1
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
2
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
3
|
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, Kostygov AY, Lukeš J, Malysheva MN, Votýpka J, Zakharova A, Záhonová K, Zimmer SL, Yurchenko V, Butenko A. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics 2023; 24:471. [PMID: 37605127 PMCID: PMC10441713 DOI: 10.1186/s12864-023-09591-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Evgeny S Gerasimov
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Sechenov University, 119435, Moscow, Russia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Sara L Zimmer
- Duluth Campus, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Zakharova A, Tashyreva D, Butenko A, Morales J, Saura A, Svobodová M, Poschmann G, Nandipati S, Zakharova A, Noyvert D, Gahura O, Týč J, Stühler K, Kostygov AY, Nowack ECM, Lukeš J, Yurchenko V. A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas. Curr Biol 2023:S0960-9822(23)00542-0. [PMID: 37201521 DOI: 10.1016/j.cub.2023.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Jorge Morales
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Gereon Poschmann
- Institute of Molecular Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Satish Nandipati
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Alena Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - David Noyvert
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Kai Stühler
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Molecular Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
5
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Husnik F. Organellogenesis: Host proteins control symbiont cell divisions. Curr Biol 2023; 33:R22-R25. [PMID: 36626858 DOI: 10.1016/j.cub.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the order and importance of events through which endosymbionts transition into cellular organelles (organellogenesis) is central to hypotheses about the origin of the eukaryotic cell. A new study on host-symbiont integration in a unicellular eukaryote reveals host-derived cell-division proteins that are targeted to the cell envelope of a bacterial endosymbiont and involved in its cell division.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
7
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
8
|
A New Model Trypanosomatid, Novymonas esmeraldas: Genomic Perception of Its " Candidatus Pandoraea novymonadis" Endosymbiont. mBio 2021; 12:e0160621. [PMID: 34399629 PMCID: PMC8406214 DOI: 10.1128/mbio.01606-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont “Candidatus Pandoraea novymonadis.” Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the “Ca. Pandoraea novymonadis” genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches.
Collapse
|
9
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
10
|
Gonçalves CS, Catta-Preta CMC, Repolês B, Mottram JC, De Souza W, Machado CR, Motta MCM. Importance of Angomonas deanei KAP4 for kDNA arrangement, cell division and maintenance of the host-bacterium relationship. Sci Rep 2021; 11:9210. [PMID: 33911164 PMCID: PMC8080567 DOI: 10.1038/s41598-021-88685-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.
Collapse
Affiliation(s)
- Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Repolês
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, Mottram JC. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei. G3 (BETHESDA, MD.) 2021; 11:jkaa018. [PMID: 33561222 PMCID: PMC8022732 DOI: 10.1093/g3journal/jkaa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Angomonas deanei is an endosymbiont-bearing trypanosomatid with several highly fragmented genome assemblies and unknown chromosome number. We present an assembly of the A. deanei nuclear genome based on Oxford Nanopore sequence that resolves into 29 complete or close-to-complete chromosomes. The assembly has several previously unknown special features; it has a supernumerary chromosome, a chromosome with a 340-kb inversion, and there is a translocation between two chromosomes. We also present an updated annotation of the chromosomal genome with 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs.
Collapse
Affiliation(s)
- John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Carolina M C Catta-Preta
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Medicinal Chemistry Center (CQMED)/Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, São Paulo 13083-886, Brazil
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, UK
| | - Sarah Forrester
- Department of Biology, University of York, York YO10 5DD, UK
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Departamento de Biologia Celular e Parasitologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, RJ, Brazil
| | - Peter D Ashton
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jeremy C Mottram
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev 2019; 58-59:1-8. [DOI: 10.1016/j.gde.2019.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
|
13
|
Mao M, Yang X, Bennett GM. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci U S A 2018; 115:E11691-E11700. [PMID: 30463949 PMCID: PMC6294904 DOI: 10.1073/pnas.1811932115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.
Collapse
Affiliation(s)
- Meng Mao
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343;
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| |
Collapse
|
14
|
Abstract
Thanks to modern molecular biology methods, our understanding of the impact of (endo)symbiotic bacteria on parasitic protists and helminths is growing fast. In this issue, 9 papers have been brought together that describe various facets of the relationships between these microorganisms, reveal their range and high frequency, as well as their capacity to create novel biological complexity. Comparative analyses of these host-endosymbiont interactions indicate that there may be no discrete types of relationships but rather a continuum ranging from a dispensable endosymbiont minimally integrated within the host cell to organelles, such as mitochondria and plastids that evolved into an indispensable, deeply integrated components of the cell. We hope that this series of studies on parasites and (endo)symbiotic bacteria will increase awareness about these relationships and their representation in microbial ecology models.
Collapse
|
15
|
Martín-Vivaldi M, Soler JJ, Martínez-García Á, Arco L, Juárez-García-Pelayo N, Ruiz-Rodríguez M, Martínez-Bueno M. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings. MICROBIAL ECOLOGY 2018; 76:285-297. [PMID: 29250734 DOI: 10.1007/s00248-017-1125-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
Collapse
Affiliation(s)
- Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain.
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain
| | | | - Laura Arco
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|
16
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
17
|
Borghesan TC, Campaner M, Matsumoto TE, Espinosa OA, Razafindranaivo V, Paiva F, Carranza JC, Añez N, Neves L, Teixeira MMG, Camargo EP. Genetic Diversity and Phylogenetic Relationships of Coevolving Symbiont-Harboring Insect Trypanosomatids, and Their Neotropical Dispersal by Invader African Blowflies (Calliphoridae). Front Microbiol 2018; 9:131. [PMID: 29467742 PMCID: PMC5808337 DOI: 10.3389/fmicb.2018.00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/19/2018] [Indexed: 11/18/2022] Open
Abstract
This study is about the inter- and intra-specific genetic diversity of trypanosomatids of the genus Angomonas, and their association with Calliphoridae (blowflies) in Neotropical and Afrotropical regions. Microscopic examination of 3,900 flies of various families, mostly Calliphoridae, revealed that 31% of them harbored trypanosomatids. Small subunit rRNA (SSU rRNA) barcoding showed that Angomonas predominated (46%) over the other common trypanosomatids of blowflies of genera Herpetomonas and Wallacemonas. Among Angomonas spp., A. deanei was much more common than the two-other species, A. desouzai and A. ambiguus. Phylogenetic analyses based on SSU rRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) and internal transcribed spacer rDNA (ITS rDNA) sequences revealed a marked genetic diversity within A. deanei, which comprised four infraspecific genotypes (Dea1–Dea4), and four corresponding symbiont genotypes (Kcr1–Kcr4). Host and symbiont phylogenies were highly congruent corroborating their co-divergence, consistent with host-symbiont interdependent metabolism and symbiont reduced genomes shaped by a long coevolutionary history. We compared the diversity of Angomonas/symbionts from three genera of blowflies, Lucilia, Chrysomya and Cochliomyia. A. deanei, A. desouzai, and A. ambiguus were found in the three genera of blowflies in South America. In Africa, A. deanei and A. ambiguus were identified in Chrysomya. The absence of A. desouzai in Africa and its presence in Neotropical Cochliomyia and Lucilia suggests parasite spillback of A. desouzai into Chrysomya, which was most likely introduced four decades ago from Africa into the Neotropic. The absence of correlation between parasite diversity and geographic and genetic distances, with identical genotypes of A. deanei found in the Neotropic and Afrotropic, is consistent with disjunct distribution due to the recent human-mediated transoceanic dispersal of Angomonas by Chrysomya. This study provides the most comprehensive data gathered so far on the genetic repertoires of a genus of trypanosomatids found in flies from a wide geographical range.
Collapse
Affiliation(s)
- Tarcilla C Borghesan
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marta Campaner
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania E Matsumoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Omar A Espinosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Fernando Paiva
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Julio C Carranza
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), University of Tolima, Ibagué, Colombia
| | - Nestor Añez
- Department of Parasitology, University of Los Andes, Mérida, Venezuela
| | - Luis Neves
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Łukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc Natl Acad Sci U S A 2018; 115:E226-E235. [PMID: 29279407 PMCID: PMC5777040 DOI: 10.1073/pnas.1712321115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
Collapse
Affiliation(s)
- Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| | - Katherine Nazario
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - James T Van Leuven
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Matthew A Campbell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Anna Michalik
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, 9200 Esquel, Chubut, Argentina
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, 7800003 Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| |
Collapse
|
19
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
20
|
Ghoul M, Andersen SB, West SA. Sociomics: Using Omic Approaches to Understand Social Evolution. Trends Genet 2017; 33:408-419. [PMID: 28506494 DOI: 10.1016/j.tig.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
All of life is social, from genes cooperating to form organisms, to animals cooperating to form societies. Omic approaches offer exceptional opportunities to solve major outstanding problems in the study of how sociality evolves. First, omics can be used to clarify the extent and form of sociality in natural populations. This is especially useful in species where it is difficult to study social traits in natural populations, such as bacteria and other microbes. Second, omics can be used to examine the consequences of sociality for genome evolution and gene expression. This is especially useful in cases where there is clear variation in the level of sociality, such as the social insects. Major tasks for the future are to apply these approaches to a wider range of non-model organisms, and to move from exploratory analyses to the testing of evolutionary theory.
Collapse
Affiliation(s)
- Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Sandra B Andersen
- Langone Medical Center, New York University, 423 East 23rd Street, New York, NY 10010, USA.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
21
|
The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist 2017; 168:253-269. [DOI: 10.1016/j.protis.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
|