1
|
Leal-Cardín M, Bracamonte SE, Aldegunde J, Magalhaes IS, Ornelas-García CP, Barluenga M. Signatures of convergence in Neotropical cichlid fish. Mol Ecol 2024; 33:e17524. [PMID: 39279721 DOI: 10.1111/mec.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Convergent evolution of similar phenotypes suggests some predictability in the evolutionary trajectories of organisms, due to strong and repeated selective pressures, and/or developmental constraints. In adaptive radiations, particularly in cichlid fish radiations, convergent phenotypes are commonly found within and across geographical settings. Cichlids show major repeated axes of morphological diversification. Recurrent changes in body patterns reveal adaption to alternative habitats, and modifications of the trophic apparatus respond to the exploitation of different food resources. Here we compare morphologically and genetically two Neotropical cichlid assemblages, the Mexican desert cichlid and the Nicaraguan Midas cichlid, with similar polymorphic body and trophic adaptations despite their independent evolution. We found a common morphological axis of differentiation in trophic structures in both cichlid radiations, but two different axes of differentiation in body shape, defining two alternative limnetic body patterns. Adaptation to limnetic habitats implied regulation of immune functions in the Midas cichlid, while morphogenesis and metabolic functions in the desert cichlid. Convergent phenotypic adaptions could be associated to divergent gene regulation.
Collapse
Affiliation(s)
- Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- University of Alcalá de Henares, Madrid, Spain
| | - Seraina E Bracamonte
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Javier Aldegunde
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel S Magalhaes
- School of Life and Health Sciences, Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London, UK
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Lafond J, Leung C, Angers B. Asexuality shapes traits in a hybrid fish. Nat Commun 2024; 15:7642. [PMID: 39223116 PMCID: PMC11368912 DOI: 10.1038/s41467-024-52041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Animal morphology is influenced by several factors, including gonadal development and gametogenesis. Although their effects are well documented in male/female differentiation, much less is known about same-sex effects, such as those caused by their mode of reproduction. Here, using geometric morphometric analyses, we compare two groups of all-female triploid hybrid fish Chrosomus eos × eos-neogaeus, that differ only by their sexual and asexual reproductive strategies. We demonstrate that morphological differences arise from factors inherently associated with their mode of reproduction, with results replicated in two distinct lineages and in natural and common garden environments. Such differences provide additional insight about the costs and benefits of both reproductive strategies, which have mostly been of a demographic, population genetic, or genetic nature. In particular, these findings have important implications for the ecology of asexual organisms and contribute to the study of sex evolution by adding complexity to the paradox of sex theory.
Collapse
Affiliation(s)
- Joëlle Lafond
- Department of biological sciences, Université de Montréal, Montreal, Quebec, Canada.
| | - Christelle Leung
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
| | - Bernard Angers
- Department of biological sciences, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
DeHaan LM, Burns MD, Egan JP, Bloom DD. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies). Am Nat 2023; 202:830-850. [PMID: 38033182 DOI: 10.1086/726894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.
Collapse
|
4
|
Roesti M, Groh JS, Blain SA, Huss M, Rassias P, Bolnick DI, Stuart YE, Peichel CL, Schluter D. Species divergence under competition and shared predation. Ecol Lett 2023; 26:111-123. [PMID: 36450600 DOI: 10.1111/ele.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
Species competing for resources also commonly share predators. While competition often drives divergence between species, the effects of shared predation are less understood. Theoretically, competing prey species could either diverge or evolve in the same direction under shared predation depending on the strength and symmetry of their interactions. We took an empirical approach to this question, comparing antipredator and trophic phenotypes between sympatric and allopatric populations of threespine stickleback and prickly sculpin fish that all live in the presence of a trout predator. We found divergence in antipredator traits between the species: in sympatry, antipredator adaptations were relatively increased in stickleback but decreased in sculpin. Shifts in feeding morphology, diet and habitat use were also divergent but driven primarily by stickleback evolution. Our results suggest that asymmetric ecological character displacement indirectly made stickleback more and sculpin less vulnerable to shared predation, driving divergence of antipredator traits between sympatric species.
Collapse
Affiliation(s)
- Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey S Groh
- Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Stephanie A Blain
- Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magnus Huss
- Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden
| | - Peter Rassias
- Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Yoel E Stuart
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Dolph Schluter
- Zoology Department and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Bensky MK, Bell AM. A Behavioral Syndrome Linking Boldness and Flexibility Facilitates Invasion Success in Sticklebacks. Am Nat 2022; 200:846-856. [PMID: 36409977 PMCID: PMC9756172 DOI: 10.1086/721765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
AbstractFor a species to expand its range, it needs to be good at dispersing and also capable of exploiting resources and adapting to different environments. Therefore, behavioral and cognitive traits could play key roles in facilitating invasion success. Marine threespined sticklebacks (Gasterosteus aculeatus) have repeatedly colonized freshwater environments and rapidly adapted to them. Here, by comparing the behavior of hundreds of lab-reared sticklebacks from six different populations, we show that marine sticklebacks are bold, while sticklebacks that have become established in freshwater lakes are flexible. Moreover, boldness and flexibility are negatively correlated with one another at the individual, family, and population levels. These results support the hypothesis that boldness is favored in invaders during the initial dispersal stage, while flexibility is favored in recent immigrants during the establishment stage, and they suggest that the link between boldness and flexibility facilitates success during both the dispersal stage and the establishment stage. This study adds to the growing body of work showing the importance of behavioral correlations in facilitating colonization success in sticklebacks and other organisms.
Collapse
Affiliation(s)
- Miles K. Bensky
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alison M. Bell
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Carl R. Woese Institute for Genomic Biology and Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
6
|
Characterizing phenotypic diversity in marine populations of the threespine stickleback. Sci Rep 2022; 12:17923. [PMID: 36289364 PMCID: PMC9606258 DOI: 10.1038/s41598-022-22872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/20/2022] [Indexed: 01/20/2023] Open
Abstract
The threespine stickleback (Gasterosteus aculeatus) is an important model for studying the evolution of vertebrate morphology. Sticklebacks inhabit freshwater, brackish, and marine northern hemisphere waters. Anadromous and marine populations (hereafter marine) are assumed to have remained unchanged morphologically from ancestral marine sticklebacks, despite marine environments varying on regional and local scales. Recent studies suggest that genetic and phenotypic structure exists in marine populations, yet the scale of this variation, and its ecological causes remain unclear. Our goal was to assess morphological trait variation in marine stickleback populations around Southern British Columbia (BC) and determine if oceanographic and habitat characteristics were associated with this variation. Between May-July 2019, we sampled 534 sticklebacks from 15 sites around Vancouver Island, a region characterized by a large diversity of oceanographic and habitat features. We characterized trait variation using two-dimensional (2D) geometric morphometric analysis, comparing individuals between oceanographic regions and habitats. We focused on head and body shape. We found that marine sticklebacks varied morphologically among and between regions and habitats, but the variation did not appear to be related to environmental variation. Sexual dimorphism was the largest source of variation, but oceanographic and habitat variables influenced differences between sexes. We concluded that marine sticklebacks offer abundant opportunities for expanding our knowledge of drivers of morphology.
Collapse
|
7
|
Hudson CM, Lucek K, Marques DA, Alexander TJ, Moosmann M, Spaak P, Seehausen O, Matthews B. Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.611672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive species can be powerful models for studying contemporary evolution in natural environments. As invading organisms often encounter new habitats during colonization, they will experience novel selection pressures. Threespine stickleback (Gasterosteus aculeatus complex) have recently colonized large parts of Switzerland and are invasive in Lake Constance. Introduced to several watersheds roughly 150 years ago, they spread across the Swiss Plateau (400–800 m a.s.l.), bringing three divergent hitherto allopatric lineages into secondary contact. As stickleback have colonized a variety of different habitat types during this recent range expansion, the Swiss system is a useful model for studying contemporary evolution with and without secondary contact. For example, in the Lake Constance region there has been rapid phenotypic and genetic divergence between a lake population and some stream populations. There is considerable phenotypic variation within the lake population, with individuals foraging in and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very unusual habitat for stickleback. Furthermore, adults from the lake population can reach up to three times the size of adults from the surrounding stream populations, and are large by comparison to populations globally. Here, we review the historical origins of the threespine stickleback in Switzerland, and the ecomorphological variation and genomic basis of its invasion in Lake Constance. We also outline the potential ecological impacts of this invasion, and highlight the interest for contemporary evolution studies.
Collapse
|
8
|
Chavarie L, Howland KL, Harris LN, Hansen MJ, Harford WJ, Gallagher CP, Baillie SM, Malley B, Tonn WM, Muir AM, Krueger CC. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada? PLoS One 2018; 13:e0193925. [PMID: 29566015 PMCID: PMC5863968 DOI: 10.1371/journal.pone.0193925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.
Collapse
Affiliation(s)
- Louise Chavarie
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| | - Kimberly L. Howland
- Fisheries and Oceans Canada, Winnipeg, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Michael J. Hansen
- U.S. Geological Survey, Hammond Bay Biological Station, Millersburg, MI, United States of America
| | - William J. Harford
- Cooperative Institute of Marine & Atmospheric Studies, University of Miami, Miami, FL, United States of America
| | | | | | | | - William M. Tonn
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Andrew M. Muir
- Great Lakes Fishery Commission, Ann Arbor, MI, United States of America
| | - Charles C. Krueger
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
9
|
Østbye K, Taugbøl A, Ravinet M, Harrod C, Pettersen RA, Bernatchez L, Vøllestad LA. Ongoing niche differentiation under high gene flow in a polymorphic brackish water threespine stickleback (Gasterosteus aculeatus) population. BMC Evol Biol 2018; 18:14. [PMID: 29402230 PMCID: PMC5800020 DOI: 10.1186/s12862-018-1128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; δ15N, δ13C, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake - reflecting low versus high salinity). RESULTS All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback δ15N was higher in the lower lake section, while δ13C was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in δ15N and δ13C than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher δ15N values had more T. gasterostei, while sticklebacks with higher δ15N and δ13C values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. CONCLUSIONS Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live.
Collapse
Affiliation(s)
- Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, NO2418 Elverum, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Annette Taugbøl
- Norwegian Institute for nature research (NINA), Fakkelgården, 2624 Lillehammer, Norway
| | - Mark Ravinet
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Chris Harrod
- Department of Physiological Ecology, Max Planck Institute for Limnology, Postfach 165, D-24302 Plön, Germany
- Universidad de Antofagasta, Fish and Stable Isotope Ecology Laboratory, Instituto de Ciencias Naturales Alexander von Humbolt, Avenida Angamos, 601 Antofagasta, Chile
| | - Ruben Alexander Pettersen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| | - Louis Bernatchez
- Department of Biology, Université Laval, Pavillon Charles-Eugène-Marchand 1030, Avenue de la Medecine, Quebec, G1V 0A6 Canada
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Po. Box 1066, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
10
|
Chavarie L, Muir AM, Zimmerman MS, Baillie SM, Hansen MJ, Nate NA, Yule DL, Middel T, Bentzen P, Krueger CC. Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Louise Chavarie
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Andrew M. Muir
- Great Lakes Fishery Commission; 2100 Commonwealth Blvd. Suite 100 Ann Arbor Michigan USA
| | - Mara S. Zimmerman
- Washington Department of Fish and Wildlife; 600 Capitol Way N. Olympia Washington USA
| | - Shauna M. Baillie
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Michael J. Hansen
- United States Geological Survey; Hammond Bay Biological Station; 11188 Ray Road Millersburg Michigan USA
| | - Nancy A. Nate
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Daniel L. Yule
- United States Geological Survey; Lake Superior Biological Station; 2800 Lakeshore Drive Ashland Wisconsin USA
| | - Trevor Middel
- Harkness Laboratory of Fisheries Research; Ontario Ministry of Natural Resources and Forestry; Trent University; 2140 East Bank Drive Peterborough Ontario Canada
| | - Paul Bentzen
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Charles C. Krueger
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| |
Collapse
|