1
|
Contreras‐Tapia RA, Benítez‐Díaz Mirón MI, Garza Mouriño G, Castellanos‐Páez ME. From hatching to juvenile: Larval development of Vieja fenestrata (Teleostei: Cichlidae). JOURNAL OF FISH BIOLOGY 2024; 105:1588-1602. [PMID: 39126256 PMCID: PMC11650922 DOI: 10.1111/jfb.15898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This study delves into the early development of Vieja fenestrata (Cichlidae), with a specific focus on the description of external morphological and morphometric changes, and growth patterns from hatching to the loss of larval characters under controlled laboratory conditions at a temperature of 28°C. Asynchronous hatching was observed between 58 and 60 h postfertilization, with the posterior body emerging first. Over 14 days, significant morphological, physiological, and behavioral changes were observed, revealing a complex developmental trajectory. The initial developmental phases were characterized by rapid vascularization, fin differentiation, and heightened activity, and the subsequent days witnessed the flexion of the notochord, emergence of swim bladder functionality, and transition to exogenous feeding. Maturation progressed with the absorption of the yolk sac, regression of cement glands, and fin ray development, culminating in metamorphosis by 14 days post-hatching. Throughout this period, evolving pigmentation patterns and structural adaptations highlight the species' adaptive strategies. During the larval period of V. fenestrata, substantial changes in morphological proportions were observed. Before the inflection, tail length, trunk length, and body depth had negative allometric growth, and head length, eye diameter, and snout length had positive allometric growth. After the inflection, body depth and snout length showed positive allometric growth; head length and trunk length exhibited isometric growth, whereas tail length and eye diameter demonstrated negative allometric growth. These findings contribute insights into the intricate developmental dynamics of V. fenestrata. Moreover, further research may explore these developmental dynamics' ecological and evolutionary implications.
Collapse
Affiliation(s)
- Rubén Alonso Contreras‐Tapia
- Laboratorio de Rotiferología y Biología Molecular de Plancton, Departamento El Hombre y su AmbienteUniversidad Autónoma Metropolitana, Unidad XochimilcoMexico CityMexico
| | - Marcela Ivonne Benítez‐Díaz Mirón
- Laboratorio de Rotiferología y Biología Molecular de Plancton, Departamento El Hombre y su AmbienteUniversidad Autónoma Metropolitana, Unidad XochimilcoMexico CityMexico
| | - Gabriela Garza Mouriño
- Laboratorio de Rotiferología y Biología Molecular de Plancton, Departamento El Hombre y su AmbienteUniversidad Autónoma Metropolitana, Unidad XochimilcoMexico CityMexico
| | - María Elena Castellanos‐Páez
- Laboratorio de Rotiferología y Biología Molecular de Plancton, Departamento El Hombre y su AmbienteUniversidad Autónoma Metropolitana, Unidad XochimilcoMexico CityMexico
| |
Collapse
|
2
|
Tanaka Y, Okayama S, Urakawa K, Kudoh H, Ansai S, Abe G, Tamura K. Anterior-posterior constraint on Hedgehog signaling by hhip in teleost fin elaboration. Development 2024; 151:dev202526. [PMID: 39417578 DOI: 10.1242/dev.202526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Pectoral fins, the anterior paired fins in fish, have enhanced maneuvering abilities due to morphological changes. Teleosts have fewer radial bones in their pectoral fins than basal species, resulting in more-elaborate fins. The mechanism behind this radial constraint change in teleosts is unclear. Here, we found that mutations in hhip, which encodes an antagonist of Hedgehog signaling, led to an increase in radial bones in a localized region. Expression of the Shh genes, encoding ligands of Hedgehog signaling, coincided with notable hhip expression specifically during early development. We suggest that a negative feedback effect of Hedgehog signaling by hhip regulates the constraint of the pectoral fin in zebrafish. Additionally, re-analysis of hhip-related gene expression data in zebrafish and basal species revealed that the notable hhip expression during early development is a characteristic of zebrafish that is not observed in basal species. Region-specific expression of Hox13 genes in the zebrafish pectoral fin indicated that the median region, analogous to the region with abundant radials in basal species, is expanded in hhip-/- zebrafish. These data underscore potential morphological evolution through constrained diversity.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Shun Okayama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohei Urakawa
- Department of Developmental Biology, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan
| | - Hidehiro Kudoh
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Sankar M, Kryvi H, Fraser TWK, Philip AJP, Remø S, Hansen TJ, Witten PE, Fjelldal PG. A new method for regionalization of the vertebral column in salmonids based on radiographic hallmarks. JOURNAL OF FISH BIOLOGY 2024; 105:1189-1199. [PMID: 39034462 DOI: 10.1111/jfb.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
Current procedures to establish vertebral column regionalization (e.g., histology) in fish are time consuming and difficult to apply. The aim of this study was to develop a more rapid and accurate radiology-based method for Atlantic salmon (Salmo salar). A detailed analysis of 90 animals (4 kg) led to the establishment of region-specific radiographic hallmarks. To elucidate its transferability to other salmonid species, radiography was carried out in brown trout (Salmo trutta), Arctic char (Salvelinus alpinus), rainbow trout (Oncorhynchus mykiss), pink salmon (Oncorhynchus gorbuscha), and Chinook salmon (Oncorhynchus tshawytscha). This method was also evaluated for whole ungutted fish. The vertebral column of Atlantic salmon can be subdivided into five regions (R1-R5) based on anatomy: postcranial (R1, V1, and V2), abdominal (R2, V3-V26), transitional (R3, V27-V36), caudal (R4, V37-V53), and ural (R5, V54-V59). The following specific radiographic hallmarks allow the identification of regions: (i) lack of ribs in R1, (ii) modified parapophysis of the first vertebra of R3, (iii) prominent hemal spine of the first vertebra of R4, and (iv) the separated hemal spine of the most cranial pre-ural vertebra of R5. These hallmarks were all transferable to the other salmonid species assessed. The results include a further description of various region-specific characteristics in Atlantic salmon. The method was found applicable for sedated/whole ungutted fish, verifying it as quick and easy compared to other regionalization methods. The regions defined by radiology in this study agree with the vertebral column regions recently defined for Chinook salmon (O. tshawytscha). Thus, and considering the results of this study on various salmonid species, the currently developed regionalization protocol can be generally used for salmonids.
Collapse
Affiliation(s)
- Murugesan Sankar
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- ICAR-Central Marine Fisheries Research Institute (CMFRI), Kochi, India
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas W K Fraser
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Sofie Remø
- Feed and Nutrition, Institute of Marine Research (IMR), Bergen, Norway
| | - Tom J Hansen
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Paul Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Per Gunnar Fjelldal
- Reproduction and Developmental Biology Group, Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
5
|
Bucklow CV, Genner MJ, Turner GF, Maclaine J, Benson R, Verd B. A whole-body micro-CT scan library that captures the skeletal diversity of Lake Malawi cichlid fishes. Sci Data 2024; 11:984. [PMID: 39256465 PMCID: PMC11387623 DOI: 10.1038/s41597-024-03687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Here we describe a dataset of freely available, readily processed, whole-body μCT-scans of 56 species (116 specimens) of Lake Malawi cichlid fishes that captures a considerable majority of the morphological variation present in this remarkable adaptive radiation. We contextualise the scanned specimens within a discussion of their respective ecomorphological groupings and suggest possible macroevolutionary studies that could be conducted with these data. In addition, we describe a methodology to efficiently μCT-scan (on average) 23 specimens per hour, limiting scanning time and alleviating the financial cost whilst maintaining high resolution. We demonstrate the utility of this method by reconstructing 3D models of multiple bones from multiple specimens within the dataset. We hope this dataset will enable further morphological study of this fascinating system and permit wider-scale comparisons with other cichlid adaptive radiations.
Collapse
Affiliation(s)
- Callum V Bucklow
- University of Oxford, Department of Biology, OX1 3SZ, Oxford, United Kingdom
- University of Oxford, Department of Earth Sciences, OX1 3AN, Oxford, United Kingdom
| | - Martin J Genner
- University of Bristol, School of Biological Sciences, Bristol, BS8 1TQ, United Kingdom
| | - George F Turner
- Bangor University, School of Natural Sciences, Bangor, LL57 2UR, United Kingdom
| | | | - Roger Benson
- University of Oxford, Department of Earth Sciences, OX1 3AN, Oxford, United Kingdom.
- American Museum of Natural History, New York City, NY 10024, USA.
| | - Berta Verd
- University of Oxford, Department of Biology, OX1 3SZ, Oxford, United Kingdom.
| |
Collapse
|
6
|
Miyamoto K, Abe G, Tamura K. The dwarf neon rainbowfish Melanotaenia praecox, a small spiny-rayed fish with potential as a new Acanthomorpha model fish: I. Fin ray ontogeny and postembryonic staging. Dev Dyn 2024; 253:829-845. [PMID: 38323724 PMCID: PMC11656687 DOI: 10.1002/dvdy.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Fish fins with highly variable color patterns and morphologies have many functions. In Actinopterygii, the free parts of fins are supported by "soft rays" and "spiny rays." Spiny rays have various functions and are extremely modified in some species, but they are lacking in popular model fish such as zebrafish and medaka. Additionally, some model fish with spiny rays are difficult to maintain in ordinary laboratory systems. RESULTS Characteristics of the small, spiny-rayed rainbowfish Melanotaenia praecox render it useful as an experimental model species. Neither fish age nor body size correlate well with fin development during postembryonic development in this species. A four-stage developmental classification is proposed that is based on fin ray development. CONCLUSIONS Melanotaenia praecox is an ideal species to rear in laboratories for developmental studies. Our classification allows for postembryonic staging of this species independent of individual age and body size. Development of each fin ray may be synchronized with dorsal fin development. We discuss the differences in mechanisms regulating soft, spiny, and procurrent ray development.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life ScienceTottori UniversityYonagoJapan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Ehemann N, Franchini P, Meyer A, Hulsey CD. Meristic co-evolution and genomic co-localization of lateral line scales and vertebrae in Central American cichlid fishes. Ecol Evol 2024; 14:e70266. [PMID: 39279804 PMCID: PMC11402520 DOI: 10.1002/ece3.70266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Meristic traits are often treated as distinct phenotypes that can be used to differentiate and delineate recently diverged species. For instance, the number of lateral line scales and vertebrae, two traits that vary substantially among Neotropical Heroine cichlid species, have been previously suggested to co-evolve. These meristic traits could co-evolve due to shared adaptive, developmental, or genetic factors. If they were found to be genetically or developmentally non-independent, this might require a more general re-evaluation of their role in evolutionary or taxonomic studies. We expanded a previous analysis of correlated evolution of meristic traits (lateral line scales and vertebrae counts) in these fishes to include a range of phylogenetic reconstructions as well as the analyses of 13 Nicaraguan Midas cichlid species (Amphilophus spp.). Additionally, we performed qualitative traits locus (QTL) mapping in a F2 laboratory-reared hybrid population from two ecologically divergent Midas cichlid fish species to discover and evaluate whether genomic co-segregation might explain the observed patterns of meristic co-evolution. Meristic values for these traits were found to morphologically differentiate some species of the Midas cichlid adaptive radiation. Our QTL analysis pinpointed several genomic regions associated with divergence in these traits and highlighted the potential for genomic co-segregation of the lateral line and vertebrae numbers on two chromosomes. Further, our phylogenetic comparative analyses consistently recovered a significant positive evolutionary correlation between the counts of lateral line scale and vertebrae numbers in Neotropical cichlids. Hence, the findings of genomic co-segregation could partially explain the co-evolution of these two meristic traits in these species. Continuing to unravel the genetic architecture governing meristic divergence helps to better understand both trait correlations and the utility of meristic traits in taxonomic diagnoses and how traits in phenotypes might be expected to co-evolve.
Collapse
Affiliation(s)
| | - Paolo Franchini
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Department of Ecological and Biological SciencesTuscia UniversityViterboItaly
| | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
- CAS Key Laboratory of Tropical Marine Bio‐Resources and EcologySouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - C. Darrin Hulsey
- Department of BiologyUniversity of KonstanzKonstanzGermany
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| |
Collapse
|
8
|
Ehemann NR, Meyer A, Hulsey CD. Morphological description of spontaneous pelvic fin loss in a neotropical cichlid fish. J Morphol 2024; 285:e21663. [PMID: 38100744 DOI: 10.1002/jmor.21663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Pelvic fins are a characteristic structure of the vertebrate Bauplan. Yet, pelvic fin loss has occurred repeatedly across a wide diversity of other lineages of tetrapods and at least 48 times in teleost fishes. This pelvic finless condition is often associated with other morphological features such as body elongation, loss of additional structures, and bilateral asymmetry. However, despite the remarkable diversity in the several thousand cichlid fish species, none of them are characterized by the complete absence of pelvic fins. Here, we examined the musculoskeletal structure and associated bilateral asymmetry in Midas cichlids (Amphilophus cf. citrinellus) that lost their pelvic fins spontaneously in the laboratory. Due to this apparent mutational loss of the pelvic girdle and fins, the external and internal anatomy are described in a series of "normal" Midas individuals and their pelvic finless sibling tankmates. First, other traits associated with teleost pelvic fin loss, the genetic basis of pelvic fin loss, and the potential for pleiotropic effects of these genes on other traits in teleosts were all reviewed. Using these traits as a guide, we investigated whether other morphological differences were associated with the pelvic girdle/fin loss. The mean values of the masses of muscle of the pectoral fin, fin ray numbers in the unpaired fins, and oral jaw tooth numbers did not differ between the two pelvic fin morphotypes. However, significant differences in meristic values of the paired traits assessed were observed for the same side of the body between morphotypes. Notably, bilateral asymmetry was found exclusively for the posterior lateral line scales. Finally, we found limited evidence of pleiotropic effects, such as lateral line scale numbers and fluctuating asymmetry between the Midas pelvic fin morphotypes. The fast and relatively isolated changes in the Midas cichlids suggest minor but interesting pleiotropic effects could accompany loss of cichlid pelvic fins.
Collapse
Affiliation(s)
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
9
|
Beriotto AC, Vissio PG, Gisbert E, Fernández I, Álvarez González CA, Di Yorio MP, Sallemi JE, Pérez Sirkin DI. From zero to ossified: Larval skeletal ontogeny of the Neotropical Cichlid fish Cichlasoma dimerus. J Morphol 2023; 284:e21641. [PMID: 37708507 DOI: 10.1002/jmor.21641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
The identification of skeletal elements, the analysis of their developmental sequence, and the time of their appearance during larval development are essential to broaden the knowledge of each fish species and to recognize skeletal abnormalities that may affect further fish performance. Therefore, this study aimed to provide a general description of the development of the entire skeleton highlighting its variability in Cichlasoma dimerus. Larvae of C. dimersus were stained with alcian blue and alizarin red from hatching to 25 days posthatching. Skeletogenesis began with the endoskeletal disk and some cartilage structures from the caudal fin and the splachnocranium, while the first bony structure observed was the cleithrum. When larvae reached the free-swimming and exogenous feeding stage, mostly bones from the jaws, the branchial arches, and the opercle series evidenced some degree of ossification, suggesting that the ossification sequence of C. dimerus adjusts to physiological demands such as feeding and ventilation. The caudal region was the most variable regarding meristic counts and evidenced higher incidence of bone deformities. In conclusion, this work provides an overview of C. dimerus skeletogenesis and lays the groundwork for further studies on diverse topics, like developmental plasticity, rearing conditions, or phylogenetic relationships.
Collapse
Affiliation(s)
- Agustina C Beriotto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Enric Gisbert
- IRTA, Centre de la Ràpita, Aquaculture Program, Sant Carles de la Ràpita, España
| | - Ignacio Fernández
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Vigo, España
| | - Carlos A Álvarez González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, México
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Tanaka Y, Miura H, Tamura K, Abe G. Morphological evolution and diversity of pectoral fin skeletons in teleosts. ZOOLOGICAL LETTERS 2022; 8:13. [PMID: 36435818 PMCID: PMC9701400 DOI: 10.1186/s40851-022-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The Teleostei class has the most species of the fishes. Members of this group have pectoral fins, enabling refined movements in the water. Although teleosts live in a diverse set of environments, the skeletal pattern of pectoral fins in teleosts is considered to show little morphological variability. Here, in order to elucidate variations in pectoral fin skeletons and to identify their evolutionary processes, we compared the pectoral fin skeletons from 27 species of teleosts. We identified several variations and a diversity of pectoral fin skeletal patterns within some teleost groups. Taken together with previous reports on teleost skeletons, our findings reveal that in the course of teleost evolution, there are a mixture of conserved and non-conserved components in the pectoral fin skeletons of teleosts, and that teleosts may have experienced the variation and conservation of the number and shape of the proximal radials, the loss of the mesocoracoid, and the change in the distal radial-fin ray relationship.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan.
| | - Hiroki Miura
- Asamushi Aquarium. Asamushi, Aomori, 039-3501, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-Cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
12
|
Kratochwil CF, Liang Y, Gerwin J, Franchini P, Meyer A. Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes. Evol Dev 2022; 24:158-170. [PMID: 35971657 DOI: 10.1111/ede.12416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, agouti-related-peptide 2 (agrp2), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify agrp2 to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that agrp2 is associated with the loss of the nonstereotypic oblique stripe of Mylochromis mola. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair Haplochromis sauvagei and Pundamilia nyererei, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences-that most importantly also do not include agrp2-are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
13
|
Thieme P, Schnell NK, Parkinson K, Moritz T. Morphological characters in light of new molecular phylogenies: the caudal-fin skeleton of Ovalentaria. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211605. [PMID: 35242353 PMCID: PMC8753169 DOI: 10.1098/rsos.211605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 05/03/2023]
Abstract
The Ovalentaria is a taxon of teleosts that has been proposed based on molecular analyses only. Previously widely separated families are assembled in this taxon. For the first time, the Ovalentaria are analysed using a comparative morphological approach. The caudal-fin skeleton of 355 species covering all 48 ovalentarian families are examined in cleared and stained specimens, µCT datasets and X-ray images as well as from the literature. A total of 38 morphological characters are evaluated and used for ancestral character state reconstructions and phylogenetic analyses. Results provide hypotheses for a scenario of the evolution of the caudal-fin skeleton and its ground plan in Ovalentaria. An evolutionary trend towards the reduction of skeletal elements in the caudal fin is observed. Connections between the evolution of the caudal-fin skeleton and modes of locomotion found in ovalentarian taxa are discussed. Phylogenetic analyses based on the caudal-fin morphology provide topologies for intra-ovalentarian relationships that largely agree with molecular hypotheses.
Collapse
Affiliation(s)
- Philipp Thieme
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Ebertstrasse 1, 07743 Jena, Germany
| | - Nalani K. Schnell
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Station Marine de Concarneau, Place de la Croix, 29900 Concarneau, France
| | - Kerryn Parkinson
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales 2010, Australia
| | - Timo Moritz
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| |
Collapse
|
14
|
Höch R, Schneider RF, Kickuth A, Meyer A, Woltering JM. Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- gremlin- shh signaling network. Proc Natl Acad Sci U S A 2021; 118:e2101783118. [PMID: 34230098 PMCID: PMC8307853 DOI: 10.1073/pnas.2101783118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny-fin elements across fishes.
Collapse
Affiliation(s)
- Rebekka Höch
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Ralf F Schneider
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alison Kickuth
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Joost M Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
15
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
16
|
Mousavi SE, Patil JG. Stages of embryonic development in the live-bearing fish, Gambusia holbrooki. Dev Dyn 2021; 251:287-320. [PMID: 34139034 DOI: 10.1002/dvdy.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Divergent morphology and placentation of Poeciliids make them suitable model for investigating how evolutionary selection has altered and conserved the developmental mechanisms. However, there is limited description of their embryonic staging, despite representing a key evolutionary node that shares developmental strategy with placental vertebrates. Here, we describe the embryonic developmental stages of Gambusia holbrooki from zygote to parturition using freshly harvested embryos. RESULTS We defined 40 embryonic stages using a numbered (stages 0-39; zygote to parturition, respectively) and named (grouped into seven periods, ie, zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and parturition) staging system. Two sets of quantitative (ie, egg diameter, embryonic total length, otic vesicle closure index, heart rates, the number of caudal fin rays and elements) and qualitative (ie, three-dimensional analysis of images and key morphological criteria) data were acquired and used in combination to describe each stage. All 40 stages are separated by well-defined morphological traits, revealing developmental novelties that are influenced by narrow perivitelline space, placentation, internal gestation, and sex differentiation. CONCLUSIONS The principal diagnostic features described are quick, reliable, and easy to apply. This system will benefit researchers investigating molecular ontogeny, particularly sexual differentiation mechanisms in G. holbrooki.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, Australia
| | - Jawahar G Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania, Australia.,Inland Fisheries Service, New Norfolk, Tasmania, Australia
| |
Collapse
|
17
|
Thieme P, Warth P, Moritz T. Development of the caudal-fin skeleton reveals multiple convergent fusions within Atherinomorpha. Front Zool 2021; 18:20. [PMID: 33902629 PMCID: PMC8077867 DOI: 10.1186/s12983-021-00408-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
Background The caudal fin of teleosts is a highly diverse morphological structure and a valuable source of information for comparative analyses. Within the Atherinomorpha a high variation of conditions of the caudal-fin skeleton can be found. These range from complex but basal configurations to simple yet derived configurations. When comparing atherinomorph taxa, it is often difficult to decide on the homology of skeletal elements if only considering adult specimens. However, observing the development of caudal-fin skeletons allows one to evaluate complex structures, reveal homologies and developmental patterns, and even reconstruct the grundplan of the examined taxa. Results We studied the development of the caudal-fin skeleton in different atheriniform, beloniform and cyprinodontiform species using cleared and stained specimens. Subsequently we compared the development to find similarities and differences in terms of 1) which structures are formed and 2) which structures fuse during ontogeny. For many structures, i.e., the parhypural, the epural(s), the haemal and neural spines of the preural centra and the uroneural, there were either no or only minor differences visible between the three taxa. However, the development of the hypurals revealed a high variation of fusions within different taxa that partly occurred independently in atheriniforms, beloniforms and cyprinodontiforms. Moreover, comparing the development of the ural centra exposed two ways of formation of the compound centrum: 1) in atheriniforms and the beloniforms Oryzias and Hyporhamphus limbatus two ural centra develop and fuse during ontogeny while 2) in cyprinodontiforms and Exocoetidae (Beloniformes) only a single ural centrum is formed during ontogeny. Conclusions We were able to reconstruct the grundplan of the developmental pattern of the caudal-fin skeleton of the Atheriniformes, Beloniformes and Cyprinodontiformes as well as their last common ancestors. We found two developmental modes of the compound centrum within the Atherinomorpha, i.e., the fusion of two developing ural centra in atheriniforms and beloniforms and the development of only one ural centrum in cyprinodontiforms. Further differences and similarities for the examined taxa are discussed, resulting in the hypothesis that the caudal-fin development of a last common ancestor to all atherinomorphs is very much similar to that of extant atheriniforms.
Collapse
Affiliation(s)
- Philipp Thieme
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439, Stralsund, Germany. .,Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany.
| | - Peter Warth
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany
| | - Timo Moritz
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439, Stralsund, Germany.,Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| |
Collapse
|
18
|
Thieme P, Vallainc D, Moritz T. Postcranial skeletal development of Mugil cephalus (Teleostei: Mugiliformes): morphological and life-history implications for Mugiliformes. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Within the fish taxon Mugiliformes, the larval development of Mugil cephalus has been studied most intensively, because it has the widest range of distribution among all mugilids and is of interest to aquaculture all over the world. Although numerous studies have dealt with larval rearing, growth and development, the osteological development of M. cephalus and mugiliforms in general has largely been neglected. Herein, we describe the skeletal development of mullets for the first time. Cleared and double-stained specimens of aquaculture-reared M. cephalus and wild-caught mugilid larvae were examined to describe the early development of the pectoral and pelvic girdle, the vertebral column and the caudal and median fins. The description of four embryonic and six larval developmental steps within the embryonic and larval period enables us to compare larval sizes of reared and wild-caught larvae. Ontogenetic fusions of ural centra 1 and 2 into a compound centrum, in addition to the fusion of two pterygiophores in the anal fin, have implications for the perception of the adult morphology. Moreover, comparison of mugilid development with that of other ovalentarian taxa shows that recent phylogenetic hypotheses need further morphological investigation.
Collapse
Affiliation(s)
- Philipp Thieme
- Deutsches Meeresmuseum, Stralsund, Germany
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Dario Vallainc
- International Marine Centre IMC, Loc. Sa Mardini, Torregrande, (OR), Italy
| | - Timo Moritz
- Deutsches Meeresmuseum, Stralsund, Germany
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
19
|
Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. J Dev Biol 2020; 8:jdb8040022. [PMID: 33020460 PMCID: PMC7712675 DOI: 10.3390/jdb8040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.
Collapse
|
20
|
Woltering JM, Irisarri I, Ericsson R, Joss JMP, Sordino P, Meyer A. Sarcopterygian fin ontogeny elucidates the origin of hands with digits. SCIENCE ADVANCES 2020; 6:eabc3510. [PMID: 32875118 PMCID: PMC7438105 DOI: 10.1126/sciadv.abc3510] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 05/03/2023]
Abstract
How the hand and digits originated from fish fins during the Devonian fin-to-limb transition remains unsolved. Controversy in this conundrum stems from the scarcity of ontogenetic data from extant lobe-finned fishes. We report the patterning of an autopod-like domain by hoxa13 during fin development of the Australian lungfish, the most closely related extant fish relative of tetrapods. Differences from tetrapod limbs include the absence of digit-specific expansion of hoxd13 and hand2 and distal limitation of alx4 and pax9, which potentially evolved through an enhanced response to shh signaling in limbs. These developmental patterns indicate that the digit program originated in postaxial fin radials and later expanded anteriorly inside of a preexisting autopod-like domain during the evolution of limbs. Our findings provide a genetic framework for the transition of fins into limbs that supports the significance of classical models proposing a bending of the tetrapod metapterygial axis.
Collapse
Affiliation(s)
- Joost M. Woltering
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | - Iker Irisarri
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| | | | | | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, Universität Konstanz, Universitätstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
21
|
Liang Y, Meyer A, Kratochwil CF. Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Sci Rep 2020; 10:12329. [PMID: 32704058 PMCID: PMC7378239 DOI: 10.1038/s41598-020-69239-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
22
|
Enny A, Flaherty K, Mori S, Turner N, Nakamura T. Developmental constraints on fin diversity. Dev Growth Differ 2020; 62:311-325. [PMID: 32396685 PMCID: PMC7383993 DOI: 10.1111/dgd.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
The fish fin is a breathtaking repository full of evolutionary diversity, novelty, and convergence. Over 500 million years, the adaptation to novel habitats has provided landscapes of fin diversity. Although comparative anatomy of evolutionarily divergent patterns over centuries has highlighted the fundamental architectures and evolutionary trends of fins, including convergent evolution, the developmental constraints on fin evolution, which bias the evolutionary trajectories of fin morphology, largely remain elusive. Here, we review the evolutionary history, developmental mechanisms, and evolutionary underpinnings of paired fins, illuminating possible developmental constraints on fin evolution. Our compilation of anatomical and genetic knowledge of fin development sheds light on the canalized and the unpredictable aspects of fin shape in evolution. Leveraged by an arsenal of genomic and genetic tools within the working arena of spectacular fin diversity, evolutionary developmental biology embarks on the establishment of conceptual framework for developmental constraints, previously enigmatic properties of evolution.
Collapse
Affiliation(s)
- Alyssa Enny
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Kathleen Flaherty
- Rutgers Animal CareRutgers the State University of New JerseyPiscatawayNJUSA
| | - Shunsuke Mori
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Natalie Turner
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Tetsuya Nakamura
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
23
|
Liang Y, Gerwin J, Meyer A, Kratochwil CF. Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus. Front Cell Dev Biol 2020; 8:62. [PMID: 32117987 PMCID: PMC7026194 DOI: 10.3389/fcell.2020.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The East African adaptive radiations of cichlid fishes are renowned for their diversity in coloration. Yet, the developmental basis of pigment pattern formation remains largely unknown. One of the most common melanic patterns in cichlid fishes are vertical bar patterns. Here we describe the ontogeny of this conspicuous pattern in the Lake Kyoga species Haplochromis latifasciatus. Beginning with the larval stages we tracked the formation of this stereotypic color pattern and discovered that its macroscopic appearance is largely explained by an increase in melanophore density and accumulation of melanin during the first 3 weeks post-fertilization. The embryonal analysis is complemented with cytological quantifications of pigment cells in adult scales and the dermis beneath the scales. In adults, melanic bars are characterized by a two to threefold higher density of melanophores than in the intervening yellow interbars. We found no strong support for differences in other pigment cell types such as xanthophores. Quantitative PCRs for twelve known pigmentation genes showed that expression of melanin synthesis genes tyr and tyrp1a is increased five to sixfold in melanic bars, while xanthophore and iridophore marker genes are not differentially expressed. In summary, we provide novel insights on how vertical bars, one of the most widespread vertebrate color patterns, are formed through dynamic control of melanophore density, melanin synthesis and melanosome dispersal.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
24
|
Woltering JM, Holzem M, Meyer A. Lissamphibian limbs and the origins of tetrapod hox domains. Dev Biol 2019; 456:138-144. [DOI: 10.1016/j.ydbio.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
|
25
|
Hamada H, Uemoto T, Tanaka Y, Honda Y, Kitajima K, Umeda T, Kawakami A, Shinya M, Kawakami K, Tamura K, Abe G. Pattern of fin rays along the antero-posterior axis based on their connection to distal radials. ZOOLOGICAL LETTERS 2019; 5:30. [PMID: 31548912 PMCID: PMC6751676 DOI: 10.1186/s40851-019-0145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Teleost paired fins are composed of two endoskeletal domains, proximal and distal radials, and an exoskeletal domain, the fin ray. The zebrafish pectoral fin displays elaborately patterned radials along the anteroposterior (AP) axis. Radials are considered homologous to tetrapod limb skeletons, and their patterning mechanisms in embryonic development are similar to those of limb development. Nevertheless, the pattern along the AP axis in fin rays has not been well described in the zebrafish pectoral fin, although several recent reports have revealed that fin ray development shares some cellular and genetic properties with fin/limb endoskeleton development. Thus, fin ray morphogenesis may involve developmental mechanisms for AP patterning in the fin/limb endoskeleton, and may have a specific pattern along the AP axis. RESULTS We conducted detailed morphological observations on fin rays and their connection to distal radials by comparing intra- and inter-strain zebrafish specimens. Although the number of fin rays varied, pectoral fin rays could be categorized into three domains along the AP axis, according to the connection between the fin rays and distal radials; additionally, the number of fin rays varied in the posterior part of the three domains. This result was confirmed by observation of the morphogenesis process of fin rays and distal radials, which showed altered localization of distal radials in the middle domain. We also evaluated the expression pattern of lhx genes, which have AP patterning activity in limb development, in fin rays and during distal radial development and found these genes to be expressed during morphogenesis in both fin rays and distal radials. CONCLUSION The fin ray and its connection to the endoskeleton are patterned along the AP axis, and the pattern along the AP axis in the fin ray and the radial connection is constructed by the developmental mechanism related to AP patterning in the limb/fin bud. Our results indicate the possibility that the developmental mechanisms of fin rays and their connection are comparable to those of the distal element of the limb skeleton.
Collapse
Affiliation(s)
- Hiroki Hamada
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Toshiaki Uemoto
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yoshitaka Tanaka
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Yuki Honda
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Keiichi Kitajima
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Tetsuya Umeda
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Minori Shinya
- Department of Biology, Keio University, Yokohama, 223-8521 Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540 Japan
| | - Koji Tamura
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| | - Gembu Abe
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578 Japan
| |
Collapse
|
26
|
Franchini P, Xiong P, Fruciano C, Schneider RF, Woltering JM, Hulsey CD, Meyer A. MicroRNA Gene Regulation in Extremely Young and Parallel Adaptive Radiations of Crater Lake Cichlid Fish. Mol Biol Evol 2019; 36:2498-2511. [PMID: 31397871 DOI: 10.1093/molbev/msz168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
AbstractCichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France
| | - Ralf F Schneider
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Düsternbrooker Weg 20, Kiel, Germany
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Joost M Woltering
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Darrin Hulsey
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Kratochwil CF, Urban S, Meyer A. Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph. Pigment Cell Melanoma Res 2019; 32:719-723. [PMID: 31131985 DOI: 10.1111/pcmr.12799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022]
Abstract
The tropical freshwater fish family Cichlidae is famous for its record-breaking rates of speciation and diversity in colors and color patterns. Here, we sequenced the genome of the Lake Malawi cichlid Melanochromis auratus to study the genetic basis of an amelanistic morph of this species that lacks the typical melanic stripes and markings. Genome sequencing of the amelanistic and wild-type morph revealed the loss of the second exon of the known pigmentation gene oculocutaneous albinism II (oca2), also known as p(ink-eyed dilution) gene or melanocyte-specific transporter gene. Additional genotyping confirms the complete association with this recessive Mendelian phenotype. The deletion results in a shorter transcript, lacking an acidic di-leucine domain that is crucial for trafficking of the Oca2 protein to melanosomes. The fact that oca2 is involved in a wide range of amelanistic morphs across vertebrates demonstrates its highly conserved function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,Zukunftskolleg, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Sabine Urban
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Axel Meyer
- Department of Biology, Zoology and Evolutionary Biology, University of Konstanz, Konstanz, Germany.,International Max Planck Research School for Organismal Biology (IMPRS), Max Planck Institute for Ornithology, Radolfzell, Germany
| |
Collapse
|
28
|
Roux N, Salis P, Lambert A, Logeux V, Soulat O, Romans P, Frédérich B, Lecchini D, Laudet V. Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris). Dev Dyn 2019; 248:545-568. [PMID: 31070818 PMCID: PMC6771578 DOI: 10.1002/dvdy.46] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background The clownfish Amphiprion ocellaris is one of the rare coral reef fish species that can be reared in aquaria. With relatively short embryonic and larval development, it could be used as a model species to study the impact of global changes such as temperature rise or anthropogenic threats (eg, pollution) on the postembryonic development at molecular and endocrinological levels. Establishing a developmental table allows us to standardize sampling for the scientific community willing to conduct experiments on this species on different areas: ecology, evolution, and developmental biology. Results Here, we describe the postembryonic developmental stages for the clownfish A. ocellaris from hatching to juvenile stages (30 days posthatching). We quantitatively followed the postembryonic growth and described qualitative traits: head, paired and unpaired fins, notochord flexion, and pigmentation changes. The occurrence of these changes over time allowed us to define seven stages, for which we provide precise descriptions. Conclusions Our work gives an easy system to determine A. ocellaris postembryonic stages allowing, thus, to develop this species as a model species for coral reef fishes. In light of global warming, the access to the full postembryonic development stages of coral reef fish is important to determine stressors that can affect such processes. Seven developmental stages have been identified to describe the larval development of the clownfish Amphiprion ocellaris. Clownfish larvae undergo two distinct developmental growth phases that correspond to growth and metamorphosis. A dichotomous key determination has been created to assist users in identifying the various developmental stages.
Collapse
Affiliation(s)
- Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, CNRS UMR 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France.,PSL Research University, USR 3278, EPHE-CNRS-UPVD, Moorea, French Polynesia
| | - Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, CNRS UMR 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, Université Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Valentin Logeux
- Observatoire Océanologique de Banyuls-sur-Mer, CNRS UMR 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Olivier Soulat
- Aquarium de Canet-en-Roussillon, Canet-en-Roussillon, France
| | - Pascal Romans
- Observatoire Océanologique de Banyuls-sur-Mer, CNRS UMR 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, Belgium
| | - David Lecchini
- PSL Research University, USR 3278, EPHE-CNRS-UPVD, Moorea, French Polynesia.,Laboratoire d'Excellence CORAIL, Moorea, French Polynesia
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, CNRS UMR 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
29
|
El Taher A, Lichilín N, Salzburger W, Böhne A. Time matters! Developmental shift in gene expression between the head and the trunk region of the cichlid fish Astatotilapia burtoni. BMC Genomics 2019; 20:39. [PMID: 30642242 PMCID: PMC6332847 DOI: 10.1186/s12864-018-5321-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differential gene expression can be translated into differing phenotypic traits. Especially during embryogenesis, specific gene expression networks regulate the development of different body structures. Cichlid fishes, with their impressive phenotypic diversity and propensity to radiate, are an emerging model system in the genomics era. Here we set out to investigate gene expression throughout development in the well-studied cichlid fish Astatotilapia burtoni, native to Lake Tanganyika and its affluent rivers. RESULTS Combining RNA-sequencing from different developmental time points as well as integrating adult gene expression data, we constructed a new genome annotation for A. burtoni comprising 103,253 transcripts (stemming from 52,584 genomic loci) as well as a new reference transcriptome set. We compared our transcriptome to the available reference genome, redefining transcripts and adding new annotations. We show that about half of these transcripts have coding potential. We also characterize transcripts that are not present in the genome assembly. Next, using our newly constructed comprehensive reference transcriptome, we characterized differential gene expression through time and showed that gene expression is shifted between different body parts. We constructed a gene expression network that identified connected genes responsible for particular phenotypes and made use of it to focus on genes under potential positive selection in A. burtoni, which were implicated in fin development and vision. CONCLUSIONS We provide new genomic resources for the cichlid fish Astatotilapia burtoni, which will contribute to its further establishment as a model system. Tracing gene expression through time, we identified gene networks underlying particular functions, which will help to understand the genetic basis of phenotypic diversity in cichlids.
Collapse
Affiliation(s)
- Athimed El Taher
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Nicolás Lichilín
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
30
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
31
|
Abstract
The patterning of the spine of a zebrafish is controlled by the notochord, a rod-like structure that supports and instructs the developing embryo.
Collapse
Affiliation(s)
- Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, United States.,Department of Orthopedics, Boston Children's Hospital, Boston, United States
| | - Gloria Arratia
- Department of Systematics and Evolutionary Biology, University of Kansas, Lawrence, United States
| |
Collapse
|