1
|
Hsieh YA, Hsiao YH, Ko HK, Shen YL, Huang CW, Perng DW, Su KC. House dust mites stimulate thymic stromal lymphopoietin production in human bronchial epithelial cells and promote airway remodeling through activation of PAR2 and ERK signaling pathway. Sci Rep 2024; 14:28649. [PMID: 39562597 PMCID: PMC11577110 DOI: 10.1038/s41598-024-79226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
House dust mites (HDM) are common aeroallergens linked to airway inflammation and remodeling in asthma. Protease-activated receptor 2 (PAR2) and thymic stromal lymphopoietin (TSLP) may mediate these immune responses. However, how the epithelium influences fibroblasts toward airway remodeling remains unclear. We hypothesize that HDM stimulates human bronchial epithelial cells (HBECs) to produce TSLP via PAR2 activation, driving fibroblasts toward remodeling processes. HBECs were treated with HDM, with or without the PAR2 antagonist FSLLRY-NH2 (FSL), and TSLP expression was measured by qPCR and ELISA. Phosphorylation of MAPKs was assessed by western blotting. Human lung fibroblasts (HLFs) were exposed to recombinant TSLP or conditioned medium (CM) from HDM-stimulated HBECs, with or without anti-TSLP antibodies. Fibroblast proliferation and collagen production were assessed as remodeling markers. HDM increased ERK phosphorylation (not p38 or JNK) and TSLP expression at mRNA and protein levels. FSL preincubation significantly reduced ERK phosphorylation and TSLP production: HDM-stimulated CM induced fibroblast proliferation and collagen production, effects suppressed by anti-TSLP or FSL. Direct treatment with recombinant TSLP also promoted fibroblast proliferation and collagen synthesis. These findings suggest that HDM promotes HBEC-to-HLF paracrine interactions via PAR2-ERK-TSLP axis, participating in airway remodeling. PAR2 antagonists may represent potential therapeutic targets for HDM-induced remodeling processes.
Collapse
Affiliation(s)
- Yi-An Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC
| | - Yi-Luen Shen
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
| | - Chien-Wen Huang
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng District, 413305, Taichung City, Taiwan, ROC
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC.
- Division of General Chest Medicine, Department of Chest Medicine, Taipei Veterans General Hospital, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, No.201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei, Taiwan, ROC.
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC.
- Division of Clinical Respirology Physiology, Department of Chest Medicine, Taipei Veterans General Hospital, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, No.201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Zhang W, Zhang Y, Li L, Chen R, Shi F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. FRONTIERS IN ALLERGY 2024; 5:1496392. [PMID: 39563781 PMCID: PMC11573763 DOI: 10.3389/falgy.2024.1496392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Asthma has become one of the most serious chronic respiratory diseases threatening people's lives worldwide. The pathogenesis of asthma is complex and driven by numerous cells and their interactions, which contribute to its genetic and phenotypic heterogeneity. The clinical characteristic is insufficient for the precision of patient classification and therapies; thus, a combination of the functional or pathophysiological mechanism and clinical phenotype proposes a new concept called "asthma endophenotype" representing various patient subtypes defined by distinct pathophysiological mechanisms. High-throughput omics approaches including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome enable us to investigate the pathogenetic heterogeneity of diverse endophenotypes and the underlying mechanisms from different angles. In this review, we provide a comprehensive overview of the roles of diverse cell types in the pathophysiology and heterogeneity of asthma and present a current perspective on their contribution into the bidirectional interaction between airway inflammation and airway remodeling. We next discussed how integrated analysis of multi-omics data via machine learning can systematically characterize the molecular and biological profiles of genetic heterogeneity of asthma phenotype. The current application of multi-omics approaches on patient stratification and therapies will be described. Integrating multi-omics and clinical data will provide more insights into the key pathogenic mechanism in asthma heterogeneity and reshape the strategies for asthma management and treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Zhang
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Lifei Li
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Diseases, Institute of Shenzhen Respiratory Diseases, Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Fei Shi
- Department of Infectious Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
3
|
Qin L, Yao Y, Wang W, Qin Q, Liu J, Liu H, Yuan L, Yuan Y, Du X, Zhao B, Wu X, Qing B, Huang L, Wang G, Xiang Y, Qu X, Zhang X, Yang M, Xia Z, Liu C. Airway epithelial overexpressed cathepsin K induces airway remodelling through epithelial-mesenchymal trophic unit activation in asthma. Br J Pharmacol 2024; 181:3700-3716. [PMID: 38853468 DOI: 10.1111/bph.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.
Collapse
Affiliation(s)
- Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Bei Qing
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leng Huang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Wang
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xuewei Zhang
- Department of Health Management, Xiangya Hospital, Cental South University, Changsha, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Zhenkun Xia
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Barron SL, Wyatt O, O'Connor A, Mansfield D, Suzanne Cohen E, Witkos TM, Strickson S, Owens RM. Modelling bronchial epithelial-fibroblast cross-talk in idiopathic pulmonary fibrosis (IPF) using a human-derived in vitro air liquid interface (ALI) culture. Sci Rep 2024; 14:240. [PMID: 38168149 PMCID: PMC10761879 DOI: 10.1038/s41598-023-50618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating form of respiratory disease with a life expectancy of 3-4 years. Inflammation, epithelial injury and myofibroblast proliferation have been implicated in disease initiation and, recently, epithelial-fibroblastic crosstalk has been identified as a central driver. However, the ability to interrogate this crosstalk is limited due to the absence of in vitro models that mimic physiological conditions. To investigate IPF dysregulated cross-talk, primary normal human bronchial epithelial (NHBE) cells and primary normal human lung fibroblasts (NHLF) or diseased human lung fibroblasts (DHLF) from IPF patients, were co-cultured in direct contact at the air-liquid interface (ALI). Intercellular crosstalk was assessed by comparing cellular phenotypes of co-cultures to respective monocultures, through optical, biomolecular and electrical methods. A co-culture-dependent decrease in epithelium thickness, basal cell mRNA (P63, KRT5) and an increase in transepithelial electrical resistance (TEER) was observed. This effect was significantly enhanced in DHLF co-cultures and lead to the induction of epithelial to mesenchymal transition (EMT) and increased mRNA expression of TGFβ-2, ZO-1 and DN12. When stimulated with exogenous TGFβ, NHBE and NHLF monocultures showed a significant upregulation of EMT (COL1A1, FN1, VIM, ASMA) and senescence (P21) markers, respectively. In contrast, direct NHLF/NHBE co-culture indicated a protective role of epithelial-fibroblastic cross-talk against TGFβ-induced EMT, fibroblast-to-myofibroblast transition (FMT) and inflammatory cytokine release (IL-6, IL-8, IL-13, IL-1β, TNF-α). DHLF co-cultures showed no significant phenotypic transition upon stimulation, likely due to the constitutively high expression of TGFβ isoforms prior to any exogenous stimulation. The model developed provides an alternative method to generate IPF-related bronchial epithelial phenotypes in vitro, through the direct co-culture of human lung fibroblasts with NHBEs. These findings highlight the importance of fibroblast TGFβ signaling in EMT but that monocultures give rise to differential responses compared to co-cultures, when exposed to this pro-inflammatory stimulus. This holds implications for any translation conclusions drawn from monoculture studies and is an important step in development of more biomimetic models of IPF. In summary, we believe this in vitro system to study fibroblast-epithelial crosstalk, within the context of IPF, provides a platform which will aid in the identification and validation of novel targets.
Collapse
Affiliation(s)
- Sarah L Barron
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| | - Owen Wyatt
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Andy O'Connor
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - David Mansfield
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Tomasz M Witkos
- Analytical Sciences, Bioassay, Biosafety and Impurities, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sam Strickson
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Róisín M Owens
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Wang J, Jian Q, Yan K, Yang J, Yan L, Cheng W. m 6A-modified miR-143-3p inhibits epithelial mesenchymal transition in bronchial epithelial cells and extracellular matrix production in lung fibroblasts by targeting Smad3. Pulm Pharmacol Ther 2023; 83:102251. [PMID: 37666296 DOI: 10.1016/j.pupt.2023.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Airway epithelial cells epithelial mesenchymal transition (EMT) and lung fibroblasts extracellular matrix (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear. METHODS Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and ECM proteins were detected by western blot, RT-qPCR, and ELISA. To determine the level of miR-143-3p m6A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual luciferase reporter assays. RESULTS It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-β1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m6A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production. CONCLUSION MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Qiang Jian
- Department of Emergency, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Kun Yan
- Department of General Surgery, 2nd Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiao Yang
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Liping Yan
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China
| | - Wei Cheng
- Department of Internal Medicine, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, China.
| |
Collapse
|
6
|
Pavlenko A, Lasota S, Wnuk D, Paw M, Czyż J, Michalik M, Madeja Z. Bronchial Fibroblasts from Asthmatic Patients Display Impaired Responsiveness to Direct Current Electric Fields (dcEFs). Biomedicines 2023; 11:2138. [PMID: 37626635 PMCID: PMC10452584 DOI: 10.3390/biomedicines11082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Accumulating evidence suggests that an important role is played by electric signals in modifying cell behaviour during developmental, regenerative and pathological processes. However, their role in asthma has not yet been addressed. Bronchial fibroblasts have recently been identified having important roles in asthma development. Therefore, we adapted an experimental approach based on the lineages of human bronchial fibroblasts (HBF) derived from non-asthmatic (NA) donors and asthmatic (AS) patients to elucidate whether their reactivity to direct current electric fields (dcEF) could participate in the asthmatic process. The efficient responsiveness of NA HBF to an electric field in the range of 2-4 V/cm was illustrated based on the perpendicular orientation of long axes of the cells to the field lines and their directional movement towards the anode. These responses were related to the activity of TGF-β signalling, as the electrotaxis and re-orientation of NA HBF polarity was impaired by the inhibitors of canonical and non-canonical TGF-β-dependent pathways. A similar tendency towards perpendicular cell-dcEF orientation was observed for AS HBF. However, their motility remained insensitive to the electric field applied at 2-4 V/cm. Collectively, these observations demonstrate the sensitivity of NA HBF to dcEF, as well as the inter-relations between this parameter and the canonical and non-canonical TGF-β pathways, and the differences between the electrotactic responses of NA and AS HBF point to the possible role of their dcEFs in desensitisation in the asthmatic process. This process may impair the physiologic behaviour of AS HBF functions, including cell motility, ECM deposition, and contractility, thus promoting bronchial wall remodelling, which is a characteristic of bronchial asthma.
Collapse
Affiliation(s)
| | - Sławomir Lasota
- Correspondence: (S.L.); (Z.M.); Tel.: +48-126-646-143 (S.L.); +48-126-646-142 (Z.M.)
| | | | | | | | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (A.P.); (D.W.); (M.P.); (J.C.); (M.M.)
| |
Collapse
|
7
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
8
|
Paw M, Wnuk D, Madeja Z, Michalik M. PPARδ Agonist GW501516 Suppresses the TGF-β-Induced Profibrotic Response of Human Bronchial Fibroblasts from Asthmatic Patients. Int J Mol Sci 2023; 24:ijms24097721. [PMID: 37175437 PMCID: PMC10178673 DOI: 10.3390/ijms24097721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-β (TGF-β). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro. This report shows, for the first time, the inhibitory effect of a PPARδ agonist on the number of myofibroblasts and the expression of myofibroblast-related markers-α-smooth muscle actin, collagen 1, tenascin C, and connexin 43-in asthma-related TGF-β-treated HBF populations. We suggest that actin cytoskeleton reorganization and Smad2 transcriptional activity altered by GW501516 lead to the attenuation of the FMT in HBF populations derived from asthmatics. In conclusion, our data demonstrate that a PPARδ agonist stimulates antifibrotic effects in an in vitro model of bronchial subepithelial fibrosis. This suggests its potential role in the development of a possible novel therapeutic approach for the treatment of subepithelial fibrosis during asthma.
Collapse
Affiliation(s)
- Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Wang L, Liu X. Long noncoding RNA antisense noncoding RNA in the INK4 locus inhibition alleviates airway remodeling in asthma through the regulation of the microRNA-7-5p/early growth response factor 3 axis. Immun Inflamm Dis 2023; 11:e823. [PMID: 37102654 PMCID: PMC10091379 DOI: 10.1002/iid3.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 04/28/2023] Open
Abstract
Asthma, a chronic inflammatory disease of the airways, clinically manifests as airway remodeling. The purpose of this study was to probe the potential role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (lncRNA ANRIL) in the proliferation and migration of airway smooth muscle cell (ASMC) and to explore its potential mechanisms in asthma. Serum samples were obtained from 30 healthy volunteers and 30 patients with asthma. Additionally, platelet-derived growth factor-BB (PDGF-BB) was used to induce airway remodeling in ASMCs. The level of lncRNA ANRIL and microRNA (miR)-7-5p in serum samples were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). TargetScan predicted the binding site of miR-7-5p to early growth response factor 3 (EGR3) and validated the results using a dual-luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and Transwell assays were used to detect cellular proliferation and migration, respectively. Subsequently, changes in proliferation- and migration-related genes were verified using western blot analysis and qRT-PCR. These results indicate that lncRNA ANRIL was upregulated in the serum and PDGF-BB-induced ASMCs of patients with asthma, whereas miR-7-5p expression was reduced. EGR3 was a direct target of miR-7-5p. LncRNA ANRIL silencing inhibited the proliferation or migration of ASMCs induced by PDGF-BB through miR-7-5p upregulation. Mechanistic studies indicated that miR-7-5p inhibits the proliferation or migration of PDGF-BB-induced ASMCs by decreasing EGR3 expression. EGR3 upregulation reverses the role of miR-7-5p in airway remodeling. Thus, downregulation of lncRNA ANRIL inhibits airway remodeling through inhibiting the proliferation and migration of PDGF-BB-induced ASMCs by regulating miR-7-5p/EGR3 signaling.
Collapse
Affiliation(s)
- Liyan Wang
- Department of PediatricsWuhan Third HospitalWuhanChina
| | - Xueru Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
10
|
Pan-Phosphodiesterase Inhibitors Attenuate TGF-β-Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals (Basel) 2022; 15:ph15040423. [PMID: 35455420 PMCID: PMC9024446 DOI: 10.3390/ph15040423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Airway remodeling is a pathological process that accompanies many chronic lung diseases. One of the important players in this process are epithelial cells, which under the influence of pro-inflammatory and pro-fibrotic factors present in the airway niche, actively participate in the remodeling process by increasing extracellular matrix secretion, acquiring migration properties, and overproducing pro-fibrotic transducers. Here, we investigated the effect of three new 8-arylalkylamino- and 8-alkoxy-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl-N-(5-(tert-butyl)-2-hydroxyphenyl)butanamides (1, 2, and 3), representing prominent pan-phosphodiesterase (pan-PDE) inhibitors on transforming growth factor type β (TGF-β)-induced alveolar epithelial type II cells (A549 cell line) of a pro-fibrotic phenotype. Our results demonstrate for the first time the strong activity of pan-PDE inhibitors in the prevention of TGF-β-induced mesenchymal markers’ expression and A549 cells’ migration. We also showed an increased p-CREB and decreased p-Smad-2 phosphorylation in TGF-β-induced A549 cells treated with 1, 2, and 3 derivatives, thereby confirming a pan-PDE inhibitor mesenchymal phenotype reducing effect in alveolar epithelial type II cells via suppression of the canonical Smad signaling pathway. Our observations confirmed that PDE inhibitors, and especially those active against various isoforms involved in the airway remodeling, constitute an interesting group of compounds modulating the pro-fibrotic response of epithelial cells.
Collapse
|
11
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
12
|
SB203580-A Potent p38 MAPK Inhibitor Reduces the Profibrotic Bronchial Fibroblasts Transition Associated with Asthma. Int J Mol Sci 2021; 22:ijms222312790. [PMID: 34884593 PMCID: PMC8657816 DOI: 10.3390/ijms222312790] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 01/23/2023] Open
Abstract
Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-β1 (TGF-β1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-β1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-β1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-β/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.
Collapse
|
13
|
Zhang D, Qiao XR, Cui WJ, Zhang JT, Pan Y, Liu XF, Dong L. Syndecan-1 Amplifies Ovalbumin-Induced Airway Remodeling by Strengthening TGFβ1/Smad3 Action. Front Immunol 2021; 12:744477. [PMID: 34671356 PMCID: PMC8521046 DOI: 10.3389/fimmu.2021.744477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Syndecan-1 (SDC-1) is a transmembrane proteoglycan of heparin sulfate that can regulate various cell signal transduction pathways in the airway epithelial cells and fibroblasts. Airway epithelial cells and human bronchial fibroblasts are crucial in airway remodeling. However, the importance of SDC-1 in the remodeling of asthmatic airways has not been confirmed yet. The present study was the first to uncover SDC-1 overexpression in the airways of humans and mice with chronic asthma. This study also validated that an increase in SDC-1 expression was correlated with TGFβ1/Smad3-mediated airway remodeling in vivo and in vitro. A small interfering RNA targeting SDC-1 (SDC-1 siRNA) and homo-SDC-1 in pcDNA3.1 (pc-SDC-1) was designed to assess the effects of SDC-1 on TGFβ1/Smad3-mediated collagen I expression in Beas-2B (airway epithelial cells) and HLF-1 (fibroblasts) cells. Downregulation of the SDC-1 expression by SDC-1 siRNA remarkably attenuated TGFβ1-induced p-Smad3 levels and collagen I expression in Beas-2B and HLF-1 cells. In addition, SDC-1 overexpression with pc-SDC-1 enhanced TGFβ1-induced p-Smad3 level and collagen I expression in Beas-2B and HLF-1 cells. Furthermore, the levels of p-Smad3 and collagen I induced by TGFβ1 were slightly increased after the addition of the recombinant human SDC-1 protein to Beas-2B and HLF-1 cells. These findings in vitro were also confirmed in a mouse model. A short hairpin RNA targeting SDC-1 (SDC-1 shRNA) to interfere with SDC-1 expression considerably reduced the levels of p-Smad3 and remodeling protein (α-SMA, collagen I) in the airways induced by ovalbumin (OVA). Similarly, OVA-induced p-Smad3 and remodeling protein levels in airways increased after mice inhalation with the recombinant mouse SDC-1 protein. These results suggested that SDC-1 of airway epithelial cells and fibroblasts plays a key role in the development of airway remodeling in OVA-induced chronic asthma.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Rui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Tao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Fei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
14
|
Soriano L, Khalid T, O’Brien FJ, O’Leary C, Cryan SA. A Tissue-Engineered Tracheobronchial In Vitro Co-Culture Model for Determining Epithelial Toxicological and Inflammatory Responses. Biomedicines 2021; 9:631. [PMID: 34199462 PMCID: PMC8226664 DOI: 10.3390/biomedicines9060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Translation of novel inhalable therapies for respiratory diseases is hampered due to the lack of in vitro cell models that reflect the complexity of native tissue, resulting in many novel drugs and formulations failing to progress beyond preclinical assessments. The development of physiologically-representative tracheobronchial tissue analogues has the potential to improve the translation of new treatments by more accurately reflecting in vivo respiratory pharmacological and toxicological responses. Herein, advanced tissue-engineered collagen hyaluronic acid bilayered scaffolds (CHyA-B) previously developed within our group were used to evaluate bacterial and drug-induced toxicity and inflammation for the first time. Calu-3 bronchial epithelial cells and Wi38 lung fibroblasts were grown on either CHyA-B scaffolds (3D) or Transwell® inserts (2D) under air liquid interface (ALI) conditions. Toxicological and inflammatory responses from epithelial monocultures and co-cultures grown in 2D or 3D were compared, using lipopolysaccharide (LPS) and bleomycin challenges to induce bacterial and drug responses in vitro. The 3D in vitro model exhibited significant epithelial barrier formation that was maintained upon introduction of co-culture conditions. Barrier integrity showed differential recovery in CHyA-B and Transwell® epithelial cultures. Basolateral secretion of pro-inflammatory cytokines to bacterial challenge was found to be higher from cells grown in 3D compared to 2D. In addition, higher cytotoxicity and increased basolateral levels of cytokines were detected when epithelial cultures grown in 3D were challenged with bleomycin. CHyA-B scaffolds support the growth and differentiation of bronchial epithelial cells in a 3D co-culture model with different transepithelial resistance in comparison to the same co-cultures grown on Transwell® inserts. Epithelial cultures in an extracellular matrix like environment show distinct responses in cytokine release and metabolic activity compared to 2D polarised models, which better mimic in vivo response to toxic and inflammatory stimuli offering an innovative in vitro platform for respiratory drug development.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (L.S.); (T.K.); (C.O.)
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, D02 YN77 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|