1
|
Zhou W, Yang G, Pan D, Wang X, Han Q, Qin Y, Li K, Huang G. Analysis of the plant hormone expression profile during somatic embryogenesis induction in teak ( Tectona grandis). FRONTIERS IN PLANT SCIENCE 2024; 15:1429575. [PMID: 39439509 PMCID: PMC11494608 DOI: 10.3389/fpls.2024.1429575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Plant somatic embryogenesis (SE) is an efficient regeneration system for propagation. It involves the regulation of a complex molecular regulatory network encompassing endogenous hormone synthesis, metabolism, and signal transduction processes, induced through exogenous plant growth regulators. Previous studies have focused primarily on traditional propagation methods for Tectona grandis, but there is limited knowledge on SE and its hormonal regulatory mechanisms. In our study, different SE stages, including the nonembryogenic callus (NEC), embryogenic callus (EC), and globular and heart-shaped embryo (E-SEs) stages, were induced in teak cotyledons incubated on MS medium supplemented with 0.1 mg/L thidiazuron (TDZ). Morphological and histological observations indicated that EC primarily originates from the development of embryogenic cell clusters. During SE induction, the levels of six classes of endogenous hormones, IAA, CTK, ETH, ABA, SA, and JA, changed significantly. Transcriptome analysis revealed that endogenous hormones participate in SE induction in teak through various biological processes, such as biosynthesis, metabolism, and signal transduction pathways. We found that IAA biosynthesis primarily occurs through the IAM pathway during these three stages. The ETH receptor kinase gene SERF1 exhibited the highest expression levels in E-SEs. The ABA-, SA-, and JA-related signal transduction genes ABI3, NPR1, and JAZ exhibited no differential expression during different stages. Moreover, key encoding genes of SE regulators, including WUS, WOX and SERK, were differentially expressed during SE. In conclusion, this study offers insights into the roles of endogenous hormones and their interactions during SE induction.
Collapse
Affiliation(s)
- Wenlong Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- Nanjing Forestry University, Nanjing, China
| | - Guang Yang
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Dongkang Pan
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xianbang Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qiang Han
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Yaqi Qin
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Kunliang Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guihua Huang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
2
|
Guo H, Zhang L, Guo H, Cui X, Fan Y, Li T, Qi X, Yan T, Chen A, Shi F, Zeng F. Single-cell transcriptome atlas reveals somatic cell embryogenic differentiation features during regeneration. PLANT PHYSIOLOGY 2024; 195:1414-1431. [PMID: 38401160 DOI: 10.1093/plphys/kiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
Understanding somatic cell totipotency remains a challenge facing scientific inquiry today. Plants display remarkable cell totipotency expression, illustrated by single-cell differentiation during somatic embryogenesis (SE) for plant regeneration. Determining cell identity and exploring gene regulation in such complex heterogeneous somatic cell differentiation have been major challenges. Here, we performed high-throughput single-cell sequencing assays to define the precise cellular landscape and revealed the modulation mode of marker genes during embryogenic differentiation in cotton (Gossypium hirsutum L.) as the crop for biotechnology application. We demonstrated that nonembryogenic calli (NEC) and primary embryogenic calli (PEC) tissues were composed of heterogeneous cells that could be partitioned into four broad populations with six distinct cell clusters. Enriched cell clusters and cell states were identified in NEC and PEC samples, respectively. Moreover, a broad repertoire of new cluster-specific genes and associated expression modules were identified. The energy metabolism, signal transduction, environmental adaptation, membrane transport pathways, and a series of transcription factors were preferentially enriched in cell embryogenic totipotency expression. Notably, the SE-ASSOCIATED LIPID TRANSFER PROTEIN (SELTP) gene dose-dependently marked cell types with distinct embryogenic states and exhibited a parabolic curve pattern along the somatic cell embryogenic differentiation trajectory, suggesting that SELTP could serve as a favorable quantitative cellular marker for detecting embryogenic expression at the single-cell level. In addition, RNA velocity and Scissor analysis confirmed the pseudo-temporal model and validated the accuracy of the scRNA-seq data, respectively. This work provides valuable marker-genes resources and defines precise cellular taxonomy and trajectory atlases for somatic cell embryogenic differentiation in plant regeneration.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiwang Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiushan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Tongdi Yan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Aiyun Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Fengjuan Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Nowak K, Wójcikowska B, Gajecka M, Elżbieciak A, Morończyk J, Wójcik AM, Żemła P, Citerne S, Kiwior-Wesołowska A, Zbieszczyk J, Gaj MD. The improvement of the in vitro plant regeneration in barley with the epigenetic modifier of histone acetylation, trichostatin A. J Appl Genet 2024; 65:13-30. [PMID: 37962803 PMCID: PMC10789698 DOI: 10.1007/s13353-023-00800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Genotype-limited plant regeneration is one of the main obstacles to the broader use of genetic transformation in barley breeding. Thus, developing new approaches that might improve responses of in vitro recalcitrant genotypes remains at the center of barley biotechnology. Here, we analyzed different barley genotypes, including "Golden Promise," a genotype commonly used in the genetic transformation, and four malting barley cultivars of poor regenerative potential. The expression of hormone-related transcription factor (TF) genes with documented roles in plant regeneration was analyzed in genotypes with various plant-regenerating capacities. The results indicated differential expression of auxin-related TF genes between the barley genotypes in both the explants and the derived cultures. In support of the role of auxin in barley regeneration, distinct differences in the accumulation of free and oxidized auxin were observed in explants and explant-derived callus cultures of barley genotypes. Following the assumption that modifying gene expression might improve plant regeneration in barley, we treated the barley explants with trichostatin A (TSA), which affects histone acetylation. The effects of TSA were genotype-dependent as TSA treatment improved plant regeneration in two barley cultivars. TSA-induced changes in plant regeneration were associated with the increased expression of auxin biosynthesis-involved TFs. The study demonstrated that explant treatment with chromatin modifiers such as TSA might provide a new and effective epigenetic approach to improving plant regeneration in recalcitrant barley genotypes.
Collapse
Affiliation(s)
- Katarzyna Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland.
| | - Barbara Wójcikowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna Elżbieciak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Joanna Morończyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Anna M Wójcik
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Przemysław Żemła
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
- Toxicology Research Group, Łukasiewicz Research Network, Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Agnieszka Kiwior-Wesołowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| | - Małgorzata D Gaj
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Lai RL, Xu XP, Qi F, Zhang CY, Guan QX, Cui J, XuHan X, Lin YL, Lai ZX. Integrated Metabolomic and Transcriptomic Analyses Reveal the Potential Regulation of Flavonoids in the Production of Embryogenic Cultures during Early Somatic Embryogenesis of Longan ( Dimocarpus longan Lour.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18622-18635. [PMID: 37976371 DOI: 10.1021/acs.jafc.3c06399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Embryogenic cultures of longan (Dimocarpus longan Lour.) contain various metabolites with pharmacological properties that may function in the regulation of somatic embryogenesis (SE). In this study, based on widely targeted metabolomics, 501 metabolites were obtained from the embryogenic calli, incomplete compact proembryogenic cultures, and globular embryos during early SE of longan, among which 41 flavonoids were differentially accumulated during the SE. Using RNA sequencing, 36 flavonoid-biosynthesis-related genes and 43 MYB and 52 bHLH transcription factors were identified as differentially expressed genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the flavonoid metabolism-related pathways were significantly enriched during the early SE. These results suggested that the changes in flavonoid levels in the embryogenic cultures of longan were mediated by MYBs and bHLHs via regulating flavonoid-biosynthesis-related genes, thus potentially regulating early SE. The identified metabolites in the embryogenic cultures of longan can be used to develop pharmaceutical ingredients.
Collapse
Affiliation(s)
- Rui-Lian Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiao-Ping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Feng Qi
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chun-Yu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing-Xu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Cui
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Ling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Li L, Sun X, Yu W, Gui M, Qiu Y, Tang M, Tian H, Liang G. Comparative transcriptome analysis of high- and low-embryogenic Hevea brasiliensis genotypes reveals involvement of phytohormones in somatic embryogenesis. BMC PLANT BIOLOGY 2023; 23:489. [PMID: 37828441 PMCID: PMC10571474 DOI: 10.1186/s12870-023-04432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION These results suggest potential roles of phytohormones in SE in Hevea.
Collapse
Affiliation(s)
- Ling Li
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Xiaolong Sun
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Wencai Yu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Mingchun Gui
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Yanfen Qiu
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Min Tang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Hai Tian
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Guoping Liang
- The Center of Rubber Research, Yunnan Institute of Tropical Crops, Xishuangbanna, China.
| |
Collapse
|
6
|
Hesami M, Pepe M, de Ronne M, Yoosefzadeh-Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Transcriptomic Profiling of Embryogenic and Non-Embryogenic Callus Provides New Insight into the Nature of Recalcitrance in Cannabis. Int J Mol Sci 2023; 24:14625. [PMID: 37834075 PMCID: PMC10572465 DOI: 10.3390/ijms241914625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
| | | | - Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec, QC G1V 0A6, Canada
- Centre de Recherche et d’innovation sur les Végétaux (CRIV), Université Laval, Quebec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Quebec, QC G1V 0A6, Canada
| | | |
Collapse
|
7
|
Caeiro A, Jarak I, Correia S, Canhoto J, Carvalho R. Primary Metabolite Screening Shows Significant Differences between Embryogenic and Non-Embryogenic Callus of Tamarillo ( Solanum betaceum Cav.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2869. [PMID: 37571022 PMCID: PMC10420837 DOI: 10.3390/plants12152869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Tamarillo is a solanaceous tree that has been extensively studied in terms of in vitro clonal propagation, namely somatic embryogenesis. In this work, a protocol of indirect somatic embryogenesis was applied to obtain embryogenic and non-embryogenic callus from leaf segments. Nuclear magnetic resonance spectroscopy was used to analyze the primary metabolome of these distinct calli to elucidate possible differentiation mechanisms from the common genetic background callus. Standard multivariate analysis methods were then applied, and were complemented by univariate statistical methods to identify differentially expressed primary metabolites and related metabolic pathways. The results showed carbohydrate and lipid metabolism to be the most relevant in all the calli assayed, with most discriminant metabolites being fructose, glucose and to a lesser extent choline. The glycolytic rate was higher in embryogenic calli, which shows, overall, a higher rate of sugar catabolism and a different profile of phospholipids with a choline/ethanolamine analysis. In general, our results show that a distinct primary metabolome between embryogenic and non-embryogenic calli occurs and that intracellular levels of fructose and sucrose and the glucose to sucrose ratio seem to be good candidates as biochemical biomarkers of embryogenic competence.
Collapse
Affiliation(s)
- André Caeiro
- Centre for Functional Ecology, Laboratory Associate TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (S.C.)
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo, Allen 208, 4200-393 Porto, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, Laboratory Associate TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (S.C.)
- InnovPlanProtect CoLab, 7350-478 Elvas, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, Laboratory Associate TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (S.C.)
| | - Rui Carvalho
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
8
|
Qu T, He S, Wu Y, Wang Y, Ni C, Wen S, Cui B, Cheng Y, Wen L. Transcriptome Analysis Reveals the Immunoregulatory Activity of Rice Seed-Derived Peptide PEP1 on Dendritic Cells. Molecules 2023; 28:5224. [PMID: 37446885 DOI: 10.3390/molecules28135224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-β pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.
Collapse
Affiliation(s)
- Tingmin Qu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shuwen He
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingying Wang
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shiyu Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Li Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
9
|
Wang Y, Wang H, Bao W, Sui M, Bai YE. Transcriptome Analysis of Embryogenic and Non-Embryogenic Callus of Picea Mongolica. Curr Issues Mol Biol 2023; 45:5232-5247. [PMID: 37504248 PMCID: PMC10378709 DOI: 10.3390/cimb45070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
Picea mongolica is a rare tree species in China, which is of great significance in combating desertification and improving the harsh ecological environment. Due to the low rate of natural regeneration, high mortality, and susceptibility to pests and cold springs, Picea mongolica has gradually become extinct. At present, somatic embryogenesis (SE) is the most effective method of micro-proliferation in conifers, but the induction rate of embryogenic callus (EC) is low, and EC is difficult to differentiate from non-embryonic callus (NEC). Therefore, the EC and NEC of Picea mongolica were compared from the morphology, histological, physiological, and transcriptional levels, respectively. Morphological observation showed that the EC was white and transparent filamentous, while the NEC was compact and brownish-brown lumpy. Histological analyses showed that the NEC cells were large and loosely arranged; the nuclei attached to the edge of the cells were small; the cytoplasm was low; and the cell gap was large and irregular. In the EC, small cells, closely arranged cells, and a large nucleus and nucleolus were observed. Physiological studies showed significant differences in ROS-scavenging enzymes between the EC and NEC. Transcriptome profiling revealed that 13,267 differentially expressed genes (DEGs) were identified, 3682 were up-regulated, and 9585 were down-regulated. In total, 63 GO terms had significant enrichment, 32 DEGs in plant hormone signal transduction pathway were identified, and 502 different transcription factors (TFs) were characterized into 38 TF families. Meanwhile, we identified significant gene expression trends associated with somatic embryo development in plant hormones (AUX/IAA, YUCCA, LEA, etc.), stress (GST, HSP, GLP, etc.), phenylpropanoid metabolism (4CL, HCT, PAL, etc.), and transcription factors (AP2/ERF, MYB, WOX, etc.). In addition, nine genes were chosen for RT-qPCR, and the results were consistent with RNA-Seq data. This study revealed the changes in morphology, histology, physiology, and gene expression in the differentiation of NEC into EC and laid the foundation for finding the key genes to promote EC formation.
Collapse
Affiliation(s)
- Yaping Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Hao Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Wenquan Bao
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Mingming Sui
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| | - Yu E Bai
- College of Forestry, Inner Mongolia Agricultural University, Huhhot 010019, China
| |
Collapse
|
10
|
Embryogenic Stem Cell Identity after Protoplast Isolation from Daucus carota and Recovery of Regeneration Ability through Protoplast Culture. Int J Mol Sci 2022; 23:ijms231911556. [PMID: 36232857 PMCID: PMC9570137 DOI: 10.3390/ijms231911556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Protoplasts are single cells isolated from tissues or organs and are considered a suitable system for cell studies in plants. Embryogenic cells are totipotent stem cells, but their regeneration ability decreases or becomes lost altogether with extension of the culture period. In this study, we isolated and cultured EC-derived protoplasts (EC-pts) from carrots and compared them with non-EC-derived protoplasts (NEC-pts) with respect to their totipotency. The protoplast isolation conditions were optimized, and the EC-pts and NEC-pts were characterized by their cell size and types. Both types of protoplasts were then embedded using the alginate layer (TAL) method, and the resulting EC-pt-TALs and NEC-pt-TALs were cultured for further regeneration. The expression of the EC-specific genes SERK1, WUS, BBM, LEC1, and DRN was analyzed to confirm whether EC identity was maintained after protoplast isolation. The protoplast isolation efficiency for EC-pts was 2.4-fold higher than for NEC-pts (3.5 × 106 protoplasts·g−1 FW). In the EC-pt group, protoplasts < 20 µm accounted for 58% of the total protoplasts, whereas in the NEC-pt group, small protoplasts accounted for only 26%. In protoplast culture, the number of protoplasts that divided was 2.6-fold higher for EC-pts than for NEC-pts (7.7 × 104 protoplasts·g−1 FW), with a high number of plants regenerated for EC-pt-TALs, whereas no plants were induced by NEC-pt-TAL. Five times more plants were regenerated from EC-pts than from ECs. Regarding the expression of EC-specific genes, WUS and SERK1 expression increased 12-fold, and LEC1 and BBM expression increased 3.6−6.4-fold in isolated protoplasts compared with ECs prior to protoplast isolation (control). These results reveal that the protoplast isolation process did not affect the embryogenic cell identity; rather, it increased the plant regeneration rate, confirming that EC-derived protoplast culture may be an efficient system for increasing the regeneration ability of old EC cultures through the elimination of old and inactivate cells. EC-derived protoplasts may also represent an efficient single-cell system for application in new breeding technologies such as genome editing.
Collapse
|
11
|
Qu T, He S, Ni C, Wu Y, Xu Z, Chen ML, Li H, Cheng Y, Wen L. In Vitro Anti-Inflammatory Activity of Three Peptides Derived from the Byproduct of Rice Processing. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:172-180. [PMID: 35449430 DOI: 10.1007/s11130-022-00963-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Inflammation is a contributing factor to the initiation and progression of many diseases, and some food-derived biofunctional peptides show high anti-inflammatory activity. In our previous study, we demonstrated that peptides derived from trypsin hydrolysis of rice protein show good immunological activity. In the present study, proteins of broken rice were extracted and identified by macroporous resin fractionation and liquid chromatography/tandem mass spectrometry (LC-MS/MS). Subsequently, a bioinformatics prediction and in silico simulation approach was used to screen for peptides showing anti-inflammatory activity, including inhibition of the production of nitric oxide and proinflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) by lipopolysaccharide-stimulated RAW264.7 mice macrophages. Three peptides (DNIQGITKPAIR, IAFKTNPNSMVSHIAGK, and IGVAMDYSASSKR) that demonstrated the highest binding affinity were synthesized, and their in vitro anti-inflammatory activity was investigated. This is the first study that integrates LC-MS/MS identification and bioinformatics prediction for reporting the anti-inflammatory activity of anti-inflammatory peptides derived from broken rice protein. The study findings revealed that the peptides derived from the byproduct of rice milling could be potentially used as natural anti-inflammatory alternativities.
Collapse
Affiliation(s)
- Tingmin Qu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shuwen He
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ce Ni
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Ying Wu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Mao-Long Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Honghui Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Li Wen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, China.
| |
Collapse
|
12
|
Li Y, Zhu S, Yao J, Fang S, Li T, Li B, Wang X, Wang M, Wu L, Pan J, Feng X, Chen W, Zhang Y. Genome-wide Characterization of the JmjC Domain-Containing Histone Demethylase Gene Family Reveals GhJMJ24 and GhJMJ49 Involving in Somatic Embryogenesis Process in Cotton. Front Mol Biosci 2022; 9:888983. [PMID: 35573733 PMCID: PMC9091307 DOI: 10.3389/fmolb.2022.888983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Jumonji C (JmjC) domain-containing protein family, an important family of histone demethylase in plants, can directly reverse histone methylation and play important roles in various growth and development processes. In the present study, 51 JmjC genes (GhJMJs) were identified by genome-wide analysis in upland cotton (Gossypium hirsutum), which can be categorized into six distinct groups by phylogenetic analysis. Extensive syntenic relationship events were found between G. hirsutum and Theobroma cacao. We have further explored the putative molecular regulatory mechanisms of the JmjC gene family in cotton. GhJMJ24 and GhJMJ49 were both preferentially expressed in embryogenic callus compared to nonembryogenic callus in cotton tissue culture, which might be regulated by transcription factors and microRNAs to some extent. Further experiments indicated that GhJMJ24 and GhJMJ49 might interact with SUVH4, SUVH6, DDM1, CMT3, and CMT1 in the nucleus, potentially in association with demethylation of H3K9me2. Taken together, our results provide a foundation for future research on the biological functions of GhJMJ genes in cotton, especially in somatic embryogenesis in cotton tissue culture, which is crucial for the regeneration of transgenic plants.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xinyu Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingyang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuemei Feng
- Shandong Denghai Shengfeng Seed Industry Co., Ltd., Jining, china
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Parris SM, Jeffers SN, Olvey JM, Olvey JM, Adelberg JW, Wen L, Udall JA, Coleman JJ, Jones DC, Saski CA. An In Vitro Co-Culture System for Rapid Differential Response to Fusarium oxysporum f. sp. vasinfectum Race 4 in Three Cotton Cultivars. PLANT DISEASE 2022; 106:990-995. [PMID: 34705484 DOI: 10.1094/pdis-08-21-1743-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a devastating fungus pathogen that causes Fusarium wilt in both domesticated cotton species, Gossypium hirsutum (Upland) and G. barbadense (Pima). Greenhouse and field-based pathogenicity assays can be a challenge because of nonuniform inoculum levels, the presence of endophytes, and varying environmental factors. Therefore, an in vitro coculture system was designed to support the growth of both domesticated cotton species and FOV4 via an inert polyphenolic foam substrate with a liquid medium. A Fusarium wilt-susceptible Pima cotton cultivar, G. barbadense 'GB1031'; a highly resistant Pima cotton cultivar, G. barbadense 'DP348RF'; and a susceptible Upland cotton cultivar, G. hirsutum 'TM-1', were evaluated for 30 days during coculture with FOV4 in this foam-based system. Thirty days after inoculation, disease symptoms were more severe in both susceptible cultivars, which displayed higher percentages of foliar damage, and greater plant mortality than observed in 'DP348RF', the resistant Pima cotton cultivar. This foam-based in vitro system may be useful for screening cotton germplasm for resistance to a variety of fungus pathogens and may facilitate the study of biotic interactions in domesticated cotton species under controlled environmental conditions.
Collapse
Affiliation(s)
- Stephen M Parris
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631
| | - Steven N Jeffers
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631
| | | | | | - Jeffrey W Adelberg
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631
| | - Li Wen
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631
| | - Joshua A Udall
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631
| |
Collapse
|
14
|
Gao Y, Cui Y, Zhao R, Chen X, Zhang J, Zhao J, Kong L. Cryo-Treatment Enhances the Embryogenicity of Mature Somatic Embryos via the lncRNA-miRNA-mRNA Network in White Spruce. Int J Mol Sci 2022; 23:ijms23031111. [PMID: 35163033 PMCID: PMC8834816 DOI: 10.3390/ijms23031111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
In conifers, somatic embryogenesis is uniquely initiated from immature embryos in a narrow time window, which is considerably hindered by the difficulty to induce embryogenic tissue (ET) from other tissues, including mature somatic embryos. In this study, the embryogenic ability of newly induced ET and DNA methylation levels was detected, and whole-transcriptome sequencing analyses were carried out. The results showed that ultra-low temperature treatment significantly enhanced ET induction from mature somatic embryos, with the induction rate from 0.4% to 15.5%, but the underlying mechanisms remain unclear. The newly induced ET showed higher capability in generating mature embryos than the original ET. DNA methylation levels fluctuated during the ET induction process. Here, WGCNA analysis revealed that OPT4, TIP1-1, Chi I, GASA5, GST, LAX3, WRKY7, MYBS3, LRR-RLK, PBL7, and WIN1 genes are involved in stress response and auxin signal transduction. Through co-expression analysis, lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might bind to pre-novel_miR_339 to promote the expression of WRKY7 genes for stress response; LAX3 could be protected by lncRNAs MSTRG.1070680.1 and MSTRG.33602.1 via serving as sponges for novel_miR_495 to initiate auxin signal transduction; lncRNAs MSTRG.505746.1, MSTRG.1070680.1, and MSTRG.33602.1 might serve as sponges for novel_miR_527 to enhance the expression of Chi I for early somatic embryo development. This study provides new insight into the area of stress-enhanced early somatic embryogenesis in conifers, which is also attributable to practical applications.
Collapse
Affiliation(s)
- Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Xiaoyi Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Correspondence: (J.Z.); (L.K.)
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.G.); (Y.C.); (R.Z.); (X.C.); (J.Z.)
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
- Correspondence: (J.Z.); (L.K.)
| |
Collapse
|
15
|
Qi S, Zhao R, Yan J, Fan Y, Huang C, Li H, Chen S, Zhang T, Kong L, Zhao J, Zhang J. Global Transcriptome and Coexpression Network Analyses Reveal New Insights Into Somatic Embryogenesis in Hybrid Sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FRONTIERS IN PLANT SCIENCE 2021; 12:751866. [PMID: 34880884 PMCID: PMC8645980 DOI: 10.3389/fpls.2021.751866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Somatic embryogenesis (SE) is a process of somatic cells that dedifferentiate to totipotent embryonic stem cells and generate embryos in vitro. Despite recent scientific headway in deciphering the difficulties of somatic embryogenesis, the overall picture of key genes, pathways, and co-expression networks regulating SE is still fragmented. Therefore, deciphering the molecular basis of somatic embryogenesis of hybrid sweetgum remains pertinent. In the present study, we analyzed the transcriptome profiles and gene expression regulation changes via RNA sequencing from three distinct developmental stages of hybrid sweetgum: non-embryogenic callus (NEC), embryogenic callus (EC), and redifferentiation. Comparative transcriptome analysis showed that 19,957 genes were differentially expressed in ten pairwise comparisons of SE. Among these, plant hormone signaling-related genes, especially the auxin and cytokinin signaling components, were significantly enriched in NEC and EC early. The K-means method was used to identify multiple transcription factors, including HB-WOX, B3-ARF, AP2/ERF, and GRFs (growth regulating factors). These transcription factors showed distinct stage- or tissue-specific expression patterns mirroring each of the 12 superclusters to which they belonged. For example, the WOX transcription factor family was expressed only at NEC and EC stages, ARF transcription factor was expressed in EC early, and GRFs was expressed in late SE. It was noteworthy that the AP2/ERF transcription factor family was expressed during the whole SE process, but almost not in roots, stems and leaves. A weighted gene co-expression network analysis (WGCNA) was used in conjunction with the gene expression profiles to recognize the genes and modules that may associate with specific tissues and stages. We constructed co-expression networks and revealed 22 gene modules. Four of these modules with properties relating to embryonic potential, early somatic embryogenesis, and somatic embryo development, as well as some hub genes, were identified for further functional studied. Through a combination analysis of WGCNA and K-means, SE-related genes including AUX22, ABI3, ARF3, ARF5, AIL1, AIL5, AGL15, WOX11, WOX9, IAA29, BBM1, MYB36, LEA6, SMR4 and others were obtained, indicating that these genes play an important role in the processes underlying the progression from EC to somatic embryos (SEs) morphogenesis. The transcriptome information provided here will form the foundation for future research on genetic transformation and epigenetic control of plant embryogenesis at a molecular level. In follow-up studies, these data could be used to construct a regulatory network for SE; Key genes obtained from coexpression network analysis at each critical stage of somatic embryo can be considered as potential candidate genes to verify these networks.
Collapse
Affiliation(s)
- Shuaizheng Qi
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruirui Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jichen Yan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yingming Fan
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chao Huang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hongxuan Li
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Siyuan Chen
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ting Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lisheng Kong
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, Canada
| | - Jian Zhao
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jinfeng Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Kumar S, Ruggles A, Logan S, Mazarakis A, Tyson T, Bates M, Grosse C, Reed D, Li Z, Grimwood J, Schmutz J, Saski C. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. PLANTS 2021; 10:plants10091775. [PMID: 34579308 PMCID: PMC8472754 DOI: 10.3390/plants10091775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype ‘Coker312’ were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype ‘Jin668’. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.
Collapse
Affiliation(s)
- Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Ashleigh Ruggles
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Sam Logan
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Alora Mazarakis
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Thomas Tyson
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Matthew Bates
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Clayton Grosse
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - David Reed
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
- Correspondence: ; Tel.: +1-864-656-6929
| |
Collapse
|
17
|
Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm. Appl Microbiol Biotechnol 2021; 105:5201-5212. [PMID: 34086118 DOI: 10.1007/s00253-021-11375-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 01/24/2023]
Abstract
Plant callus is generally considered to be a mass of undifferentiated cells and can be used for secondary metabolite production, physiological studies, and plant transformation/regeneration. However, there are several types of callus with different morphological and developmental characteristics and not all are suitable for all applications. Callogenesis is a multivariable developmental process affected by several intrinsic and extrinsic factors, but the most important driver is plant growth regulator (PGRs) levels and type. Since callogenesis is a non-linear process influenced by many different factors, robust computational methods such as machine learning algorithms have great potential to model, predict, and optimize callus growth and development. The current study was conducted to evaluate the effect of PGRs on callus morphology in drug-type Cannabis sativa to maximize callus growth and promote embryogenic callus production. For this aim, random forest (RF) and support vector machine (SVM) were applied in conjunction with image processing to model and predict callus morphological and physical traits. The results showed that SVM was more accurate than RF. In order to find the optimal level of PGRs for optimizing callus growth and development, the SVM was linked to a genetic algorithm (GA). To confirm the reliability of SVM-GA, the optimized-predicted outcomes were tested in a validation experiment that revealed SVM-GA was able to accurately model and optimize the system. Moreover, our results showed that there is a significant correlation between embryogenic callus production and the true density of callus. KEY POINTS: • The effect of PGRs on callus growth and development of cannabis was studied. • The predictive accuracy of SVM and RF was evaluated and compared. • GA was linked to the SVM for optimizing the callus growth and development.
Collapse
|