1
|
Talenti A, Wilkinson T, Cook EA, Hemmink JD, Paxton E, Mutinda M, Ngulu SD, Jayaraman S, Bishop RP, Obara I, Hourlier T, Garcia Giron C, Martin FJ, Labuschagne M, Atimnedi P, Nanteza A, Keyyu JD, Mramba F, Caron A, Cornelis D, Chardonnet P, Fyumagwa R, Lembo T, Auty HK, Michaux J, Smitz N, Toye P, Robert C, Prendergast JGD, Morrison LJ. Continent-wide genomic analysis of the African buffalo (Syncerus caffer). Commun Biol 2024; 7:792. [PMID: 38951693 PMCID: PMC11217449 DOI: 10.1038/s42003-024-06481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.
Collapse
Affiliation(s)
- Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Toby Wilkinson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Elizabeth A Cook
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Matthew Mutinda
- Kenya Wildlife Service, P.O. Box 40241, Nairobi, 00100, Kenya
| | | | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | - Richard P Bishop
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Isaiah Obara
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Carlos Garcia Giron
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | | | | | - Anne Nanteza
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Furaha Mramba
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | - Alexandre Caron
- ASTRE, University of Montpellier (UMR), CIRAD, 34090, Montpellier, France
- CIRAD, UMR ASTRE, RP-PCP, Maputo, 01009, Mozambique
- Faculdade Veterinaria, Universidade Eduardo Mondlan, Maputo, Mozambique
| | - Daniel Cornelis
- CIRAD, Forêts et Sociétés, 34398, Montpellier, France
- Forêts et Sociétés, University of Montpellier, CIRAD, 34090, Montpellier, France
| | | | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, Box 661, Arusha, Tanzania
| | - Tiziana Lembo
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Johan Michaux
- Laboratoire de Génétique de la Conservation, Institut de Botanique (Bat. 22), Université de Liège (Sart Tilman), Chemin de la Vallée 4, B4000, Liège, Belgium
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Philip Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Christelle Robert
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United Kingdom
| | - James G D Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom.
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, EH25 9RG, United Kingdom.
| |
Collapse
|
2
|
Colangelo P, Di Civita M, Bento CM, Franchini P, Meyer A, Orel N, das Neves LCBG, Mulandane FC, Almeida JS, Senczuk G, Pilla F, Sabatelli S. Genome-wide diversity, population structure and signatures of inbreeding in the African buffalo in Mozambique. BMC Ecol Evol 2024; 24:29. [PMID: 38433185 PMCID: PMC10910738 DOI: 10.1186/s12862-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
The African buffalo, Syncerus caffer, is a key species in African ecosystems. Like other large herbivores, it plays a fundamental role in its habitat acting as an ecosystem engineer. Over the last few centuries, African buffalo populations have declined because of range contraction and demographic decline caused by direct or indirect human activities. In Mozambique, historically home to large buffalo herds, the combined effect of colonialism and subsequent civil wars has created a critical situation that urgently needs to be addressed. In this study, we focused on the analysis of genetic diversity of Syncerus caffer caffer populations from six areas of Mozambique. Using genome-wide SNPs obtained from ddRAD sequencing, we examined the population structure across the country, estimated gene flow between areas under conservation management, including national reserves, and assessed the inbreeding coefficients. Our results indicate that all studied populations of Syncerus caffer caffer are genetically depauperate, with a high level of inbreeding. Moreover, buffaloes in Mozambique present a significant population differentiation between southern and central areas. We found an unexpected genotype in the Gorongosa National Park, where buffaloes experienced a dramatic population size reduction, that shares a common ancestry with southern populations of Catuane and Namaacha. This could suggest the past occurrence of a connection between southern and central Mozambique and that the observed population structuring could reflect recent events of anthropogenic origin. All the populations analysed showed high levels of homozygosity, likely due to extensive inbreeding over the last few decades, which could have increased the frequency of recessive deleterious alleles. Improving the resilience of Syncerus caffer caffer in Mozambique is essential for preserving the ecosystem integrity. The most viable approach appears to be facilitating translocations and re-establishing connectivity between isolated herds. However, our results also highlight the importance of assessing intraspecific genetic diversity when considering interventions aimed at enhancing population viability such as selecting suitable source populations.
Collapse
Affiliation(s)
- Paolo Colangelo
- National Research Council, Research Institute on Terrestrial Ecosystems, Via Salaria km 29.300, 00015, Montelibretti (Roma), Italy
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Viale dell'Università 32, 00185, Roma, Italy
| | - Carlos M Bento
- Natural History Museum, Eduardo Mondlane University, Travessia do Zambeze 104, 1100, Maputo, Mozambique
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c, 01100, Viterbo, Italy.
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nadiya Orel
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Luis C B G das Neves
- Biotechnology Centre of Eduardo Mondlane University, Maputo, Mozambique
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Simone Sabatelli
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Viale dell'Università 32, 00185, Roma, Italy
| |
Collapse
|
3
|
A continent-wide high genetic load in African buffalo revealed by clines in the frequency of deleterious alleles, genetic hitchhiking and linkage disequilibrium. PLoS One 2021; 16:e0259685. [PMID: 34882683 PMCID: PMC8659316 DOI: 10.1371/journal.pone.0259685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022] Open
Abstract
A high genetic load can negatively affect population viability and increase susceptibility to diseases and other environmental stressors. Prior microsatellite studies of two African buffalo (Syncerus caffer) populations in South Africa indicated substantial genome-wide genetic load due to high-frequency occurrence of deleterious alleles. The occurrence of these alleles, which negatively affect male body condition and bovine tuberculosis resistance, throughout most of the buffalo's range were evaluated in this study. Using available microsatellite data (2-17 microsatellite loci) for 1676 animals from 34 localities (from 25°S to 5°N), we uncovered continent-wide frequency clines of microsatellite alleles associated with the aforementioned male traits. Frequencies decreased over a south-to-north latitude range (average per-locus Pearson r = -0.22). The frequency clines coincided with a multilocus-heterozygosity cline (adjusted R2 = 0.84), showing up to a 16% decrease in southern Africa compared to East Africa. Furthermore, continent-wide linkage disequilibrium (LD) at five linked locus pairs was detected, characterized by a high fraction of positive interlocus associations (0.66, 95% CI: 0.53, 0.77) between male-deleterious-trait-associated alleles. Our findings suggest continent-wide and genome-wide selection of male-deleterious alleles driven by an earlier observed sex-chromosomal meiotic drive system, resulting in frequency clines, reduced heterozygosity due to hitchhiking effects and extensive LD due to male-deleterious alleles co-occurring in haplotypes. The selection pressures involved must be high to prevent destruction of allele-frequency clines and haplotypes by LD decay. Since most buffalo populations are stable, these results indicate that natural mammal populations, depending on their genetic background, can withstand a high genetic load.
Collapse
|
4
|
Zepeda-Batista JL, Núñez-Domínguez R, Ramírez-Valverde R, Jahuey-Martínez FJ, Herrera-Ojeda JB, Parra-Bracamonte GM. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes (Basel) 2021; 12:genes12111666. [PMID: 34828272 PMCID: PMC8618990 DOI: 10.3390/genes12111666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
A genome-wide association study (GWAS) was performed to elucidate genetic architecture of growth traits in Braunvieh cattle. Methods: The study included 300 genotyped animals by the GeneSeek® Genomic Profiler Bovine LDv.4 panel; after quality control, 22,734 SNP and 276 animals were maintained in the analysis. The examined phenotypic data considered birth (BW), weaning (WW), and yearling weights. The association analysis was performed using the principal components method via the egscore function of the GenABEL version 1.8-0 package in the R environment. The marker rs133262280 located in BTA 22 was associated with BW, and two SNPs were associated with WW, rs43668789 (BTA 11) and rs136155567 (BTA 27). New QTL associated with these liveweight traits and four positional and functional candidate genes potentially involved in variations of the analyzed traits were identified. The most important genes in these genomic regions were MCM2 (minichromosome maintenance complex component 2), TPRA1 (transmembrane protein adipocyte associated 1), GALM (galactose mutarotase), and NRG1 (neuregulin 1), related to embryonic cleavage, bone and tissue growth, cell adhesion, and organic development. This study is the first to present a GWAS conducted in Braunvieh cattle in Mexico providing evidence for genetic architecture of assessed growth traits. Further specific analysis of found associated genes and regions will clarify its contribution to the genetic basis of growth-related traits.
Collapse
Affiliation(s)
- José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Kilometro 40 Autopista Colima-Manzanillo, Tecomán 28100, Colima, Mexico;
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rafael Núñez-Domínguez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rodolfo Ramírez-Valverde
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Francisco Joel Jahuey-Martínez
- Facultad de Zootecnia y Ecologa, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua 33820, Chihuahua, Mexico;
| | - Jessica Beatriz Herrera-Ojeda
- Departamento de Ciencias Básicas, Instituto Tecnológico del Valle de Morelia, Instituto Tecnológico Nacional, Morelia 58100, Michoacán, Mexico;
| | - Gaspar Manuel Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, Ciudad Reynosa 88710, Tamaulipas, Mexico
- Correspondence: ; Tel.: +52-899-924-3627 (ext. 87709)
| |
Collapse
|
5
|
Pérez-González J, Carranza J, Martínez R, Benítez-Medina JM. Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals (Basel) 2021; 11:1630. [PMID: 34072907 PMCID: PMC8229303 DOI: 10.3390/ani11061630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Host genetic diversity tends to limit disease spread in nature and buffers populations against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can present high prevalence in wild boar and red deer populations. Here, we review studies on the genetic diversity of ungulates and determine to what extent these studies consider its importance on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We found a disconnection between studies treating genetic diversity and those dealing with infectious diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation. Despite the existing disconnection between studies on genetic diversity and studies on disease emergence and spread, the knowledge gathered in each discipline can be applied to the other. The bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB is an important threat for wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Córdoba, Spain;
| | - Remigio Martínez
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| | - José Manuel Benítez-Medina
- Infectious Pathology Unit, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain; (R.M.); (J.M.B.-M.)
| |
Collapse
|
6
|
de Jager D, Glanzmann B, Möller M, Hoal E, van Helden P, Harper C, Bloomer P. High diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo genomes. Sci Rep 2021; 11:4540. [PMID: 33633171 PMCID: PMC7907399 DOI: 10.1038/s41598-021-83823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
Genomes retain records of demographic changes and evolutionary forces that shape species and populations. Remnant populations of African buffalo (Syncerus caffer) in South Africa, with varied histories, provide an opportunity to investigate signatures left in their genomes by past events, both recent and ancient. Here, we produce 40 low coverage (7.14×) genome sequences of Cape buffalo (S. c. caffer) from four protected areas in South Africa. Genome-wide heterozygosity was the highest for any mammal for which these data are available, while differences in individual inbreeding coefficients reflected the severity of historical bottlenecks and current census sizes in each population. PSMC analysis revealed multiple changes in Ne between approximately one million and 20 thousand years ago, corresponding to paleoclimatic changes and Cape buffalo colonisation of southern Africa. The results of this study have implications for buffalo management and conservation, particularly in the context of the predicted increase in aridity and temperature in southern Africa over the next century as a result of climate change.
Collapse
Affiliation(s)
- Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Cindy Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Affiliation(s)
- Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo Sanda City Japan
- The Museum of Nature and Human Activities, Hyogo Sanda City Japan
| |
Collapse
|
8
|
de Jager D, Harper CK, Bloomer P. Genetic diversity, relatedness and inbreeding of ranched and fragmented Cape buffalo populations in southern Africa. PLoS One 2020; 15:e0236717. [PMID: 32797056 PMCID: PMC7428177 DOI: 10.1371/journal.pone.0236717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/13/2020] [Indexed: 12/03/2022] Open
Abstract
Wildlife ranching, although not considered a conventional conservation system, provides a sustainable model for wildlife utilization and could be a source of valuable genetic material. However, increased fragmentation and intensive management may threaten the evolutionary potential and conservation value of species. Disease-free Cape buffalo (Syncerus caffer caffer) in southern Africa exist in populations with a variety of histories and management practices. We compared the genetic diversity of buffalo in national parks to private ranches and found that, except for Addo Elephant National Park, genetic diversity was high and statistically equivalent. We found that relatedness and inbreeding levels were not substantially different between ranched populations and those in national parks, indicating that breeding practices likely did not yet influence genetic diversity of buffalo on private ranches in this study. High genetic differentiation between South African protected areas highlighted their fragmented nature. Structure analysis revealed private ranches comprised three gene pools, with origins from Addo Elephant National Park, Kruger National Park and a third, unsampled gene pool. Based on these results, we recommend the Addo population be supplemented with disease-free Graspan and Mokala buffalo (of Kruger origin). We highlight the need for more research to characterize the genetic diversity and composition of ranched wildlife species, in conjunction with wildlife ranchers and conservation authorities, in order to evaluate the implications for management and conservation of these species across different systems.
Collapse
Affiliation(s)
- Deon de Jager
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Cindy Kim Harper
- Veterinary Genetics Laboratory, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Paulette Bloomer
- Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
9
|
Guerrini L, Pfukenyi DM, Etter E, Bouyer J, Njagu C, Ndhlovu F, Bourgarel M, de Garine-Wichatitsky M, Foggin C, Grosbois V, Caron A. Spatial and seasonal patterns of FMD primary outbreaks in cattle in Zimbabwe between 1931 and 2016. Vet Res 2019; 50:73. [PMID: 31551078 PMCID: PMC6760110 DOI: 10.1186/s13567-019-0690-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Foot and mouth disease (FMD) is an important livestock disease impacting mainly intensive production systems. In southern Africa, the FMD virus is maintained in wildlife and its control is therefore complicated. However, FMD control is an important task to allow countries access to lucrative foreign meat market and veterinary services implement drastic control measures on livestock populations living in the periphery of protected areas, negatively impacting local small-scale livestock producers. This study investigated FMD primary outbreak data in Zimbabwe from 1931 to 2016 to describe the spatio-temporal distribution of FMD outbreaks and their potential drivers. The results suggest that: (i) FMD outbreaks were not randomly distributed in space across Zimbabwe but are clustered in the Southeast Lowveld (SEL); (ii) the proximity of protected areas with African buffalos was potentially responsible for primary FMD outbreaks in cattle; (iii) rainfall per se was not associated with FMD outbreaks, but seasons impacted the temporal occurrence of FMD outbreaks across regions; (iv) the frequency of FMD outbreaks increased during periods of major socio-economic and political crisis. The differences between the spatial clusters and other areas in Zimbabwe presenting similar buffalo/cattle interfaces but with fewer FMD outbreaks can be interpreted in light of the recent better understanding of wildlife/livestock interactions in these areas. The types of wildlife/livestock interfaces are hypothesized to be the key drivers of contacts between wildlife and livestock, triggering a risk of FMD inter-species spillover. The management of wildlife/livestock interfaces is therefore crucial for the control of FMD in southern Africa.
Collapse
Affiliation(s)
- Laure Guerrini
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, RP-PCP, UMR ASTRE, Harare, Zimbabwe
| | - Davies Mubika Pfukenyi
- Department of Clinical Veterinary Studies, Faculty of Veterinary Science, University of Zimbabwe, Harare, Zimbabwe
| | - Eric Etter
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Epidemiology Section, Department of Production Animals Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jérémy Bouyer
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
| | | | | | - Mathieu Bourgarel
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, RP-PCP, UMR ASTRE, Harare, Zimbabwe
| | - Michel de Garine-Wichatitsky
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, RP-PCP, UMR ASTRE, Harare, Zimbabwe
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chris Foggin
- Victoria Falls Wildlife Trust, P O Box 159, Victoria Falls, Zimbabwe
| | | | - Alexandre Caron
- ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, RP-PCP, UMR ASTRE, Harare, Zimbabwe
- Faculdade de Veterinaria, Universidade Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
10
|
A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: Possible implications for disease management. PLoS One 2019; 14:e0221168. [PMID: 31483802 PMCID: PMC6726202 DOI: 10.1371/journal.pone.0221168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 11/22/2022] Open
Abstract
Bovine tuberculosis (BTB) is endemic to the African buffalo (Syncerus caffer) of Hluhluwe-iMfolozi Park (HiP) and Kruger National Park, South Africa. In HiP, the disease has been actively managed since 1999 through a test-and-cull procedure targeting BTB-positive buffalo. Prior studies in Kruger showed associations between microsatellite alleles, BTB and body condition. A sex chromosomal meiotic drive, a form of natural gene drive, was hypothesized to be ultimately responsible. These associations indicate high-frequency occurrence of two types of male-deleterious alleles (or multiple-allele haplotypes). One type negatively affects body condition and BTB resistance in both sexes. The other type has sexually antagonistic effects: negative in males but positive in females. Here, we investigate whether a similar gene drive system is present in HiP buffalo, using 17 autosomal microsatellites and microsatellite-derived Y-chromosomal haplotypes from 401 individuals, culled in 2002–2004. We show that the association between autosomal microsatellite alleles and BTB susceptibility detected in Kruger, is also present in HiP. Further, Y-haplotype frequency dynamics indicated that a sex chromosomal meiotic drive also occurred in HiP. BTB was associated with negative selection of male-deleterious alleles in HiP, unlike positive selection in Kruger. Birth sex ratios were female-biased. We attribute negative selection and female-biased sex ratios in HiP to the absence of a Y-chromosomal sex-ratio distorter. This distorter has been hypothesized to contribute to positive selection of male-deleterious alleles and male-biased birth sex ratios in Kruger. As previously shown in Kruger, microsatellite alleles were only associated with male-deleterious effects in individuals born after wet pre-birth years; a phenomenon attributed to epigenetic modification. We identified two additional allele types: male-specific deleterious and beneficial alleles, with no discernible effect on females. Finally, we discuss how our findings may be used for breeding disease-free buffalo and implementing BTB test-and-cull programs.
Collapse
|
11
|
van Hooft P, Dougherty ER, Getz WM, Greyling BJ, Zwaan BJ, Bastos ADS. Genetic responsiveness of African buffalo to environmental stressors: A role for epigenetics in balancing autosomal and sex chromosome interactions? PLoS One 2018; 13:e0191481. [PMID: 29415077 PMCID: PMC5802885 DOI: 10.1371/journal.pone.0191481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/05/2018] [Indexed: 02/04/2023] Open
Abstract
In the African buffalo (Syncerus caffer) population of the Kruger National Park (South Africa) a primary sex-ratio distorter and a primary sex-ratio suppressor have been shown to occur on the Y chromosome. A subsequent autosomal microsatellite study indicated that two types of deleterious alleles with a negative effect on male body condition, but a positive effect on relative fitness when averaged across sexes and generations, occur genome-wide and at high frequencies in the same population. One type negatively affects body condition of both sexes, while the other acts antagonistically: it negatively affects male but positively affects female body condition. Here we show that high frequencies of male-deleterious alleles are attributable to Y-chromosomal distorter-suppressor pair activity and that these alleles are suppressed in individuals born after three dry pre-birth years, likely through epigenetic modification. Epigenetic suppression was indicated by statistical interactions between pre-birth rainfall, a proxy for parental body condition, and the phenotypic effect of homozygosity/heterozygosity status of microsatellites linked to male-deleterious alleles, while a role for the Y-chromosomal distorter-suppressor pair was indicated by between-sex genetic differences among pre-dispersal calves. We argue that suppression of male-deleterious alleles results in negative frequency-dependent selection of the Y distorter and suppressor; a prerequisite for a stable polymorphism of the Y distorter-suppressor pair. The Y distorter seems to be responsible for positive selection of male-deleterious alleles during resource-rich periods and the Y suppressor for positive selection of these alleles during resource-poor periods. Male-deleterious alleles were also associated with susceptibility to bovine tuberculosis, indicating that Kruger buffalo are sensitive to stressors such as diseases and droughts. We anticipate that future genetic studies on African buffalo will provide important new insights into gene fitness and epigenetic modification in the context of sex-ratio distortion and infectious disease dynamics.
Collapse
Affiliation(s)
- Pim van Hooft
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
- * E-mail:
| | - Eric R. Dougherty
- Department of Environmental Science Policy & Management, University of California, Berkeley, California, United States of America
| | - Wayne M. Getz
- Department of Environmental Science Policy & Management, University of California, Berkeley, California, United States of America
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Barend J. Greyling
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
- Agricultural Research Council, Irene, South Africa
| | - Bas J. Zwaan
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Armanda D. S. Bastos
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
12
|
Hemmink JD, Sitt T, Pelle R, de Klerk-Lorist LM, Shiels B, Toye PG, Morrison WI, Weir W. Ancient diversity and geographical sub-structuring in African buffalo Theileria parva populations revealed through metagenetic analysis of antigen-encoding loci. Int J Parasitol 2018; 48:287-296. [PMID: 29408266 PMCID: PMC5854372 DOI: 10.1016/j.ijpara.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 10/27/2022]
Abstract
An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T. parva. The current study set out to extend these analyses by applying high-throughput sequencing to ex vivo samples from naturally infected buffalo to determine the extent of diversity in a set of antigen-encoding genes. Samples from two populations of buffalo, one in Kenya and the other in South Africa, were examined to investigate the effect of geographical distance on the nature of sequence diversity. The results revealed a number of significant findings. First, there was a variable degree of nucleotide sequence diversity in all gene segments examined, with the percentage of polymorphic nucleotides ranging from 10% to 69%. Second, large numbers of allelic variants of each gene were found in individual animals, indicating multiple infection events. Third, despite the observed diversity in nucleotide sequences, several of the gene products had highly conserved amino acid sequences, and thus represent potential candidates for vaccine development. Fourth, although compelling evidence for population differentiation between the Kenyan and South African T. parva parasites was identified, analysis of molecular variance for each gene revealed that the majority of the underlying nucleotide sequence polymorphism was common to both areas, indicating that much of this aspect of genetic variation in the parasite population arose prior to geographic separation.
Collapse
Affiliation(s)
- Johanneke D Hemmink
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK; The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Tatjana Sitt
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Roger Pelle
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - Lin-Mari de Klerk-Lorist
- Department of Agriculture, Forestry and Fisheries (DAFF), National Department of Agriculture, PO Box 12, Skukuza, Kruger National Park, 1350, South Africa
| | - Brian Shiels
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Henry Wellcome Building, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Philip G Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya
| | - W Ivan Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK.
| | - William Weir
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Henry Wellcome Building, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
13
|
Di Lorenzo P, Lancioni H, Ceccobelli S, Curcio L, Panella F, Lasagna E. Uniparental genetic systems: a male and a female perspective in the domestic cattle origin and evolution. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Brito BP, Jori F, Dwarka R, Maree FF, Heath L, Perez AM. Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife-Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa. Front Microbiol 2016; 7:528. [PMID: 27148217 DOI: 10.3389/fmicb.2016.00528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Abstract
Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level.
Collapse
Affiliation(s)
- Barbara P Brito
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture/Agricultural Research ServiceGreenport, NY, USA; Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de ChileSantiago, Chile
| | - Ferran Jori
- Unité Propre de Recherche Animal et Gestion Intégrée des Risques, French Agricultural Research Center for International Development (CIRAD)Montpellier, France; Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Department of Animal Science and Production, Botswana College of AgricultureGaborone, Botswana
| | - Rahana Dwarka
- Transboundary Animal Diseases Programme, Ondesterpoort Veterinary Institute Onderstepoort, South Africa
| | - Francois F Maree
- Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Transboundary Animal Diseases Programme, Ondesterpoort Veterinary InstituteOnderstepoort, South Africa
| | - Livio Heath
- Transboundary Animal Diseases Programme, Ondesterpoort Veterinary Institute Onderstepoort, South Africa
| | - Andres M Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
15
|
Smitz N, Cornélis D, Chardonnet P, Caron A, de Garine-Wichatitsky M, Jori F, Mouton A, Latinne A, Pigneur LM, Melletti M, Kanapeckas KL, Marescaux J, Pereira CL, Michaux J. Erratum to: genetic structure of fragmented southern populations of African Cape buffalo (Syncerus caffer caffer). BMC Evol Biol 2016; 16:17. [PMID: 26792580 PMCID: PMC4721056 DOI: 10.1186/s12862-016-0585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nathalie Smitz
- Departement of Life Sciences-Conservation Genetics, University of Liège, Liège, Belgium.
| | - Daniel Cornélis
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | | | - Alexandre Caron
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)-RP-PCP, University of Zimbabwe, Harare, Zimbabwe.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Michel de Garine-Wichatitsky
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)-RP-PCP, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Ferran Jori
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Animal Science and Production, Botswana College of Agriculture, Gaborone, Botswana
| | - Alice Mouton
- Departement of Life Sciences-Conservation Genetics, University of Liège, Liège, Belgium
| | - Alice Latinne
- Departement of Life Sciences-Conservation Genetics, University of Liège, Liège, Belgium.,Institut des Sciences de l'Evolution-CNRS-IRD, Université de Montpellier 2, Montpellier, France.,Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Lise-Marie Pigneur
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | | | - Kimberly L Kanapeckas
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Genetics and Biochemistry, Clemson University, Clemson, USA
| | - Jonathan Marescaux
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | | | - Johan Michaux
- Departement of Life Sciences-Conservation Genetics, University of Liège, Liège, Belgium
| |
Collapse
|