome sequence information. Here we review these different approaches and highlight their distinct strengths and limitations. We also outline complementary experimental assays which are being proposed to validate and refine these bioinformatic predictions.
Collapse
|
17
|
Computational analysis of fused co-expression networks for the identification of candidate cancer gene biomarkers. NPJ Syst Biol Appl 2021; 7:17. [PMID: 33712625 PMCID: PMC7955132 DOI: 10.1038/s41540-021-00175-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/08/2021] [Indexed: 11/08/2022] Open
Abstract
The complexity of cancer has always been a huge issue in understanding the source of this disease. However, by appreciating its complexity, we can shed some light on crucial gene associations across and in specific cancer types. In this study, we develop a general framework to infer relevant gene biomarkers and their gene-to-gene associations using multiple gene co-expression networks for each cancer type. Specifically, we infer computationally and biologically interesting communities of genes from kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma data sets of The Cancer Genome Atlas (TCGA) database. The gene communities are extracted through a data-driven pipeline and then evaluated through both functional analyses and literature findings. Furthermore, we provide a computational validation of their relevance for each cancer type by comparing the performance of normal/cancer classification for our identified gene sets and other gene signatures, including the typically-used differentially expressed genes. The hallmark of this study is its approach based on gene co-expression networks from different similarity measures: using a combination of multiple gene networks and then fusing normal and cancer networks for each cancer type, we can have better insights on the overall structure of the cancer-type-specific network.
Collapse
|
18
|
de Jonge PA, von Meijenfeldt FB, Costa AR, Nobrega FL, Brouns SJ, Dutilh BE. Adsorption Sequencing as a Rapid Method to Link Environmental Bacteriophages to Hosts. iScience 2020; 23:101439. [PMID: 32823052 PMCID: PMC7452251 DOI: 10.1016/j.isci.2020.101439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes.
Collapse
Affiliation(s)
- Patrick A. de Jonge
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | | | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Franklin L. Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Stan J.J. Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
19
|
Khan Mirzaei M, Xue J, Costa R, Ru J, Schulz S, Taranu ZE, Deng L. Challenges of Studying the Human Virome - Relevant Emerging Technologies. Trends Microbiol 2020; 29:171-181. [PMID: 32622559 DOI: 10.1016/j.tim.2020.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
In this review we provide an overview of current challenges and advances in bacteriophage research within the growing field of viromics. In particular, we discuss, from a human virome study perspective, the current and emerging technologies available, their limitations in terms of de novo discoveries, and possible solutions to overcome present experimental and computational biases associated with low abundance of viral DNA or RNA. We summarize recent breakthroughs in metagenomics assembling tools and single-cell analysis, which have the potential to increase our understanding of phage biology, diversity, and interactions with both the microbial community and the human body. We expect that these recent and future advances in the field of viromics will have a strong impact on how we develop phage-based therapeutic approaches.
Collapse
Affiliation(s)
- Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Jinlong Ru
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany
| | - Zofia E Taranu
- Aquatic Contaminants Research Division (ACRD), Environment and Climate Change Canada (ECCC), Montréal, QC H2Y 2E7, Canada
| | - Li Deng
- Institute of Virology, Helmholtz Centre Munich and Technical University of Munich, Neuherberg, Bavaria 85764, Germany.
| |
Collapse
|